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ABSTRACT

Event-based Information Extraction (IE) is the task of identifying entities that play

specific roles within an event described in free text. For example, given text documents

containing descriptions of disease outbreak events, the goal of an IE system is to extract

event role fillers, such as the disease, the victims, the location, the date, etc., of each disease

outbreak described within the documents. IE systems typically rely on local clues around

each phrase to identify their role within a relevant event. This research aims to improve IE

performance by incorporating evidence from the wider sentential context to enable the IE

model to make better decisions when faced with weak local contextual clues.

To make better inferences about event role fillers, this research introduces an “event

recognition” phase, which is used in combination with localized text extraction. The event

recognizer operates on sentences and locates those sentences that discuss events of interest.

Localized text extraction can then capitalize on this information and identify event role

fillers even when the evidence in their local context is weak or inconclusive. First, this

research presents Piper, a pipelined approach for IE incorporating this idea. This model

uses a classifier-based sentential event recognizer, combined with a pattern-based localized

text extraction component, cascaded in a pipeline. This enables the pattern-based system

to exploit sentential information for better IE coverage. Second, a unified probabilistic

approach for IE, called Glacier, is introduced to overcome limitations from the discrete

nature of the pipelined model. Glacier combines the probability of event sentences, with

the probability of phrasal event role fillers into a single joint probability, which helps to

better balance the influence of the two components in the IE model. An empirical evaluation

of these models shows that the use of an event recognition phase improves IE performances,

and it shows that incorporating such additional information through a unified probabilistic

model produces the most effective IE system.



To Navdeep



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Event-based Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Claims and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Navigating this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 A Brief History of IE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Event Role Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Overview of IE Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Pattern-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Sequence Tagging Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Other Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Incorporating Global Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Relevant Regions in Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Event-based IE Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Latin American Terrorist Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Disease Outbreak Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. PIPELINING EVENT DETECTION AND EXTRACTION . . . . . . . . . 34

3.1 Event Detector and Extractor Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Sentential Event Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Training with IE Answer Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Self Training with Document Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 MIL Framework with Document Labels . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Sentential Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Localized Text Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Learning Patterns with IE Answer Keys . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Learning Patterns with Extraction Semantics . . . . . . . . . . . . . . . . . . . . 52

3.5 Primary vs. Secondary Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Putting it Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4. UNIFIED PROBABILISTIC MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Balancing the Influence of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Obtaining Sentential Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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CHAPTER 1

INTRODUCTION

With steady progress in natural language technology in recent years, there has been a

growing interest in the use of text analysis systems in everyday applications. Government

agencies, research institutions and corporations are all realizing the value of information

in free text, especially as technology makes access to such information more feasible. We

can already find numerous examples of this around us. Medical institutions are looking

to use the vast quantities of patient records generated every day to automatically detect

and prevent unexpected, harmful or fatal drug reactions [7, 72, 85]. Similarly, government

agencies are funding research for automatically detecting and tracking disease outbreaks

described in online texts and public mailing lists [44, 43, 82]. Textual content analysis is

also being widely used to gauge the opinions of people on commercial products and popular

media [80, 51, 88, 120]. All of these applications automatically identify useful information

within unstructured text, making analysis tasks in various fields easier for humans.

There are many different types of useful information that exist in free text. Several text

processing tasks have been specifically defined with the goal of locating such information

in text. These include recognizing named entities [23, 75, 14, 54, 59], extracting relations

[129, 27, 9, 10], extracting information about events and entities from semistructured text

[37, 18, 84, 42, 126], and from free text [92, 124, 15, 69]. The type of information located

by an automated system is usually determined by the end application or human expert

using that information. The useful information found in text is then typically organized

into structured representations, such as templates or database entries, making it easier to

further analyze or process this information. Other applications can utilize this structured

representation of textual information in data analysis projects that help improve the quality

of our lives.

Experience has shown that computers are much better at processing structured informa-

tion than they are at processing unstructured information. This is the primary motivation

for designing Information Extraction (IE) systems. The goal of such systems is to locate

text spans representing information of interest in free text. The structured representation
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of text generated by these systems enables various forms of data analysis, which would

be impossible to do with free text. For example, disease outbreak information extracted

by such systems [44, 43, 82] could be used to automatically track the spread of specific

diseases and to take measures to cease their escalation. Similarly, systems could be built

to extract facts about famous people or locations (e.g., birthdays of celebrities, authors of

books, capitals of countries or states). In addition, such systems have been used as essential

components in other important Natural Language Processing (NLP) applications such as

Question Answering [108, 90, 109, 93], Subjectivity Analysis [16, 94], etc. Thus, IE is an

important piece of technology, which can become the basis of various types of data analysis

and applications.

In particular, many applications or analysts depend on information about specific events.

For instance, a stock market analyst would be interested in timely information about any

major events associated with companies. An IE system could assist such an analyst by

automatically locating and summarizing these events, such as mergers and acquisitions of

corporations, or changes in the management of companies [105, 39, 124]. Knowing about

the roles played by various entities within the events is of particular interest in such cases.

