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ABSTRACT

The replicability crisis in experimental science is fueled by a lack of transparent and

explicit discussion of experimental designs in published work. An experimental design

is a description of experimental factors and how to map those factors onto a sequence

of trials such that researchers can draw statistically valid conclusions. This thesis intro-

duces SweetPea, a SAT-sampler aided language that facilitates creating understandable,

reproducible, and statistically robust experimental designs. SweetPea consists of (1) a

high-level language to declaratively describe an experimental design, and (2) a runtime to

generate unbiased sequences of trials given satisfiable constraints. The high-level language

provides primitives that closely match natural descriptions of experimental designs. To

ensure statistically significant results, every possible sequence of trials which satisfies the

design must have an equal likelihood of being chosen for the experiment. This requirement

is computationally intractable; SweetPea gains traction by approximately sampling the

solutions using the SAT-sampler Unigen. This allows scientists to easily create sharable

experimental designs in terms familiar to their domain which produce unbiased sequences

of trials.



For my parents; I’m sorry this thesis contains neither theorems nor jokes.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTERS

1. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Reliable Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Declarative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. SWEETPEA OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Running Example: The Stroop Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A Language for Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 A Runtime for Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. SWEETPEA LANGUAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Experimental Design Wishlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Descriptions of Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Ordering Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Experimental Design and Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Structure of an Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 SweetPea Language Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Factors and Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Deriving Levels with Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Counting Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Experimental Design, Balancing, and Experimental Structure . . . . . . . . . 19

4. SAT ENCODINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Conjunctive Normal Form (CNF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Representing SweetPea Primitives in CNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Representing Levels and Necessary Constraints . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Representing Derived Levels and Derivation Functions . . . . . . . . . . . . . 25

4.3 Correctness Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Language Implementation: Decisions and Alternatives . . . . . . . . . . . . . . . . . . 28
5.1.1 Embedding Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



5.1.2 Why SAT Sampling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Internal Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Encoding Counting Constraints with Popcount . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Popcount Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Psychology Tools, Experimental Design, and Replicability . . . . . . . . . . . . . . . . 36
6.2 Solver Aided Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Language Wishlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.1 Windows on Counting Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.2 General Case Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.3 Weighted Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.4 Sampling Continuous Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.5 Automated Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Runtime Wishlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.1 Verified Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.2 Debugging unSAT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.3 Iterative Experimental Design and Partial Satisfiability . . . . . . . . . . . . . . 41

8. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



LIST OF FIGURES

2.1 Example Stroop stimuli; the simulus on the left is congruent, while the one
of the right is incongruent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The full crossing of stimuli and a possible ordering of trials. . . . . . . . . . . . . . . . 9

2.3 Of the 24 possible orderings, the highlighted 8 satisfy the constraints. . . . . . . . 9

3.1 Full crossing of a 3 color Stroop experiment. There are more congruent stim-
uli (along the diagonal) than incongruent stimuli. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Windows define the scope of relationships between trials. . . . . . . . . . . . . . . . . . 21

5.1 Half-adder logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 The DIMACS cnf representation of 1 + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 The solution to 1 + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 The logic of a popcount circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



LIST OF TABLES

4.1 Variable allocation for the running Stroop example. . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Additional variable allocation necessary for encoding the states possible in
the full crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Variable allocation necessary for the congruency contraint. . . . . . . . . . . . . . . . . 27

4.4 Variable allocation necessary for the transition contraint. . . . . . . . . . . . . . . . . . . 27



ACKNOWLEDGEMENTS

A huge thank you to my advisor, Vivek Srikumar, for graciously being willing to

advise me despite the fact that I read the floating point standard for fun. I couldn’t have

had a better advisor; Vivek is a master peddler of ideas and an unrelenting optimist–

he consistently convinced me that the research we were working on was interesting and

important whenever I lost faith. I really appreciate both being given space to explore my

research interests as well as direction on projects, even when they involved working out

bit-wise arithmetic. In addition to learning at least a little about how research is done (it’s

at the twelfth hour), I hope I’ve learned enough from Vivek about storytelling, patience

and confidence to apply these practices in the future.

Thank you to everyone involved with SweetPea: Matthew Flatt, Jonathan Cohen, Se-

bastian Musslick, and Ben Draut. Thanks to Jon and Sebastian for so enthusiastically

providing the motivation for this project; it’s much more fun to work on something that

someone really actually wants to use. Thanks to Matt for his guidance and his patience as

I discovered details he saw all along, and to Ben for taking the helm to get SweetPea into

the wild.

Thanks to the incredibly patient crew who proof-read everything I’ve written in the

past few years- Tobin Yehle, Dasha Pruss, Nic Bertagnolli, and Zach Price. Thank you to

Will Byrd for making me upset with the state of computing and to Michael Adams for

telling me how all my academic interests were related.

Thanks also to my friends from the Recurse Center for many delightful computer

science distractions, and to my friends in SLC for distractions of other flavors. Thank

you to Tobin, Nic, and Laura for always being on the lookout for the next scheme, wild

idea, and adventure, and for inviting me along– and sometimes carrying my pack.

And, of course, thank you to my parents, and to my sister.

Life is rolling on, and it’s all very exciting.



CHAPTER 1

MOTIVATION

The replicability crisis in experimental science is fueled by a lack of transparent and

explicit discussion of experimental design in published work; a scientific conclusion is only

as trustworthy as the experimental design on which it is based. Incorrectly designed or

biased experiments lead to possibly invalid or biased conclusions; therefore, creating cor-

rect, statistically unbiased, reproducible experimental designs is paramount to performing

meaningful experiments that produce trustworthy and generalizable results.

This thesis describes SweetPea, a system for describing experimental designs and gen-

erating experimental sequences specified by the design in a statistically rigorous way.

SweetPea’s high-level language allows scientists to declaratively describe the experiment

they want to conduct rather than forcing them to procedurally describe how to construct

their experimental sequences. This allows scientists to write concise, correct programs

which describe their experiments, and produce unbiased experimental sequences; these

programs can then be published and shared to document the experiment and facilitate

interpretation and replication.

1.1 Reliable Experimental Design
What does experimental design entail? A single experiment is a sequence of trials, each

of which is characterized by several factors. When the experiment is run, certain factors,

such as response time, may be aggregated to produce statistical evidence to validate or

disprove a hypothesis. A design is a specification of the trials and any invariants that need

to hold for the experiment; the design of an experiment specifies which sequences of trials

are legal to include for that experiment.

While there are many software tools for modeling and running experiments (e.g., [3]

[5] [12]), there are, to the best of our knowledge, none for designing them. To ensure

statistically interpretable results, every possible trial sequence that satisfies the constraints
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of the experimental design must have an equal likelihood of being chosen for the exper-

iment. This guarantees that the method for generating trial sequences is not introducing

bias. In practice, however, researchers often construct trial sequences without statistical

guarantees. For even moderately complex designs, the number of valid sequences can

quickly become both intractably large and sparse in the space of all sequences, making it

difficult or even impossible to find a valid sequence by randomly sampling all sequences

or by enumerating all valid sequences.

Currently, scientists design experiments by writing complex scripts which manually

balance the experimental factors of interests. There are two major issues with this ap-

proach: the first is that it may not (and often does not) produce unbiased sequences of

trials. In practice, researchers construct these sequences without any statistical guarantees

because the brute force solution for constructing unbiased sequences by enumerating all

options is intractable; for a typical experiment, the size of the search space can be as large

as 10100. The second issue is that this approach is brittle. It is easy to introduce bugs that

go unnoticed but which may have serious consequences, and it is difficult to verify and

reproduce another researcher’s implementation.

SweetPea can be viewed as a domain-specific interface to SAT-sampling, and while

there are other languages that rely on SAT-solvers [18], none that we know of leverage the

guarantees provided by SAT-samplers. SweetPea generates unbiased sequences of trials

given satisfiable constraints. At the heart of the bias problem is the need to sample from

constrained combinatorial spaces with statistical guarantees; SweetPea samples sequences

of trials by compiling experimental designs into boolean logic, which are then passed to

a SAT-sampler. The SAT-sampler Unigen [7] provides statistical guarantees that the solu-

tions it finds are approximately uniformly probable in the space of all valid solutions. This

means that while producing sequences of trials that are perfectly unbiased is intractable,

we do the next best thing– produce sequences that are guaranteed to be approximately

unbiased.