The goal of IE systems for this particular type of task is, therefore, to identify specific

events of interest in given text and, additionally, identify the various entities (which could

be people, locations, objects, etc.) that play specific roles (e.g., a company being acquired)

within the detected events.

The focus of this dissertation is on the study of techniques for locating information

about events described in free text. The dissertation argues that, to identify the roles

played by entities in events of interest, inferences based on evidence in the wider context

are required. For an automated system to extract such information, it must be able to

exploit such wider contextual evidence in a similar manner. The research presented here

shows how IE performance can be improved by detecting relevant event descriptions in the

sentential context, and augmenting the local phrasal evidence with this sentential event

information.

The remainder of this chapter describes more clearly the task at hand, provides an

overview of previous approaches for this task, and presents an outline of novel techniques

presented in this dissertation to improve upon previous approaches. The claims and sci-

entific contributions of this research are then enumerated in Section 1.4. Finally, to guide

the reader through the rest of this dissertation a brief overview of each of the remaining

chapters is presented in Section 1.5.
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1.1 Event-based Information Extraction

The focus of the research presented in this dissertation is on “event-based” Information

Extraction (IE), which is the task of extracting pieces of information pertaining to specific

events from free text. The objective is to automatically locate descriptions of certain events

within the given text, and for each event extract the mentions of various individuals, objects,

dates and locations that play specific roles within the event. The events of interest, as well

as the roles of interest, are defined beforehand — typically in accordance with the needs

of an end application or authority utilizing this information. To elaborate, consider a

hypothetical example, where an organization such as the Centers for Disease Control and

Prevention (CDC) is interested in gathering statistics about disease outbreaks described in

numerous reports and text documents sent to them. In such a situation, the CDC specifies

that disease outbreak events as being the events of interest for the IE task. Further for

each outbreak event, they would like to know the name of the disease, the list of victims,

the location of the event, and other such information pertaining to the event. This event

information is defined as a set of roles, or what we will refer to as event roles henceforth

in this document. Figure 1.1 illustrates the expected outcome for the given IE task on a

sample document. The event roles presented in this example are disease, victims, location,

date and status. Observe that event-based IE systems, in essence, process unstructured

textual information and convert it to a more structured representation, viz. event templates

or database entries.

Although event-based IE may appear to be an easy task for humans to accomplish,

it presents numerous challenges to automated systems. For one, the information to be

extracted is often sparsely distributed within the given texts. The victim of a disease

outbreak event, for instance, may be mentioned just once in an entire document, and the

IE system must find and extract this one word or phrase from the text. Indeed, some

researchers [42] have referred to this as a “nugget extraction” task for this very reason.

Furthermore, there may be multiple events described in a document. There may also be no

events described within a document. An event description may have multiple event roles

New Jersey, February, 26. An outbreak
of Ebola has been confirmed in Mercer
County, NJ. Five teenage boys appear to
have contracted the deadly virus from an
unknown source. The CDC is investigating
the cases and is taking measures to prevent
the spread. . .

Disease: Ebola

Victims: Five teenage boys

Location: Mercer County, NJ

Date: February 26

Status: Confirmed

Figure 1.1: Example disease outbreak event template generated from free text
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that need to be extracted, which makes matters more complex for an IE system. In addition

to these complexities, the nature of event descriptions also varies widely. Sometimes, events

may be described in great detail across the entire document, while sometimes there may only

be a fleeting reference to an event within the document. In addition, some documents may

contain short summaries of multiple events. All of these variations in event descriptions,

and in the roles played by entities within these events, make event-based IE a significantly

challenging task.

Despite these numerous challenges, the benefits of structured representation generated

during IE have prompted researchers to explore techniques for automatically and accurately

extracting event-role information from free text. In some of the early work on event-based

IE, researchers observed that contextual information surrounding a word or a phrase in text

was frequently a strong indicator of the role played by that word or phrase in an event of

interest. For instance, the subject of the passive voice verb phrase “was assassinated” is

usually the victim of a criminal act. Thus, searching for this specific “pattern” in text can

very accurately extract victims of crimes. Similarly, extracting the noun phrase appearing as

the object of the preposition “of” in “outbreak of” is usually the disease in a disease outbreak

event. From observations such as these, the use of “extraction patterns” representing phrasal

context developed as a common approach for information extraction.

Extraction patterns define constraints on lexical, syntactic or semantic properties of text

segments. These patterns are applied to text documents for locating relevant information.

When applied to text, if the constraints defined by a pattern are met, then a portion of

the text (typically, a word or a phrase) is extracted by the pattern. For example, a pattern

such as “<subject> was assassinated” defines a lexical constraint on verb phrases in text.

If the head of a verb phrase is the verb “assassinated” in passive voice, then the constraints

defined by the pattern are met, and the subject of that verb phrase is extracted by the

pattern.

Early approaches to IE used hand-crafted patterns for event role extraction. More

recently, the goal of pattern-based IE approaches (e.g., [124, 92, 1, 12, 17]) has been to

learn a set of extraction patterns for a given IE task (i.e., for a specific type of event).

All of these approaches emphasize a syntactic analysis of the text (part-of-speech tagging,

dependency parsing, chunking, etc.), and the patterns used in these approaches are typically

built upon such textual analysis. Figure 1.2 shows examples of extraction patterns learned

by some pattern-based IE systems, where the event roles defined within < and > are

extracted by the patterns. The key challenge for such pattern-based systems is the learning
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<victim> was assassinated

blew up <target>
<weapon> exploded

(a) AutoSlog-TS [92] patterns
for terrorist events

<company>’s headquarters in <location>

<location>-based <company>

<company>, <location>

(b) Snowball [1] patterns for company head-
quarter information

<company> appointed <person>

<person> resigned

(c) ExDisco [124] patterns for man-
agement succession events

Figure 1.2: Examples of extraction patterns used by some IE systems

strategy used to generate a set of good extraction patterns for the given event of interest.

Broadly, the current approaches for learning such patterns include bootstrapping techniques,

weakly supervised learning, fully supervised learning, among others. The patterns learned

from these approaches are then used to extract event information from new (unseen) text

documents.

More recently, the trend has been to employ machine learning classifiers to make ex-

traction decisions about words or phrases in text documents. These approaches (e.g.,

[38, 39, 15, 8, 36]) view the input text as a stream of tokens or phrases, and use features

from the contexts around them to decide if they should be extracted. The features used

by these classifiers include lexical, syntactic and semantic properties of text in the context

surrounding each word or phrase. Thus, just like the pattern-based approaches, these

classifier-based approaches also primarily rely on features of the local context around words

or phrases in making their extraction decisions. A more detailed overview of current

approaches, pattern-based as well as classifier-based, appears in Chapter 2, which further

emphasizes the dependence of these approaches on local contextual information.

1.2 Motivation

As illustrated in the previous section, current approaches for IE decide which words in

the given text should be extracted primarily by analyzing their contexts. However, most

IE approaches are designed to focus only on a small window of context surrounding each

potential extraction, before making a decision. The reason for focusing on a small window of

context is that as the window of context increases, the patterns matching the larger contexts

appear less frequently in a corpus of text. This sparse nature of larger contexts and their

corresponding patterns makes them less useful as indicators of relevant extractions. For

example, a larger context such as “the yellow house with the large backyard” is less likely
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to appear in a corpus of text than a smaller context such as “the yellow house.” Thus, it is

easier to gather statistics for evaluating patterns representing shorter contexts. As shown by

the examples in Figure 1.2, extraction patterns are designed to match only a small window

of context surrounding the extraction. Indeed, most pattern-based approaches typically

learn patterns designed to match an extremely local context (one to six words) around the

potential extractions.

The problem with focusing on a limited context during extraction is that, many times,

the small context does not contain sufficient evidence to definitively conclude if a certain

piece of text should be extracted. For example, Figure 1.3a presents a small news clipping1

describing a recent terrorist event in Iraq. The weapon used in this terrorist event is “rocket

or mortar ammunition.” However, observe that the local context (“Maj. Brad Leighton

described as <weapon>”) around this span of text provides almost no evidence of a terrorist

event. Consequently, an IE approach relying solely on this local context would be unlikely

to extract any information from this span of text.

Likewise, current techniques tend to extract erroneous information in another completely

different type of situation — a misleading local context. Very often, because of idiomatic

or metaphorical use of language, the local context around a word or phrase may strongly

indicate an event role extraction, when in fact the wider context (the sentence or the

paragraph) proves otherwise. To prevent incorrect extractions in such cases, we need the

evidence from the wider context to override the local contextual evidence. For example,

Rebels fired an explosive barrage yesterday into the capital’s protected Green Zone, targeting

the heart of America’s diplomatic and military mission in Iraq. There were no injuries.

The strikes were the most recent involving what U.S. Maj. Brad Leighton described as

rocket or mortar ammunition.

(a) Example illustrating relevant information embedded in a context that is not event-specific

President Barack Obama was attacked from all sides on Friday over his decision to

declassify four memos detailing harsh CIA interrogation methods approved by the George

W. Bush administration for use against terror suspects. Former senior Bush officials

criticised the president for giving away secrets to terrorists, and claimed that the tactics

had worked.

(b) Example illustrating irrelevant information embedded in seemingly relevant context

Figure 1.3: News snippets illustrating deficiencies of current IE approaches

1Quoted from The Edmonton Sun online edition (http://www.edmontonsun.com), February 24, 2008.



7

consider the news clipping2 in Figure 1.3b. Locally, a pattern such as “<subject> was

attacked” seems likely to identify the victim of a physical attack. But from the wider

context we see that it is not a physical attack at all. Indeed, evidence from the wider

context can help to reveal such false positives.

Let us further explore the limitations of local context in locating event roles of an event.

Most IE approaches are designed to identify role fillers that appear as arguments to event

verbs or nouns, either explicitly via syntactic relations or implicitly via proximity (e.g., John

murdered Tom or the murder of Tom by John). But many facts are presented in clauses

that do not contain event words, requiring discourse relations or deep structural analysis to

associate the facts with event roles. Consider the sentences in Figure 1.4, for example, which

illustrate a common phenomenon in text. In these examples information is not explicitly

stated as filling an event role, but human readers have no trouble making this inference.