1.2 Declarative Programming
Virtually all fields of scientific research increasingly rely on computational tools. Com-

putational tools open the door to analyses that are otherwise intractable, time-consuming
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and error-prone. Moreover, writing programs contributes to making research reproducible

because it creates digital artifacts, which allow one scientist to share, analyze and run a

program written by another. The drawback, however, is that writing correct, maintainable,

complex programs takes significant engineering effort. Requiring scientists to be engineers

in addition to being highly trained domain specialists needlessly impedes the progress

of science. Declarative languages allow their users to describe the result they want, as

contrasted with imperative or procedural languages which require their users to describe

how to construct the result.

There is a need, then, for software systems that allow scientists within a given domain

to design unbiased, replicable experiments in that domain. Moreover, such systems need

to provide an easy-to-use, declarative interface so that scientists who are not necessarily

trained as software engineers can create and reason about complicated experimental de-

signs, and transparently share their experimental setups and design choices. SweetPea

is just such a system; it is a language which provides semantics for describing sequen-

tial trial-based experiments, and a runtime for synthesizing experimental sequences from

specifications. While the need for a system to automate experimental design is general to

many types of science, we have built a prototype targeted for cognitive psychology and

neuroscience, in which trial-based designs are common and issues of reproducibility and

complexity of design have become a focus of attention. We discuss what would needed

to be added to our prototype to support other experimental sciences in the Future Work

section.

SweetPea is a vision of what this needed system could be. This thesis documents the

motivation, goals, and current state and future vision for SweetPea.



CHAPTER 2

SWEETPEA OVERVIEW

SweetPea is a software system for creating replicable, statistically robust experimental

designs. SweetPea consists of a high-level language and a runtime. The language provides

primitives that closely match the terms that scientists use to describe their experimental

designs. The runtime synthesizes an experimental sequence which is guaranteed to be

approximately as likely to be synthesized as any other valid sequence. SweetPea provides

this guarantee by representing the experiment as a boolean formula and interfacing with

a SAT sampler; this constrains the high-level language to be amenable to being translated

into a boolean formula.

The ultimate vision for SweetPea is for a researcher to declaratively describe the anal-

ysis they wish to perform, and for the system to automatically derive the constraints

required to produce an experiment for the desired analysis. Further, the system would

ideally interactively iterate with the user to let them explore exactly what they wanted to

analyze, and how choices they make effect the feasibility of the experimental design.

In this chapter, we will identify the fundamental components of a trial-based exper-

imental design by looking at a simple version of a classic psychology experiment, the

Stroop test. Then we will see how these components are represented in the language and

the goals of the runtime.

2.1 Running Example: The Stroop Experiment
The Stroop experiment is a well-known psychology paradigm, originally published by

John Stroop in 1935 [17]. A participant is shown a stimulus, and asked to perform a task

based on some property of the stimulus; the researcher measures how the participant’s

reaction time and/or accuracy varies depending on the stimulus. One version of this

experiment involves showing participants a word displayed in color and asking them to

say the color in which it is displayed. All of the words are the names of colors, such as
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“red” and “blue”. Some of the stimuli are congruent, meaning that the color in which it

is displayed matches the text, such as the word ”red” displayed in red. Other stimuli are

incongruent, such as the word red displayed in blue (Figure 2.1). The Stroop effect is the

observation that participants exhibit poorer performance (longer reaction times and/or

lower accuracy) when the stimulus is incongruent.

Let us consider the simplest version of the Stroop experiment, in which the stimuli

consist of two colors. Each stimulus is specified by independent and control variables,

called factors: display color and text. Each factor has two levels, red and blue. Figure 2.2

shows the full crossing of these factors for this simple case, for a total of 4 possible stimuli.

For reference, real experiments have on the order of 5 to 8 factors with 2 to 4 levels, leading

to tens to hundreds of possible stimuli. The design of the experiment is the list of all factors

that describe each stimulus. The design of the experiment may contain factors that are not

present in the full crossing.

Each participant is shown an ordering of the possible stimuli. The researchers may

want to place additional constraints on the ordering, such as first familiarizing the partic-

ipant with the task by showing some number of congruent stimuli before showing them

a mix of congruent and incongruent stimuli. For our simple example, let us consider the

constraint that there should be no repetitions of stimuli the text of which is the same. The

ordering in Figure 2.2 is a valid ordering which satisfies these constraints, but swapping

the order of the first and second trial would produce an invalid ordering under those

constraints.

To prove that we do not introduce bias because of the way we construct experimental

sequences, we would like to ensure that each valid sequence is equally likely. In this

example, we have four stimuli so there are 4 factorial = 24 possible orderings. Of those 24

orderings, 8 satisfy the constraints as shown in Figure 2.3, and to provide this guarantee,

we want each of those 8 to be equally likely.

2.2 A Language for Experimental Design
Let us see how the simple Stroop experiment can be represented in SweetPea, and

then at how that representation can be translated to a boolean formula to generate an

experimental sequence.
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The version of the SweetPea language we will discuss is embedded in Python, so uses

Python syntax.

First, we represent the factors directly as a list of levels:

display_color = Factor("display_color", ["red", "blue"])

text = Factor("text", ["red", "blue"])

Next, let us represent the constraint that there should be no repetitions of stimuli the

text of which is the same. NoMoreThanKInARow is a constraint constructor function in

SweetPea, which allows us to declaratively specify the constraint:

k = 2

constraints = [NoMoreThanKInARow(k, ("text", "red")),

NoMoreThanKInARow(k, ("text", "blue"))]

Having specified the factors and the constraints over those factors, we can now specify

the rest of the experimental design:

design = [display_color, text]

crossing = design

experiment = FullyCrossBlock(design, crossing, constraints)

synthesize_trials(experiment)

In this example, the design and the full crossing are the same, though that doesn’t

need to always be the case. We specify the experiment to be the full crossing, but more

generally we can construct experiments out of multiple ”blocks” of crossings. The call

to synthesize trials translates the experiment to a boolean formula representation and

calls the SAT sampler.

2.3 A Runtime for Uniform Sampling
A boolean formula consists of boolean variables combined using boolean operators, such

as and, or, and not. A satisfying assignment is a specification of true or false to each

boolean variable which causes the entire formula to evaluate to true. Some formulas are
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unsatisfiable.

An example of an unsatisfiable formula is (A and (not A)). Regardless of whether A

is true or false, this formula will always evaluate to false. In contrast, the formula (A and

B) is satisfied by the assignment A is true and B is true, because (true and true) evaluates

to True.

How do we represent the program above as a boolean formula?

First, we represent each level of each trial as a boolean variable, which corresponds

to whether or not that level is chosen for the produced experimental sequence. For our

Stroop example, there are 4 trials, each of which have 4 boolean variables corresponding

to each of the levels for a total of 16 boolean variables. A real experiment will have on the

order of hundreds to thousands of boolean variables. These level variables are bound by

additional constraints such as that only one level per factor is true, as well as constraints

that say how many instances of a level should exist in a given experimental block.

For our Stroop example, this means that for each trial, we create boolean variables

to represent display color=red, display color=blue, text=red, text=blue. We create

boolean formulas for each trial which say that exactly one of display color=red or

display color=blue must be true, and that there must be two display color=red’s in the

fully crossed block.

We have multiple strategies for encoding constraints, but for now, let us say we have a

strategy for encoding constraints of the form ”no more than K in a row”. We can use this to

encode our constraint that there should be no repetitions of stimuli whose text is the same.

Once we have created this boolean formula which represents all the relationships which

the levels must fulfill, we can pass this formula to the SAT sampler. If there exists an

assignment of the boolean variables which satisfies all the constraints, the sampler will

return one such assignment. If there are no satisfying assignments, the sampler will state

that the formula is unsatisfiable. Both results are useful; learning that a given design is

over-constrained as quickly as possible will allow the user to redesign the experiment

without wasting much time.