The role fillers above (seven people, two bridges) occur as arguments to verbs that reveal

state information (death, destruction) but are not event-specific (i.e., death and destruction

can result from a wide variety of incident types). IE approaches often fail to extract these

role fillers because they do not recognize the immediate context as being relevant to the

specific type of event they are looking for.

Models for extraction that rely primarily on the local context for IE do well on cases

that contain direct evidence of the event and the event role within their local context (e.g.,

the chairman was assassinated). However, as seen in the examples above, these models

would fail in cases where the reader must make inferences based on information from a

Seven people have died

. . . in Mexico City and its surrounding suburbs in a Swine Flu outbreak.

. . . after a tractor-trailer collided with a bus in Arkansas.

. . . and 30 were injured in India after terrorists launched an attack on the
Taj Mahal Hotel yesterday.

Two bridges were destroyed

. . . to make way for modern, safer bridges to be constructed early next year.

. . . in Baghdad last night in a resurgence of bomb attacks in the capital city.

. . . and $50 million in damage was caused by a hurricane that hit Miami on
Friday.

Figure 1.4: Examples illustrating the need for wider contextual evidence

2Quoted from The Telegraph online edition (http://www.telegraph.co.uk), April 17, 2009.
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wider context. We can, therefore, hope for improvement in IE performance if the model

could account for this global information from the wider context in its extraction decisions.

The goal of this dissertation is to study the use of event information in the wider context

for better IE performance.

An observation in existing pattern-based IE systems that reinforces the need for wider

contextual evidence is that even apparently reliable patterns learned by these systems may

not always reperesent an event-specific context. For instance, one would expect a pattern

like “<victim> was kidnapped” learned by a pattern-based IE system (AutoSlog-TS [92]) to

be a strong indicator of terrorist events, and a good victim extractor. But when applied to

text documents, this pattern does not always identify relevant information. On the MUC-4

data set [114], it extracts a correct answer 83% of the time. Similarly, patterns like “murder

of <victim>” and “<victim> was killed” achieve a precision of 65% and 31%, respectively.

The lower precision occurs as a result of false hits in nonevent contexts. The patterns could,

therefore, benefit from additional event information from the wider context. Knowing when

a pattern appears in a nonevent sentence or paragraph can help improve its precision by

preventing extractions in such cases. Thus, such evidence from the wider context can benefit

even existing pattern-based IE approaches.

Indeed, many recent approaches have begun exploring techniques for IE that incorporate

global information from text to help improve extraction performance. Maslennikov and

Chua [69] use discourse trees and local syntactic dependencies in a pattern-based framework

to incorporate wider context. Finkel et al. [36] and Ji and Grishman [55] incorporate

global information by enforcing event role or label consistency over a document or across

related documents. These techniques have all shown the benefits of global information for

event-based IE. The research presented in this dissertation takes an event detection approach

for improving IE with evidence from the sentential context.

1.3 Overview of the Research

Clearly, from the previous discussion, we see that local contextual information sur-

rounding a word or phrase is frequently insufficient for deciding its role in an event. This

dissertation takes an event detection approach for incorporating evidence from a wider

context. The idea is to build a model to automatically detect event descriptions in text.

The knowledge of an event description within text or a conversation enables human

readers or listeners to make several assumptions about the entities or objects under discus-

sion. These assumptions are typically based on our prior knowledge of the world. Thus,

conversations and text documents typically omit very specific details from the exposition,
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and these are left for the reader or the listener to infer. Figure 1.5, for example, contains

two sentences (taken from a MUC-4 document) describing a terrorist attack on Attorney

General Garcia Alvarado. The text provides a description of the attack, but leaves a lot to

the imagination of the reader. Three facts are explicitly stated in the text:

(a) an attack took place,

(b) the Attorney General’s car stopped at a traffic light, and

(c) an individual placed a bomb on the roof of the armored vehicle

From just these three facts we make several inferences, and reconstruct the event as we

imagine it might have occurred. We infer that perhaps:

(a) the Attorney General’s car is the armored vehicle,

(b) the Attorney General was in the car at the time, and

(c) the bomb subsequently exploded

This ultimately leads us to conclude that the Attorney General was the victim of the attack,

and the bomb was the weapon used in this terrorist attack. Even though many details of

the attack have not been explicitly stated in the text, we (the human readers) effortlessly

infer these from the context. The victim and weapon of this terrorist event are deduced

from this text with no direct evidence of these event roles in the local context of the phrases.

An analogy can be drawn from the field of Computer Vision. One of the tasks for

computers analyzing images and photographs is to try to recognize individual objects in

the given picture. It is usually harder to recognize certain objects devoid of any global

context. Conversely, it is easier to recognize objects, even without physical and textural

details, when presented in the context of a scene in which it appears. For example, given

the scene of a road, a human observer would usually infer that a red object on the road is a

car, unless the physical details of the car suggest otherwise. Thus, the global scene plays an

important role in object recognition in the human visual faculty. Figure 1.6 illustrates this

phenomenon with two images, one containing an object without context, and another with

ACCORDING TO CRISTIANI, THE ATTACK TOOK PLACE BECAUSE ATTORNEY GENERAL GARCIA
ALVARADO WARNED THAT “HE WOULD TAKE MEASURES AGAINST URBAN TERRORISTS.”

VICE PRESIDENT-ELECT FRANCISCO MERINO SAID THAT WHEN THE ATTORNEY GENERAL’S CAR
STOPPED AT A LIGHT ON A STREET IN DOWNTOWN SAN SALVADOR, AN INDIVIDUAL PLACED A
BOMB ON THE ROOF OF THE ARMORED VEHICLE.

Figure 1.5: Excerpt from MUC-4 data [114]: extractions from nonevent contexts
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(a) Object without context (b) Object within context of scene

Figure 1.6: Images illustrating the significance of context in object recognition

an object in the context of a scene with other objects. To recognize the object in Figure

1.6a we only have the benefit of the visual features of the object, which do not conclusively

enable us to recognize the object shown. Figure 1.6b, on the other hand, presents exactly

the same object in its natural surroundings — on the desktop. This context allows us

to make contextual inferences about the object and recognize it as the mouse used in a

computer desktop system. Many of the earlier approaches for automatic object recognition

relied solely on specific properties of objects to recognize them. More recently, however,

researchers have had success by accounting for the global context within which the object

appears. Torralba et al. [118] show how recognizing the scene (office, street, corridor, etc.)

in which an object appears helps provide “contextual priors” for better object recognition.

Similarly, Oliva and Torralba [79] illustrate how a statistical summary of a scene enables

contextual inference in recognizing individual objects in the scene. A similar phenomenon

is seen in text, where the description of the scene or the event being discussed allows us to

make contextual inferences about various entities discussed in the text.

To enable inferences based on the scene or event description in text, this research

presents a two-stage approach for IE. The models for IE described here contain two primary

components — an event recognition component to capture the essence of the scene described

in text, and a local component to identify roles played by entities in an event. This

dissertation starts with a description of a “pipelined” two-stage model for IE called Piper,

which first identifies event sentences within the given text, and then applies a localized

extraction model to take advantage of the identified sentences. Further building upon

the Piper implementation, this dissertation then follows up with a more flexible model

for IE called Glacier. This model employs a unified approach that probabilistically



11

combines information from the two components without making discrete decisions within the

individual components. The IE models presented in this dissertation set forth two different

strategies for incorporating information from a wider context to enable the extraction of

event roles that have no direct evidence of a relevant event in their immediate context.

Piper, the pipelined model for IE, consists of two stages in a pipeline running inde-

pendently of one another. Figure 1.7 presents a block schematic of this model. As shown

in the figure, the sentential event recognizer is first applied to the input documents, and

detects sentences that contain the description of a relevant event. This component uses text

classification techniques for identifying event sentences. Having detected event sentences in

the input text, the localized text extraction component then extracts event roles from these

sentences. This component of the model can now take advantage of the fact that it will

only be dealing with event sentences. Thus contextual clues that may have previously been

inconclusive in nonevent sentences, are now more useful for identifying event roles.

One learned component in this model is the sentential event recognizer, which is a

machine learning classifier relying on features in each sentence. Its decisions are based on

various types of features, such as lexical items in the sentence, lexico-syntactic patterns,

semantic classes, etc. The second learning component is the localized text extraction

component, which identifies event roles within the event sentences. The localized text

extraction component learns extraction patterns representing the local context around

candidate extractions.

Because of the two independent components in the pipelined Piper model, each compo-

nent makes discrete decisions independent of the other. One problem that arises with this

approach is that if the sentential event classifier incorrectly discards an event sentence, the

localized text extraction component loses any chance of extracting event roles from these

sentences. This all-or-nothing nature of the classifier can cause the model to miss out on

such cases. This is especially bad for cases where strong local evidence could have overcome

these errors from the sentential event classifier.

Text
Document

Classification
Model Clues

Local Contextual

Text Extraction
LocalizedSentential Event

Recognizer Sentences
Event Extracted

Event Roles

Figure 1.7: Block schematic of a two-stage pipelined model for IE (Piper)
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The second model for IE (Glacier), presented in this research, seeks to overcome this

drawback of Piper by employing a probabilistic approach for combining evidence from

the two sources. The Glacier model also consists of two components, but it overcomes

the limitations of Piper, by unifying these two components in a probabilistic framework.

Instead of making two separate discrete decisions about event sentences and event roles,

this model computes two separate probabilities, which are combined by the unified model

into a single joint probability. Decisions to extract event roles are based on this final joint

probability. Figure 1.8 shows a block schematic of this model. By computing probabilities

instead of discrete decisions, this model gently balances the influence of the two decisions.