The solution that the sampler finds is guaranteed to be approximately uniformly prob-

able in the space of all possible solutions. We currently use the SAT sampler Unigen which

uses universal hash functions to find solutions in a principled way, but providing this
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guarantee is the goal of all uniform sampling. Unigen guarantees that it will return a

satisfying assignment with approximately uniform probability of choosing any satisfying

assignment to a given boolean formula.

How does this guarantee, which is provided at the level of boolean variables, translate

to the guarantee we want, at the level of the experimental design? As we will discuss

further in Chapter 4, so long as every boolean formula uniquely describes a single ex-

perimental design, we know that the satisfying experimental sequence is approximately

uniformly probable among all satisfying experimental sequences. For our Stroop example,

this means that each of the 8 valid orderings in Figure 2.3 should be approximately equally

likely.

If the sampler finds a satisfying assignment to the variables, we can then translate those

variables back to the levels they represent. For our Stroop example, this means we will get

assignments to the 16 boolean variables, 4 of them for each trial. These will determine the

values of each of the trials, and because we have satisfied all the necessary constraints,

results in a valid ordering of the trials.
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Figure 2.1: Example Stroop stimuli; the simulus on the left is congruent, while the one of
the right is incongruent.

Figure 2.2: The full crossing of stimuli and a possible ordering of trials.

Figure 2.3: Of the 24 possible orderings, the highlighted 8 satisfy the constraints.



CHAPTER 3

SWEETPEA LANGUAGE

SweetPea achieves its goal of creating unbiased experimental sequences from high-

level experimental designs by relying on a SAT sampler. Writing experimental designs in

the language of a SAT sampler– that is, as a boolean formula– is, at best, highly uncom-

fortable. SweetPea, therefore, conveniently bridges the gap between scientists and SAT

samplers: scientists describe their experimental designs in the terms they usually use in

their domain, and SweetPea handles the rest.

In this chapter, we’ll document the features of the SweetPea language. They largely fol-

low the components we saw in the Overview chapter. Experimental design specifications

consist of:

• trials described in terms of factors and levels,

• constraints and relationships over those trials,

• counting and balancing constraints,

• and a block specification consisting of a crossing and a design.

Here we’ll look at a variety of experiments which motivate these various features, and

the high-level language we provide to describe those experiments. In the next chapter,

we’ll take a close look at how these features are efficiently encoded into a boolean formula.

3.1 Experimental Design Wishlist
We briefly saw the parts of an experiment with the Stroop test in Chapter 2. Now let us

look at the range of variations of trial-based experiments we might wish to model.

3.1.1 Descriptions of Stimuli

Each component of a stimulus is represented has a factor which typically takes on a

discrete number of levels. In the Stroop experiment, there were two factors (display color
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and text) each with two levels (red and blue). A typical experiment has 2 to 7 factors with

2 to 4 levels each, resulting in roughly 50 to 200 stimuli.

Levels may be nested into sublevels. One reason for doing so is to apply different

constraints to each of the sublevels. For instance, a color factor may have nested sublevels

of light colors (like yellow and aqua) and dark colors (like navy and maroon).

Sometimes researchers may want to define factors with levels sampled from a contin-

uous distribution, for example to model a spectrum of light or sound. SweetPea currently

does not support this other than by the researcher manually discretizing the continuum

into several discrete values. This case is particularly challenging for SweetPea because it

is difficult to phrase sampling a continuous distribution as a boolean formula; for more

thought on how we could better support this, see Future Work.

3.1.2 Ordering Constraints

Researchers must have some control over the ordering of stimuli to be able to test their

hypothesis. For example, if we are testing whether the presence of a certain level affects

the participant’s reaction time, we need control over when that level occurs and how often

it occurs in relation to other levels. More generally, we need to be able to constrain the

presence or absence of relationships which we define over the levels. Since levels can be

grouped into arbitrary sublevels, we should more generally be able to specify constraints

on relationships over the sublevels.

One example of such a relationship is a transition constraint, which specifies whether

each level is followed by the same level (a repetition) or a different level (a switch). This is

an important condition to control for in task-switching experiments because a participant’s

reaction time may depend on whether they just performed a similar or dissimilar task. An

experimenter may wish to specify that a participant experience as many repetition or tasks

as task switches.

Another example, which we saw in Chapter 2, is a congruence constraint, which spec-

ifies whether the levels of different factors are, according to a user-specified condition,

complementary or conflicting. A congruence constraint for the Stroop test is whether the

text and the color it is displayed in are the same (the word ”red” displayed in red) or not.

Constraints can also be defined in terms of other constraints. For instance, in the Stroop
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test, one may want to balance the number of congruent and incongruent levels, or to

balance the transitions between congruent and incongruent levels. More generally, ex-

periments expressed in SweetPea may need to define user-specified relationships between

levels.

3.1.3 Experimental Design and Balancing

Experiments which include every possible combination of levels are fully crossed de-

signs. Full crossings are desirable because they allow the researcher to test the full space

of possible stimuli.

Sometimes, however, factors either need to be excluded or duplicated to make an

experiment feasible. For example, a participant can only reliably be tested for so long

before they are tired, so sometimes factors which are deemed to be irrelevant to the control

variables and variables of interest are excluded from the full crossing. If an experiment

is too large, it can either be restated as a full crossing of only a subset of the factors (with

the non-crossed factors being assigned at random, with uniform probability), or it can be

divided across participants or across experimental sessions. An experiment can be too

small if the full crossing has too few stimuli to reliably draw conclusions. In this case, the

experiment can either be multiple full crossings back-to-back, or the contents of multiple

full crossings combined into a larger experimental block.

Fully crossing a design is a form of balancing– it is the specification that each level oc-

curs as frequently as each other level, that each level occurs once, and that all combinations

of levels occur with equal frequency.

Sometimes the constraint of using a full crossing makes other types of balancing impos-

sible because the levels are over-constrained. Consider, for instance, the Stroop test with

3 different colors instead of two (as in Figure 3.1): then it isn’t possible to both fully cross

the design and to balance the congruent and incongruent levels. (This is because there are

3 congruent levels, and 6 incongruent levels). One possible desired outcome in this case is

for SweetPea to report that an experiment is over-constrained.

Another alternative is that if balancing the congruent and incongruent levels is more

important than a fully crossed design, then we can instead create a weighted crossing. In a

weighted crossing we can specify that we wish to under-sample certain levels (the incon-
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gruent ones in our example) or over-sample other levels (the congruent ones). Weighted

crossings also allow us to express the experiments mentioned above, where the full cross-

ing has either too many or too few stimuli to be practical. This desirable, more general

crossing specification is not currently implemented in SweetPea and is further discussed

in the Future Work Chapter.

3.1.4 Structure of an Experiment

An experiment is composed of one or more experimental blocks; an experimental block

is a sequence of stimuli. Experiments may be organized into blocks for several reasons:

there may be prologue or epilogue blocks which set up some condition for the participant,

the experiment may be designed to be run in several related sessions, or consist of several

sub-experiments.

It is not always possible to balance some commonly desired constraints with a single

block; for instance, it is not possible to have as many ”repeat” transitions as ”switch”

transitions in the fully balanced Stroop experiment because there are an even number of

stimuli, resulting in an odd number of transitions. This means it is not possible to have

exactly as many of one transition as the other.

There are two approaches to resolving this issue. The first is nearly balancing the levels:

instead of requiring that there are exactly the same number of each level, require that there

are the same number plus-or-minus one. The other solution is to create a ”throw-away”

block with a single stimulus in it which is used to satisfy the transition balancing constraint

without being included in the full crossing constraint.

As mentioned in the previous section, it is also sometimes useful to have multiple

blocks to repeat stimuli for an experiment with too few stimuli or to break up an experi-

ment with too many stimuli across several sessions or participants.

3.2 SweetPea Language Reference
Now that we have the context of the types of experiments we would like to model, let

us discuss the SweetPea grammar. A specification of an Experiment is a valid SweetPea

program. The full schema is provided below; each part will be discussed in detail and each

term defined in the following subsections:
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FactorName = <any printable type>

Level = <any printable type> | [Level, ...]