The two learning components of this model are the sentential event recognizer and the

plausible role-filler recognizer. The sentential event recognizer is again based on machine

learning classifiers like in Piper, the primary difference being that here it is used to generate

probability estimates instead of a classification decision. The second learning component

is the plausible role-filler recognizer, which analyzes local contexts of noun phrases and

estimates the probability that they represent event roles of interest. This component also

uses machine learning strategies for generating these estimates. Both components rely on

various contextual features, such as lexical items, semantic classes, lexico-syntactic patterns,

etc.

The remainder of this dissertation describes these approaches in detail, and empirically

demonstrates the utility of event detection in IE. The two approaches presented in this

research — a pipelined approach and a unified probabilistic approach — are shown to achieve

this goal. Additionally, the dissertation goes on to show that using a probabilistic model to

balance the influence of the two components overcomes the disadvantages of discrete and

independent decisions made by the pipelined model.

Noun
Phrases

Shallow
Parser

Sentence
Segmenter

Unstructured
Text

Plausible
Role−filler
Recognizer

Sentential
Event

Recognizer

Sentences

P(EvSent) P(PlausFillr | EvSent)Extractions
Unified System

P(PlausFillr, EvSent) *

Figure 1.8: Block schematic of a unified probabilistic model for IE (Glacier)
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1.4 Claims and Contributions

The scientific contributions of this research to the field of event-based information

extraction are as follows:

1. An explicit sentential event recognition process can benefit IE.

The primary motivating factor underlying this dissertation is the observation that

humans can effortlessly identify role players of events in text documents despite the

lack of direct evidence of an event or an event role in the immediate local context of

many of the candidate phrases. This research hypothesizes that an automated system

could extract such role fillers by detecting event descriptions in wider regions of text

(e.g., sentences or paragraphs). Given the knowledge of an event description within a

region of text enables an IE technique to make more confident decisions about event

role extractions in spite of weak local contextual evidence.

2. Making joint decisions through a probabilistic model for IE improves performance over

a pipelined model.

This dissertation presents an approach for IE that combines probabilistic information

about event sentences with probabilistic information about role fillers into a joint

probability, which is used for making extraction decisions. This approach enables the

model to gently balance the influence of the two components to achieve better IE

performance. By using a probabilistic approach, this model overcomes the drawbacks

of a pipelined approach for combining the two components. The use of probabilities

overcomes the discrete nature of the pipelined model, and the decisions on a joint

probability overcomes the problems from the independent decisions of the pipelined

model components. Overall we achieve better performance with the unified proba-

bilistic model over the two-stage pipelined model.

In addition to these primary contributions, there are several ancillary contributions that

result as a by-product of this research:

1. This work presents an analysis of event sentences in text. A human annotation study

illustrates the complexity of the task, and provides insights into event descriptions in

text. High agreements in this annotation study illustrates the feasibility of the task,

and this study has resulted in annotated data sets of event sentences in two domains.

2. Several machine learning classifier-based approaches (supervised as well as weakly

supervised) are shown to be suitable for identifying event sentences in text. Some
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of these classifiers are also used to generate probabilistic estimates in the unified

probabilistic model for IE.

3. This research investigates the contribution of several types of contextual clues in

identifying event descriptions in text, as well as indicators of event roles within these

descriptions.

4. This research investigates weakly supervised approaches for the components of our

model — recognizing event sentences and learning extraction patterns.

1.5 Navigating this Dissertation

The following list summarizes the chapters in this dissertation to help guide the reader

through this document:

• Chapter 2 describes existing work in IE and presents a discussion of how the research

presented in this dissertation relates to previous work. In addition, this chapter

presents information about IE tasks and data sets, to provide a background for the

research presented in this dissertation.

• Chapter 3 presents a detailed description of the pipelined model for IE3 called Piper.

The chapter describes the two components of the model, discusses the features used

in the model, and presents supervised and weakly supervised approaches for training

these components.

• Chapter 4 presents a detailed description of the unified probabilistic model for IE4

called Glacier. The chapter describes machine learning approaches for computing

probabilities for the two components of the model, and shows how these probabilities

can be combined for making better decisions about event role extractions.

• Chapter 5 discusses event sentences and their relationship to event roles. The chapter

contains the description of a human annotation study for event sentences — the

guidelines, the annotation interface, the agreement study, an analysis of the annotated

data and a discussion of findings from this analysis. The sentential components of the

two models are then evaluated in the last part of this chapter.

3We have previously described some of this work in a conference publication [82].

4We have previously described some of this work in a conference publication [83].
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• Chapter 6 contains an empirical evaluation of the two IE models — Piper and

Glacier. The two models are each evaluated on two domains and a comparison

of their performance with other baseline approaches is presented here.

• Chapter 7 presents a summary of conclusions from this dissertation research, recounts

the list of scientific contributions of the research, and finally discusses potential

directions for future research.



CHAPTER 2

BACKGROUND

Many ideas have been proposed by researchers over the years to extract various forms

of information from free text. This chapter briefly summarizes these techniques, which

are compared and contrasted against the research presented in this dissertation. This

chapter first presents a brief history of information extraction in Section 2.1, and the

event role extraction task in Section 2.2. This is followed in Section 2.3 by a summary

of the various approaches that have been applied to IE (and event role extraction). Some

current approaches that attempt to incorporate global information into IE, and techniques

for text classification or topic detection are then described in Section 2.4 and Section 2.5,

respectively. Finally, Section 2.6 describes the two data sets for event-based IE that are

used in this research.

2.1 A Brief History of IE

Information extraction, in one form or another, has been an important problem since

the early days of NLP. It has stemmed, primarily, from the need for people to more easily

organize and manage the vast amounts of information described in free text. Free text

contains a multitude of information that, if effectively extracted, can be useful for many

real-world applications. These useful pieces of information are of many different forms —

name of people, places, organizations, roles played by entities in events, relations between

entities, etc. These are characterized by the fact that they can be organized into structured

formats, such as database entries.

Some of the early work in information extraction has been nicely summarized by Lehnert

and Cowie [63], who mention the work by DeJong [30, 31] on analyzing news stories among

the early attempts at IE. The system, called FRUMP, as described by DeJong, is a general

purpose NLP system designed to analyze news stories and to generate summaries for users

logged into the system. This system is strongly reminiscent of modern day IE, since the

generated summaries are essentially event templates filled in by FRUMP and presented

as single sentence summaries of the events. DeJong’s system used hand-coded rules for
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“prediction” and “substantiation” (the two components of his system) to identify role fillers

of 48 different types of events. FRUMP uses a data structure called “sketchy script,” a

variation of “scripts” previously used to represent events or real-world situations described

in text [100, 26].

Other approaches for information extraction in this era include a Prolog-based system by

Silva and Dwiggins [103] for identifying information about satellite-flights from multiple text

reports. Similarly, Cowie [24] also implements a system, based on Prolog, using “sketchy

syntax” rules to extract information about plants. By segmenting the text into small chunks,

according to pivotal points, like pronouns, conjunctions, punctuation marks, etc., the system

avoids the need for complex grammars to parse text. Another system developed around

the same time was that by Sager [98], which applied to highly domain-specific medical

diagnostic texts (patient discharge summaries) to extract information into a database for

later processing. The system uses English grammar rules to map the text into a structured

layout. Also of note is the work by Zarri [128], whose goal was to identify information about

relationships and meetings of French historical personalities and represent this information

in a more structured form in the “RESEDA semantic metalanguage.” The system uses rules

for semantic parsing and heuristic rules of identifying slot-fillers required by the RESEDA

metalanguage. Thus, a fair amount of effort was put into IE during this period of NLP

research. Much of this work focused on specific domains, used hand-crafted rules and did

not have standard data sets or standard evaluation procedures.

To encourage the development of IE techniques, in the late 1980s and early 1990s the US

Government (DARPA) organized a series of Message Understanding Conferences (MUC)

[46] as a competitive task with standard data and evaluation procedures. Running from

1987 through 1997, the first few MUCs defined a single IE task for the participating teams.

In the later conferences, IE was separated into several different tasks. The various types

of IE tasks defined there differ primarily in their degree of complexity and in the depth of

information extracted. For instance, the named entity (NE) task is that of identifying within

free text, person, location and organization names, and quantities, such as dates, monetary

amounts, etc. The tasks then get more complicated with the coreference task (CO) that

involves the identification of coreferent entities in text, and the template elements (TE)

task of discovering specific attributes about these entities. Next, the relation extraction

(RE) task requires the detection of specific relations (such as employee of, author of, etc.)

between the discovered entities. Finally, the most complex of these IE tasks, is the scenario

template (ST) task, which requires the system to identify instances of a specific predefined
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event in the text, and extract information pertaining to each instance of the event found.

The system is expected to output an event template containing various pieces of event

information corresponding to each event detected within the given text. Thus, a wide range

of intricacy exists in locating the various forms of interesting information embedded in free

text.

Many systems (e.g., GE [60], SRI [49], UMass [62], NYU [45], etc.) participated in

these shared tasks, which greatly benefitted IE research. These conferences established

standard data sets for the development and comparative evaluation of systems designed to

perform IE. They spurred great interest in this field of research, and led to the formal

definition and evaluation criteria for various different kinds of tasks related to IE. By

establishing a competitive environment, the MUCs enabled rapid transfer of ideas and

techniques between teams, with an overall improvement in IE technology. A majority of

the IE techniques developed during the MUC conferences were based on hand-coded rules

and massive amounts of knowledge engineering by human experts. However, during the

later years of MUC, efforts [91, 92] were also being focused on reducing the amount of

human undertaking involved in generating rules for IE. Such research work [124, 110] has

continued over the years and succeeded in drastically reducing the human involvement in

building an IE system for a specific domain.

Another DARPA program introduced towards the end of the MUC era was the TIPSTER

program [73, 2, 41] designed to advance the state of the art in text processing. IE technology

benefitted from this because of the development of several standard IE architectures and

toolkits (such as GATE1 [28]) with the goal of having standardized and reusable components

for use across large IE systems.