Factor = FactorName [Level, ...]

| FactorName [DerivedLevel, ...]

DerivedLevel = LevelName Window

Window = Stride Width DerivationFunction [FactorName, ...]

DerivationFunction = ( [FactorName, ...]... ) -> Boolean

Constraint = AtMostKInARow K (FactorName, LevelName)

| ExactlyKInARow K (FactorName, LevelName)

| AtLeastKInARow K (FactorName, LevelName)

CrossingType = FullyCrossed

| MultipleFullyCrossed

Crossing = [Factor, ...] CrossingType

Design = [Factor, ...]

Block = Design Crossing [Constraint, ...]

Experiment = [Block, ...]

Some of these terms are specified directly, like FactorName and Level, while others are

created via constructors. A full list of the constructors in SweetPea is:

Factor constructor:

Factor(<factor name>, <list of levels>)

Window constructors:

Transition(<derivation function>, <list of factors>)

WithInTrial(<derivation function>, <list of factors>)

Window(<stride>, <width>, <derivation function>, <list of factors>)

DerivedLevel constructor:

DerivedLevel(<level name>, <window>)

Counting Constraint constructors:

AtMostKInARow (<k>, (<factor name>, <level name>))

ExactlyKInARow(<k>, (<factor name>, <level name>))

AtLeastKInARow(<k>, (<factor name>, <level name>))

Block constructors:

FullyCrossBlock(<design>, <crossing_factors>, <weights>)

MultipleFullyCrossBlock(<design>, <crossing_factors>, <weights>, <numReps>)

Once the user has constructed a complete SweetPea specification by creating an Experiment,

they can call a function to synthesize the experimental sequence:
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synthesize_trials(<experiment>, <number of experiment sequences>)

The remaining subsections will investigate and document each component of the gram-

mar.

3.2.1 Factors and Levels

Factor = FactorName [Level, ...]

| FactorName [DerivedLevel, ...]

Level = <any printable type> | [Level, ...]

FactorName = <any printable type>

Factors are constructed as named tuples, specified by factor names, and a possibly

nested list of levels, each of which also has a name. Names are used to specify the exper-

imental sequence that the runtime eventually returns, but they do not need to be strings.

They can be any ”printable” data-type; this can be useful because names are referenced in

user-defined constraints as we’ll see in the next subsection.

example_factor = Factor("example_name", ["example_level"])

boolean_factor = Factor("booleans", [False, True])

numeric_factor = Factor(1234, [1, 2, 3, 4])

text = Factor("text", ["red", "blue"])

light_colors = Factor("light_colors", ["yellow", "aqua"])

dark_colors = Factor("dark_colors", ["navy", "maroon"])

display_color = Factor("display_color", [light_colors, dark_colors])

In the resulting experimental sequence, exactly one choice of level is selected per trial;

if a factor has nested levels, then the nesting is flattened in the final experimental sequence.

Nesting is only useful at the high-level to describe groupings of levels, for instance to be

the participant of a constraint.

3.2.2 Deriving Levels with Windows

DerivedLevel = LevelName Window

Window = Stride Width DerivationFunction [FactorName, ...]

DerivationFunction = ( [FactorName, ...]... ) -> Boolean

How do we represent relationships between levels and enforce constraints over them?
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For the types of experiments that can be specified in SweetPea, all of the constraints relate

to order, so let us consider a symbolic window which slides over the list of trials. A

window has a width and a stride. The width specifies how many trials to consider at

once; the stride specifies how many trials by which to move forward when the window

moves. When combined with user-defined derivation functions, windows allow the user

to specify new ”derived” levels and factors based on the values of the levels within the

window. We will see two examples of this shortly.

SweetPea provides constructors for two common window sizes: WithinTrial win-

dows, which are used to define new properties based on properties of each individual trial

have width of 1, stride of 1. Transition windows, which are used to define properties

based on each consecutive pair of trials, have width of 2, stride of 1.

Window Constructors:

Transition(<derivation function>, <list of factors>)

WithInTrial(<derivation function>, <list of factors>)

Window(<stride>, <width>, <derivation function>, <list of factors>)

Consider the transition relationship, which for a given factor specifies whether each

following trial has the same value for that factor (a repetition) or a different value (a

switch). We will represent this relationship as a new, derived, factor. This factor has two

levels: one level which indicates that the following stimulus was a repetition, and the other

that it was a switch. What are the parameters for the window for this relationship? Because

we consider two trials at a time, and want to consider all pairs of consecutive trials, the

width is two, and the stride is one. See Figure 3.2 for an illustration.

Given this conceptual window, the user can then provide a function for each derived

level of the derived factor which specifies, based on the values of the levels which are

”in scope” in the window, whether the derived level is selected or not. For the transition

example, this may look like:

def repetition(display_colors):

if display_colors[0] == display_colors[1]:

return True

return False
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The repetition function takes a list of display colors. Because we’re considering all

consecutive pairs of trials, the window size is two, so the length of the display colors list is

also two. Conceptually, this function will be applied to all consecutive pairs of trials and

report whether those trials are repeat or not.

We can use this repetition function to define a new pair of levels. Recall that levels

act as indicators; when a level of a trial is true, that means that trial possesses the quality

that level represents. The level derived using a transition-wide window and the repetition

function defined above is true when the trial is has the same display color property as the

trial before it. Because levels can be defined to be any [printable] type, derivation functions

can use any property of the level name as part of their logic.

Putting it all together, in the running example, these derived levels are represented in

SweetPea as:

display_color = ("display_color", ["red", "blue"])

text = ("text", ["red", "blue"])

def repetition(display_colors):

if display_colors[0] == display_colors[1]:

return True

return False

def switch(display_colors):

return not repetition(display_colors)

repeat_level = DerivedLevel("repeat",

Transition(repetition, [display_color]))

switch_level = DerivedLevel("switch",

Transition(switch, [display_color]))

transition_factor = Factor("transition?", [repeat_level, switch_level])

Let us consider another use-case. A central factor of a Stroop experiment is whether

the text and the color it is displayed in specify the same color or not. We can define this

relationship by considering a WithinTrial window, in which the width is one (since we

consider a single trial at a time), and the stride is also one. The derivation function for

congruence is similar to the one for repetitions; here, however, we always compare the

first (and only) item in the display colors and texts lists.
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display_color = ("display_color", ["red", "blue"])

text = ("text", ["red", "blue"])

def congruent(display_colors, texts):

if display_colors[0] == texts[0]:

return True

return False

def incongruent(display_colors, texts):

return not congruent(display_colors, texts)

con_level = DerivedLevel("con",

WithinTrial(congruent, [display_color, text]))

inc_level = DerivedLevel("inc",

WithinTrial(incongruent, [display_color, text])

congruence_factor = Factor("congruent?", [con_level, inc_level])

Windows allow us to represent, more generally than just transitions and within-trial

constraints, relationships across a sequence of trials. See Figure 3.2 for an illustration.

Some experiments may wish to define relationships which skip trials in the middle of the

sequences. Another example is an experiment with a ”bait” trial: participants are asked

to respond based on a property of a trial some number of trials previous. Additionally,

changing the stride allows for things like specifying a constraint over the first half, and

then second half of the experiment.

SweetPea currently supports transition and congruency constraints, but does not sup-

port the most general form of derivation function. See future work for a discussion on how

to handle fully arbitrary derivation functions.

3.2.3 Counting Constraints

SweetPea also provides three counting constraint constructors which let the user con-

strain levels to appear some number of times. These constructors are also named tuples,

which take the number to count to, k, and the level to which apply this constraint. Since

individual levels are not directly referenced by variables, the user must specify a tuple of

factor name and level name.

Counting Constraint constructors:

AtMostKInARow (<k>, (<factor name>, <level name>))
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ExactlyKInARow(<k>, (<factor name>, <level name>))

AtLeastKInARow(<k>, (<factor name>, <level name>))

The AtMostKInARow constraint is useful as a ”sanity check” constraint, to ensure that

independent variables do not show up an unreasonable number of times.

3.2.4 Experimental Design, Balancing, and Experimental Structure

Experiment = [Block, ...]

Block = Design Crossing Constraints

Design = [Factor, ...]

Crossing = [Factor, ...] CrossingType

CrossingType = FullyCrossed

| MultipleFullyCrossed

Block constructors:

FullyCrossBlock(<design>, <crossing_factors>, <weights>)

MultipleFullyCrossBlock(<design>, <crossing_factors>, <weights>, <numReps>)

Once we have described the trials in terms of levels and factors, we need to specify the

set of trials that make up the experiment. The design of the experiment is the specification

of factors which represent a trial. To specify the set of trials in the experiment, we need to

specify the crossing of the design. As mentioned before, a full crossing is commonly, but

not always, used.

The design is specified explicitly as a list of factors, while the block is built by a con-

structor which knows how to construct the block based on the crossing type. Each con-

structor takes two lists of factors, one which represents all the factors relevant to a trial

(design), and one which represents which factors should be included in the crossing

(crossing factors). Each trial in the resulting experimental sequence will have a value

for factors specified in design.

The final aspect we need to specify is the structure of the experimental sequence. An

experimental sequence is a list of one or more experimental blocks. Each experimental

block consists of a crossing of the experimental design. Some experiments may wish to

specify multiple experimental blocks to represent prologue or epilogue blocks, or to split

an experiment across multiple sessions.

Finally, to generate the experimental sequence, the user can call synthesize experiment

which takes an Experiment and produces a list of trial specifications.
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Putting together all the code snippets in this section, here is a full specification of a

simple Stroop experiment in SweetPea:

display_color = ("display_color", ["red", "blue"])

text = ("text", ["red", "blue"])

def congruent(display_colors, texts):

if display_colors[0] == texts[0]:

return True

return False

def incongruent(display_colors, texts):

return not congruent(display_colors, texts)

con_level = DerivedLevel("con",

WithinTrial(congruent, [display_color, text]))

inc_level = DerivedLevel("inc",

WithinTrial(incongruent, [display_color, text])

congruence_factor = Factor("congruent?", [con_level, inc_level])

design = [color, text, conFactor]

crossing = [color, text]

constraints = [NoMoreThanKInARow(1, ("congruent?", "con"))]

block = FullyCrossBlock(design, crossing, constraints)

experiments = synthesize_trials(block, 5)

This design will produce an experimental sequence which might look like:

color blue | text red | congruent? inc

color blue | text blue | congruent? con

color red | text blue | congruent? inc

color red | text red | congruent? con

In this chapter, we have seen the SweetPea language features, which is the information

a user would want to program in SweetPea. We have not yet discussed how these language

features are implemented; in the following two chapters, we will see how each of these

primitives is encoded as a part of a boolean formula.
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Figure 3.1: Full crossing of a 3 color Stroop experiment. There are more congruent stimuli
(along the diagonal) than incongruent stimuli.

Figure 3.2: Windows define the scope of relationships between trials.



CHAPTER 4

SAT ENCODINGS

In this chapter, we will examine how the language forms we saw in the previous

chapter are efficiently encoded as boolean formulas. A program in SweetPea is translated

to a boolean formula in Conjunctive Normal Form (CNF), which is a canonicalization that

is frequently used by SAT solvers and samplers. We use two techniques for efficient SAT

encodings: We encode large ”counting” constraints as circuitry which counts set bits in a

bitstring, and user’s derivation constraints more directly. After examining how a program

is encoded, we will also discuss the runtime communication with the sampler, and why

the correctness guarantees are preserved.

4.1 Conjunctive Normal Form (CNF)
A boolean formula consists of boolean variables combined using boolean operators,

such as and, or and not. There are many canonical forms for boolean formulas; the one that

SAT solvers commonly use is Conjunctive Normal Form (CNF). CNF is an ”and of ors”.

This means that CNF is built out of OR clauses, which are clauses in which the boolean OR

operator is applied to a list of variables. A or B or (not C) or D is an example of an OR

clause. CNF is then the AND operator applied to a list of OR clauses. (A or B) and (C

or not D) is an example of a boolean formula in CNF.

SAT solvers typically process boolean formulas in CNF. This is partially because they

are amenable to the search strategies that solvers commonly employ while searching for

satisfying assignments, and partially because there is an efficient translation from a boolean

formula in any form to the CNF canonical form.

More specifically, solvers typically process boolean formulas in the DIMACS CNF form.

In the DIMACS convention, boolean variables are denoted by their index, and negation is

denoted by a minus sign. This means that a formula like (A or B) and (C or not D) is

represented as (1 or 2) and (3 or -4). This index-based renaming is very convenient
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as a convention for generating fresh variable names– we just need to increment the variable

counter to get a fresh variable. Each or-clause is written on an individual line, and every

term within the or-clause is written as an element of a list; each list is terminated with the

number 0. Finally, each formula also has a header which clues the consumer to the number

of variables and clauses in formula. The full DIMACS CNF specification of the example in

this paragraph is:

p cnf 4 2

1, 2, 0

3, -4, 0

This specification is the language required to leverage the awesome power of SAT

samplers and solvers, but it is clearly not amenable to being manually specified by human

hands for anything but the most toy examples. That is why SweetPea provides a high-level

domain-specific interface which compiles to these low-level specifications. An interesting

aspect of the translation is ensuring that the encoding is efficient: that is, polynomial in the

number of number of variables and clauses with respect to the constraint size.

4.2 Representing SweetPea Primitives in CNF
Recall that experimental designs describe trials in terms of factors and levels, and the

relationships between those trials in terms of windows, derivation functions and counting

constraints. Here, let us see how all of those components are encoded into a boolean

formula; in the next chapter, we will discuss trade-offs of some encoding decisions and

more details.

4.2.1 Representing Levels and Necessary Constraints

An experimental sequence consists of a specification for every trial in the experiment.

Each trial is parameterized by factors, and the specification indicates which level of each

factor is selected. Levels correspond naturally to boolean variables; a factor has one level

at a time selected and each level can exist in either a selected state or a non-selected state.

The encoding we use allocates one boolean variable for each level of each factor of each

trial. See Table 4.1 for a visualization of the variable allocation for the running Stroop

example. In the running example, there are 4 trials, each of which is described by two
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factors with two levels. The encoding we use allocates one variable for every factor for

every trial. As mentioned in the previous subsection, variables in the DIMACS CNF format

are index-based, which means that the number 1 refers to the first boolean variable and so

on. This means that the assignments to variables 1 through 4 represents the specification of

the first trial. For instance, the assignment 1 -2 -3 4 means the display color is red (and

not blue), and the text is blue (and not red). For any experiment, we allocate (total number

of levels) * (number of trials) boolean variables which directly encode a specification of an

experimental sequence.

There are two kinds of constraints which need to be encoded: user-defined constraints

and two other constraints which are always necessary to correctly model the experiment.

The first are consistency constraints which state that only one level of each factor is selected

at once. In the running example, constraints of the form (1 and not 2) or (not 1 and

2) for each pair of levels would ensure that only one level is true at a time. The second

kind of constraint is a crossing constraint which ensures that the correct number of each

kind of possible trial occurs in the experimental sequences.

Representing crossing constraints is more complicated. In the running example, the

logic for the crossing constraints should ensure that there is one (red display, red text),

one (red display, blue text), one (blue display, red text) and one (blue display, blue text).

To do encode this, we allocate 4 more variables for each trial, each of which literally

encodes which of those 4 states that trial represents. See Table 4.2 for a visualization of

the additional variables. Let us look at the constraints we need to add for the first trial–

first we will add a constraint that specifies that trial is in the (red display, red text) state

if-and-only-if the red display level is selected, and the red text level is selected (17 iff (1

and 3)). We add constraints of this form for the other 3 states as well, ie (18 iff (1 and

4)), (19 iff (2 and 3)), (20 iff (2 and 4)). Next, we create constraints to ensure

that exactly one of each of the state variables across all the trials is true, ie, (exactly one of

17, 21, 25, 29 is true), (exactly one of 18, 22, 26, 30 is true), and so on.

A realistic experiment may have on the order of 100 trials. This means that we need to

be careful with this last constraint, that exactly one of <list of length 100> is true. In other

types of crossings (see Chapter 4, Section 4.2.3), that constraint may more generally be

exactly k of <list of length 100> is true. The naive encoding (these k, or those k, or those k,
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and so on) is exponential, therefore not efficient, and in practice too large for our problem

size. Instead, we efficiently encode these counting constraints following a technique similar

to the one described in [15]. For a detailed description of this algorithm, see the next

chapter.

In summary, an experimental sequence is represented as a list of boolean variables for

each level of each trial. Assignments to these variables uniquely specify the experimental

sequence. Regardless of other user constraints, these variables are bound by constraints

to ensure exactly one level is selected at a time for each factor, and that each state in

the crossing is represented the correct number of times. The next chapter will examine

the trade-offs from our encoding decisions. Next we will see how these variables which

represent levels can be used to encode derived levels and used with window constraints.

4.2.2 Representing Derived Levels and Derivation Functions

The current SweetPea implementation special-cases the constraint encoding for con-

gruency and transitions because these are common constraints in the experiments we wish

to model.

Let us consider a congruency derivation over the simple Stroop example. In addition

to the variables which represent the levels of each trial, we will allocate 2 new variables for

each trial, each of which indicates whether or not the trial is congruent. See Table 4.3 for

illustration of the variable allocation.

Then, we encode constraints on when these new variables are true. When is the first

trial congruent? The first trial (5) is congruent if-and-only-if either the trial’s color is red

(1) and the text is red (3), or the color is blue (2) and the text is blue (2). In boolean

logic, this is: 5 iff (1 and 3) or (2 and 4). We create constraints of this form for

all the remaining variables, and translate this constraint to CNF through a general CNF

conversion technique.

What if instead we considered transitions? Let us reinterpret the variable named 5

to indicate whether that trial has the same text as the following trial (see Table 4.4 for

illustration).

We can then state that the trial switches (5) if-and-only-if this trial’s text is red (3) and

the next trial’s text is also red (9), or they are both blue (4 and 10). In boolean logic, this is:
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5 iff (3 and 9) or (4 and 10). This identical clause structure allows us to model both

of these common derivations. Encoding arbitrary derivations is left as future work.

4.3 Correctness Guarantees
The goal of SweetPea is to produce experimental sequences which satisfy the experi-

mental design with uniform probability: not favoring any valid sequence over any other.

SweetPea achieves this goal by relying on the uniform samping guarantee that Unigen

provides in [2].

Unigen is a near-uniform SAT sampler. Near-uniform is defined in [7] as

1
number of solutions × (1 + ε)

≤ Probability[Finding a given solution]

≤ (1 + ε)/number of solutions

This guarantees that the number of SAT witnesses, or satisfying solutions, to the CNF

is approximately uniformly probable. How does the number of satisfying SAT solutions

relate to the number of experimental sequences which satisfy the experimental design?

When we translate from the high-level specification to the boolean formula, we intro-

duce new internal boolean variables (ie the sum and carry bits of the adders in the pop-

count encoding). We hypothesize that the number of satisfying SAT solutions is exactly the

same as the number of experiment sequences when none of the internal boolean variables

are redundant. Then, all the variables which directly encode the experiment are in lockstep

with all the extra internal variables. If there are redundant variables, they could skew the

number of satisfying assignments such that finding an assignment would be uniform with

those variables, but not in the variables we care about. To the best of our knowledge, our

encoding does not introduce redundant variables, and therefore preserves this guarantee.
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Table 4.1: Variable allocation for the running Stroop example.
display color text
red blue red blue

Trial 1 1 2 3 4
Trial 2 5 6 7 8
Trial 3 9 10 11 12
Trial 4 13 14 15 16

Table 4.2: Additional variable allocation necessary for encoding the states possible in the
full crossing.

display color text state
red blue red blue (r, r) (r, b) (b, r) (b, b)

Trial 1 1 2 3 4 17 18 19 20
Trial 2 5 6 7 8 21 22 23 24
Trial 3 9 10 11 12 25 26 27 28
Trial 4 13 14 15 16 29 30 31 32

Table 4.3: Variable allocation necessary for the congruency contraint.
display color text congruent?
red blue red blue con inc

Trial 1 1 2 3 4 5 6
Trial 2 7 8 9 10 11 12
Trial 3 13 14 15 16 17 18
Trial 4 19 20 21 22 23 24

Table 4.4: Variable allocation necessary for the transition contraint.
display color text transition
red blue red blue switch repeat

Trial 1 1 2 3 4 5 6
Trial 2 7 8 9 10 11 12
Trial 3 13 14 15 16 17 18
Trial 4 19 20 21 22 23 24



CHAPTER 5

IMPLEMENTATION DETAILS

This chapter examines the implementation and encoding decisions.

5.1 Language Implementation: Decisions and Alternatives
SweetPea is an embedded domain-specific language, meaning that instead of provid-

ing its own syntax and the compiler infrastructure to match, it is instead implemented as

a library in an embedding language. Here we look at the choice of embedding language,

as well as some choices about boolean encodings.

5.1.1 Embedding Language

The current implementation of SweetPea is embedded in Python; the syntax presented

in the example code snippets in Chapter 4 are valid Python program snippets. The subsys-

tem for encoding the counting constraints is currently implemented in Haskell; an earlier

implementation of the user-facing SweetPea syntax was also implemented in Haskell. We

chose Haskell as an implementation language because its strong static types and functional

purity lent it to verifying the correctness of the system. However, many scientists are

familiar with Python, and not with Haskell syntax, so we decided to port the user-facing

interface to Python to make it easier for them to use and interface with their existing

workflows.

5.1.2 Why SAT Sampling?

Why does SweetPea need to use a SAT-sampler? Using a SAT-sampler is like bringing

a nuke to a knife fight; if a more straight-forward solution was tractable, it would be much

simpler, faster, and more maintainable to use a simple solution.

Recall that the goal is to find an ordering of trials which satisfies the constraints, and to

return that valid ordering with uniform probability relative to all the other valid orderings.
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This means that our search space is the space of all possible orderings of the given set of

trials (which may realistically consist of ∼120 trials, corresponding to 120! orderings), and

elements of this search space are specific orderings.

The first straight-forward solution is to try a random element in the search space,

and see if that ordering satisfies the constraints. For realistic experiments, we found this

approach to be intractable– the set of solutions is sparse in the search space.

The other simpler solution is to generate all of the valid elements, and then choose uni-

formly among them. In practice, we also found this approach to be intractable. While the

space of solutions was sparse in the search space, it was also far too large to exhaustively

generate.

The simplest possible solution, and the one used in practice today by psychologists,

is to generate the experimental sequence one trial at a time, backtracking when an as-

signment is made which violates the constraints. Unfortunately, this approach does not

produce uniformly probable solutions. Similarly, sampling methods like MCMC would

also be able to tractably find solutions, but wouldn’t provide any guarantee about their

distribution.

For the experimental designs we want to support, we found that the methods men-

tioned above were either intractable or favored certain satisfying sequences over others.

Solving the search problem SweetPea addresses is #P hard [19], and our problem size is

too large to use brute force despite the exponentially large space.

SweetPea uses the SAT-sampler Unigen because Unigen implements an approximate

sampling method with statistical guarantees. Approximate sampling is a compromise:

it allows us to gain traction on the otherwise untractably large space, while nonetheless

maintaining strong statistically rigorous guarantees of the distribution of solutions. We use

Unigen because implementing the underlying sampling method to work well in practice is

complicated and an art; it seemed wiser to rely on an existing implementation rather than

re-engineer it. This decision, however, to outsource searching the space to Unigen, came at

the cost of encoding the domain-specific constraints as a boolean formula. The decision to

have SweetPea translate from the high-level domain-specific semantics to SAT, as opposed

to any other possible search space encoding, is an engineering decision; it comes directly

from deciding it was better to rely on Unigen rather than reimplement parts of its strategy.
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It is conceivable that in the future, SweetPea would be able to compile to other backend

representation, amenable to other search strategies.

5.1.3 Internal Representations

As mentioned in the previous chapter, we encode levels by allocating one boolean

variable per level to indicate the whether that level is in a selected or unselected state.

This isn’t the only possible encoding; for instance, an encoding which is more compact in

the number of variables would represent the index of the selected level in binary. This is

a trade-off between variables and clauses, and without any a prior knowledge about the

SAT solver’s search strategy, we chose the encoding which made it easiest to write the

constraints which rely on those variables.

5.2 Encoding Counting Constraints with Popcount
A fully crossed design specifies that each possible combination of levels occurs once

in the design. A realistic experiment may have 7 factors, with 2 levels each, for a total of

27 = 128 trials. Each of the levels will appear in half the trials, which means we need to

encode constraints of the form ”exactly 64 of these 128 variables must be true”. The naive

encoding (”these 64, or those 64, or those 64, etc”) will have 64 choose 128 clauses, which

is 1037 clauses– far more than any SAT solver can possibly handle. Therefore, we need to

encode these kinds of counting constraints in an encoding which is linear in the number

of clauses and variables.

To achieve this linear encoding, we emulate the logic in a popcount circuit. A popcount

circuit is a piece of hardware built out of logic gates which, given a bit string, reports

how many bits of the bit string are set. A popcount circuit is implemented as a series of

multi-bit wide adders. To explain how we emulate the logic in these circuits, we will start

with adders and build up to the popcount circuit.

5.2.1 Adders

First let us consider a half-adder. A half-adder is a circuit which takes two single bit

inputs a and b and sets two single bit outputs s (”sum”) and c (”carry”) according to what

the sum of the values of a and b are. The value of the input bits is 1 if that variable is true,

and 0 if that variable is false. The output bits are boolean functions of the input bits: s =
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a xor b ; c = a and b. See Figure 5.1 for an illustration.

What does it mean for a boolean variable to ”equal” some relationship between other

boolean variables? Really what we mean here is that their values vary in lock-step; that the

variable being bound is true only when the relation is true, and false identically when the

relation is false. This means that we can represent a half-adder with the boolean formula:

(s iff (a xor b)) and (c iff (a and b)).

How does using a SAT solver allow us to emulate this circuit? Recall that the solver’s

job is to return an assignment to each of our variables (a, b, c, s) such that the entire

formula.

Let us look at some examples. Let us imagine adding 1 + 1; this means that the full

formula we hand to the solver is: (s iff (a xor b)) and (c iff (a and b)) and (a)

and (b). See Figure 5.2 for the DIMACS cnf representation of these boolean clauses. For

the entire formula to be true, each of the and clauses must be true. This trivially means

that the assignment for a is true, and b is true. Looking at the more interesting clauses, we

know s is true iff (a xor b). a xor b is false when both a and b are true, so s must be

false for that clause to be true. We also know that c is true iff (a and b), so c must also

be true.

This means that for this input, the solver would give us the satisfying assignment:

a is true

b is true

s is false

c is true

See Figure 5.3 for the solution from the SAT solver given the query in Figure 5.2.

We can interpret this to mean that the carry bit is 1, and the sum bit is 0: meaning that

1 + 1 = 2. The rest of the constructions in this section follow this intuition: if we build

up logical relationships between boolean variables which emulate circuits which perform

the computation we wish to perform, and constrain some of the input variables, then SAT

solver will find what the values of all the other variables must be.

In practice, we want to use a full-adder rather than a half-adder; the difference is that

a full-adder also considers a ”carry in” bit. This makes it possible to chain full-adder

together into multi-bit wide adders.
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There are multiple ways to chain together multiple full-adders. SweetPea uses the sim-

plest option, which is ripple-carry adders. N-bit wide ripple-carry adders chain together

n full-adders in the natural way: the sum bits of each successive adder form the sum bits

of the solution, while the carry bits chain from one adder to the next.

Alternative ways to build multi-bit adders include carry-lookahead adders and carry-

save adders; these circuits were designed as physical circuits which can compute the result

of the addition in fewer cycles. In some sense, we are also concerned with how long it

takes to compute the result: we would like to use the encodings which are most helpful

for the solver. There isn’t any reason to believe that using a more complicated multi-bit

adder design would result in a more favorable encoding; therefore, we decided to use the

multi-adder design which is simplest to implement, maintain and debug.

5.2.2 Popcount Circuit

The popcount circuit counts the number of bits which are set in a bitstring by a divide-

and-conquer-like technique. We will discuss the process below; refer to Figure 5.4 for a

diagram.

Let us work through an example: let us count the number of set bits in a bitstring with

9 bits. The first thing we do is zero-pad the bitstring until the next power of two. This is

an encoding choice which allocates extra variables to avoid having to handle edge-cases in

our logic by allowing us to always be able to divide-and-conquer neatly.

Next, we will pair up bits in the bitstring, and add those using 8 1-bit adders. These

2-bit adders will produce 2-bit solutions. Each of these 8 solutions represents how many

bits were set in each of their two bit inputs. We repeat this process until we are left with a

single 5-bit solution.

Explicitly, this means that we will pair up each of the 2-bit solutions, and add them

with 4 2-bit wide adders. These will produce 3-bit solutions. We will then pair up these

3-bit solutions, and add them with 2 3-bit adders. This will produce only 2 4-bit solutions.

Finally, we can take these 2 4-bit answers and add them together with a 4-bit adder to

produce a final 5-bit solution.

This final solution represents the number of bits set in the original bitstring in 5-bit

binary. Recall that our desired interface was to specify constraints of the form ”of these n
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variables, exactly k must be true”. We can then specify this constraint by setting the bits

of the final popcount solution to be exactly the same as the binary representation of k. For

example, let us specify that we want exactly 3 of the 9 bits to be true our 9-bit popcount

example. Let us call the bits of the solution [A, B, C, D, E]. A 5-bit binary representation

of 3 is [0, 0, 0, 1, 1], so we can enforce the desired constraint by stating [-A, -B, -C, D,

E].

We also want to provide an interface for specifying constraints of the form ”of these

n variables, at least (or at most) k must be true”. To encode these constraints, we follow

a similar technique: we compute the bits which represent the result of the popcount, and

encode k in binary. Then, to enforce the inequality, we perform a trick: we rewrite k < n

as k − n < 0. To enforce this at the bit-level, we write (-n) by representing it in twos-

complement. We can then add k + (-n) using a ripple-carry adder. Then, to ensure that

k + (−n) < 0, we will force the result of that summation to be negative by forcing the top

sum bit to be zero.



34

Figure 5.1: Half-adder logic.

Figure 5.2: The DIMACS cnf representation of 1 + 1.

Figure 5.3: The solution to 1 + 1.
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Figure 5.4: The logic of a popcount circuit.



CHAPTER 6

RELATED WORK

SweetPea is a computational tool for psychologists; it is a solver-aided language which

translates between the vocabulary which psychologists employ and a SAT formula. To

the best of our knowledge, SweetPea is the only system to address this specific problem;

however, there is a large body of work related to each of these concepts. Here we present

previous work on computational tools for psychology, domain-specific and solver-aided

languages, and on working in combinatorial search spaces.

6.1 Psychology Tools, Experimental Design, and Replicability
There are many computational tools used by psychologists; however, they automate

stimulus presentation for running experiments, not experimental design. Some popular

toolboxes include PsyScope [3] (now called E-Prime), PsychoPy [5], OpenSesame [12],

Presentation and PsychToolBox. PsyNeuLink is a tool for running computational models

on experimental tasks. All of these tools are helpful for automating psychology experi-

ments; however, they all fill a different role than SweetPea: Ideally, SweetPea would easily

interface with these tools to pipeline experiments from their design to their execution.

SweetPea addresses issues arising from the replicability crisis in psychology, by creat-

ing reproducible and shareable experimental sequences. The replicability crisis has been

well documented, especially in recent years– see [11], [10], [14], [13], [6], [16]. In the future,

we hope that SweetPea can provide an even higher-level interface where a psychologist

can specify a contrast they wish to study, and SweetPea can choose the best constraints to

impose on the design. Related work has been done on optimal experiment design by [8].

6.2 Solver Aided Languages
SweetPea can be thought of as a domain-specific interface to any tool which solves

boolean formulas, and specifically to the SAT sampler Unigen, which provides the near-
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uniformity guarantee. There are other solver-aided languages such as, Dafny [4], which is

the language for interacting with the solver z3, and Sketch [1] which ”Domain-Specific

Symbolic Compilation”. There is also Rosette [18] which is a platform for developing

solver-aided DSLs. Finally, Hyperkernel [9] discusses the process of co-designing a system

to be amenable to verification, analogously to how the SweetPea language is designed to

be amenable to translation into SAT.



CHAPTER 7

FUTURE WORK

SweetPea is a work-in-progress. The ultimate vision for SweetPea is for it to be a

convenient system for describing diverse types of experimental designs, and then quickly

and seamlessly integrating the resulting experimental sequences with the users’ existing

experiment running pipelines. Ideally, SweetPea could be a tool in dialog with the user;

the user should be able to use SweetPea to iteratively explore the space of possible satis-

fiable experimental designs. To achieve this vision, SweetPea will need more high-level

language features, and more runtime support for debugging unsatisfiable experiments.

It would also benefit by an expansion of its existing features such as built-in support for

discretizing continuous functions for use as levels, weighted crossings and support for

arbitrary DerivationFunctions.

Another possible future direction for SweetPea which is orthogonal to this vision is

to expand SweetPea to support experiments in other domains beyond psychology, which

may involve other experimental structures. Possible candidates for fields that could benefit

from an experimental design description language are biology and machine learning; in

both biology and machine learning, however, the the notion of a trial may require broad-

ening and/or redefinition, and may lack a notion of ordering. This means that SweetPea

would likely need to support more semantics for describing subsets of the crossing space,

and applying constraints to these subsets.

7.1 Language Wishlist
This section describes some language features which would facilitate supporting a

wider range of experiments.
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7.1.1 Windows on Counting Constraints

Currently, counting constraints are specified using the AtMostKInARow, ExactlyKInARow

or AtLeastKInARow constructors. These operate over the entire experimental sequence,

which limits the constraints they can express. If these constraints were expanded to op-

erate over a window, in the way that derived levels do, they could be used to express a

wider range of desired constraints, including more complicated balancing constraints.

7.1.2 General Case Derivations

Currently, SweetPea can handle transition and congruency constraints. These are com-

mon constraints in task switching experiments, but to be able to represent a wider variety

of experiments, SweetPea needs to handle arbitrary derivation functions. Recall that a

derivation function is a Python function with the function signature:

DerivationFunction = ( Listof( FactorName )... ) -> Boolean

Derivation functions are used by windows, along with a list of factors to which this

function should be symbolically applied:

Window = Stride Width DerivationFunction Listof( FactorName )

To encode any function which takes some number of lists of factor names, and eval-

uates the truth value of those factors, we could use a truth table encoding. This means

that we could generate a truth table which represented every possible combination of the

input variables and compute what the output value of the derivation function would be for

every input combination. We could then allocate a new level by specifying that that level

is true iff (all the rows of the truth table which are true). We could then further simplify

this truth table by the Quine-Mccluskey algorithm. This approach would be limited by the

number of variables in the truth table, and another approach may be necessary to support

designs which express conditions that depend on the state of many boolean variables.
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7.1.3 Weighted Crossings

It would be useful to have a mechanism to specify a way to over- or under-sample a full

crossing. A use-case for this is a version of the Stroop experiment with 3 colors; in a full

crossing there are 3 congruent stimuli, and 6 incongruent stimuli. It is well-motivated to

want to balance the number of congruent and incongruent stimuli. One can imagine either

undersampling the incongruent stimuli (choosing 3 of the 6 with uniform likelihood), or

over-sampling the congruent stimuli (such that each congruent stimuli occurs twice). More

generally, it will be worth investigating more ways of specifying parts of the space of the

full crossing, including regularized approaches (such as Latin Square designs).

7.1.4 Sampling Continuous Factors

Some experiments may contain levels which represent continuous values, such as sam-

pling colors from the continuous color spectrum. We can currently represent these ex-

periments by binning the continuous values into a number of discrete levels– but can

we do better? This is challenging because the translation to SAT is necessarily discrete.

Perhaps this could be supported as a pre- and postprocessing step, or perhaps Unigen

could natively support this. The user could specify the continuous value, and SweetPea

could perform binning, find a solution and add random noise to the solution to simulate

sampling from a continuous distribution.

7.1.5 Automated Experimental Design

In the spirit of declarative programming, it would be valuable to extend SweetPea to

automatically derive the minimal set of counterbalancing conditions that satisfy the speci-

fied statistical analysis. Specifically, we may wish to provide an interface for the ANOVA

(ANalysis Of VAriance) technique, which would allow researchers to state ”contrast red

with blue” instead of explicitly stating a design that does so. This higher-level interface

will make it easier to specify experiments that accurately match the desired statistical anal-

ysis. Perhaps such an interface would also support iterative and interactive experiment

specification. For instance, if multiple experiments match a desired statistical analysis,

perhaps the user can use SweetPea to explore the options and trade-offs of each of those

possible experiments.



41

7.2 Runtime Wishlist
This section describes some runtime features which would facilitate a more interactive

and usable environment.

7.2.1 Verified Core

SweetPea promises to make it easier to write correct experiments; this promise can only

be true if SweetPea itself doesn’t contain bugs. The boolean encoding parts of the code,

especially the counting constraint encoding, is ripe for bugs because it produces a CNF

formula, which is difficult for humans to read and verify. Currently, we protect against

bugs through exhaustive testing. In the future, it would be better to formally verify that

these transformations are correct.

7.2.2 Debugging unSAT Experiments

If a user writes down an experimental design which is overspecified, the SAT-sampler

will state that the constraints are unsatisfiable. This is not as helpful as it could be–

why is it overspecified? Developing debugging support would create a more pleasant

user experience. One possible approach is that some SAT-solvers can provide a minimally

unsatisifiable core, which specifies what set of variables lead to a contradicting assignment.

It may be possible to use this minimally unsatisfiable core to translate back to which

constraints over which the levels are reported to be contradictory.

7.2.3 Iterative Experimental Design and Partial Satisfiability

Extending the idea of adding support for debugging unsatisfiable experiments, it would

be great to have SweetPea be a tool for exploring the edge of satisfiability. For instance, per-

haps a researcher could attempt to specify an ambitious experimental design which tests

multiple things at once: perhaps in the future, SweetPea could allow them to iteratively

explore which subsets of their overconstrained design are satisfiable. One technique for fa-

cilitating this is some SAT solvers allow you to push / pop individual clauses; perhaps this

fine-grain precision can be used to find the most constraints which can be simultaneously

satisfied.



CHAPTER 8

CONCLUSION

This thesis presented SweetPea, a system for concisely describing experimental designs

and rigorously generating experimental sequences that satisfy the design. SweetPea’s

high-level language allows scientists to declaratively describe the experiment they want

to conduct rather than forcing them to mechanically describe how to construct their exper-

imental sequences. This allows scientists to write concise, correct programs which describe

their experiments, and produce unbiased experimental sequences; these programs can

then be published and shared to document the experiment and facilitate replicability.

The initial implementation of SweetPea targets a form of trial-based experimental de-

sign used commonly in cognitive psychology. SweetPea provides high-level notions of

factors, levels, derived levels and factors, and counting and balancing constraints. Psy-

chologists can use this high-level language to specify their experimental designs, and

SweetPea will encode those descriptions as a boolean formula. SweetPea guarantees that

each experimental sequences which satisfies the design is approximately uniformly likely.

Guaranteeing that each sequence is exactly uniformly likely is an intractable problem be-

cause it is #P-hard for a large problem-size; we gain traction on this problem by making the

acceptable compromise of guaranteeing that the sequences are approximately uniformly

probably. SweetPea achieves this promise by calling out to the SAT-sampler Unigen, which

in turn uses universal hash functions to get uniformity.

SweetPea can be used to model common cognitive psychological experiments such as

variants of the Stroop test. We expect that in the future, SweetPea can be used to model a

wide range of experiments in psychology and other experimental sciences.
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