Research in IE has continued to grow over the years since MUC and TIPSTER. The

definition of IE has also gradually broadened to include many different types of information

and tasks that differ in their complexity, the amount of resources used, their training

methodologies, etc. Researchers are looking at extracting information from semistruc-

tured texts, such as resumés [126] and classified advertisements [42]. Such texts also

lend themselves to a “field segmentation” model for IE, which is vastly different from the

“nugget extraction” task seen in event-based IE. Recent approaches to IE are also looking

to incorporate machine learning techniques [39, 15, 37, 64, 36] for information extraction.

Finally, recent trends in IE [69, 55] are looking to incorporate more global information into

IE systems than was possible with the hand-crafted pattern-based approaches from the

1http://gate.ac.uk
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MUC systems. From this wide range of IE tasks and approaches, this dissertation focuses

on event-based IE, with the goal of using information from the wider context to make better

inferences about roles played by entities in events.

2.2 Event Role Extraction

The research presented in this dissertation focuses on the scenario template (ST) task

[114, 115] of extracting event role fillers for a specific type of event. The type of event

is specified beforehand. This specification of events includes fine-grained details about

the circumstances under which a textual discourse is said to contain an event description.

In the case of disease outbreak events, for example, the specification of the event type

should indicate the exact nature of a textual description that would constitute a disease

outbreak. Perhaps, a single report of a common disease is not typically considered a “disease

outbreak.” Thus, the event-type specification must unambiguously exclude such cases.

Given such an event specification, and some training examples of documents along with

their corresponding event templates, the goal of the designed IE systems is to identify

instances of the specified event-type in new texts and identify event role filler string within

these event descriptions. Note that a single document can contain multiple instances of the

specified event-type.

While the complete ST task is to generate “event templates” using the extracted role

fillers, this dissertation focuses on the role filler extraction part of the process. As shown

in Figure 2.1, for the complete ST task, the system must generate an event template

corresponding to each event detected in the text. A typical solution to address this task is

to first attempt to locate all spans of text within a document that constitute potential role

fillers for the defined event-type. The extracted strings are then placed into one or more

templates by a template generator, each template corresponding to one distinct event.

Since the goal of this dissertation is to accurately identify event role filler strings in text, a

template generation component is not applied to the extracted strings. The exact evaluation

procedures employed in this research will be discussed later in the dissertation.

The complete ST task is challenging, and many different approaches have been explored

by researchers, with varying levels of success. For identifying event role fillers, these

approaches include pattern-based systems that attempt to match the contexts in which

the role fillers occur, and machine learning systems that rely on features in the context of

candidate role filler text spans. Some of these systems also use various amounts of knowledge

engineering, to incorporate human knowledge into the system. Thus, current approaches
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Information Extraction

System

Disease:

Victims:

Location:

Date:

Status:

Ebola

Five teenage boys
Mercer County, NJ
February, 26
Confirmed

New Jersey, February, 26. An outbreak of Ebola has

been confirmed in Mercer County, New Jersey. Five teenage

boys appear to have contracted the deadly virus from an

unknown source. The CDC is investigating the cases and is

taking measures to prevent the spread of the virus to other...

... contributed to this report.

Text Document

Event Templates

Figure 2.1: Block schematic of the scenario template (ST) task

for the ST task can be generally organized according to their approaches for text extraction

and template generation. They can, alternatively, also be categorized by the amount and

type of knowledge engineering required for the system, or by the types of training strategies

used in the system.

Despite this clear description of the ST task, there is still a great variation in complexity

even within this task. This typically happens due to the nature of the different types of

events that may be defined for the task. In some cases the event information is embedded

within semistructured text, which is easier to extract than pieces of information that are

sparsely distributed within free text. For example, extracting information from resumés

is fundamentally different from extracting information about disease outbreaks from news

articles. In the case of resumés, the text is somewhat structured, and the information is more

densely distributed within the document. Further, a resumé typically contains information

about a single person — a fact that can be exploited in the extraction task. On the other

hand, for disease outbreak events, the relevant information is sparsely distributed, there

is no predefined structure to the texts, and multiple disease outbreaks can be described

within a single document. All of this makes IE for such cases vastly more difficult. This

dissertation attempts to address this more complex case of identifying event information in

free, unstructured text.
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Another distinction between the various approaches for IE is the nature of the training

and the amount of knowledge engineering required. Many of the systems designed for

IE tasks require some amount of knowledge engineering in the form for creating semantic

class dictionaries, or extraction pattern lists. Pattern-based algorithms for this problem

try to automatically or semiautomatically learn extraction patterns for locating relevant

information. Similarly, classifier-based methods used machine learning models to extract

spans of text. All of these methods rely on varying quantities and forms of training data.

Thus, the current state of the systems for IE includes numerous variations and possibilities,

which will be discussed here.

2.3 Overview of IE Techniques

Owing considerably to the MUC conferences, a fair amount of effort has gone into IE

research in recent years. Most of the earlier approaches to the problem were pattern-

based approaches, which use contextual patterns to extract relevant information from text

[57, 91, 106, 52, 50, 92]. These contextual patterns attempt to match lexical, syntactic and

semantic characteristics in the vicinity of a potential extraction. Recently, the trend has

been to employ machine learning techniques for this task. One way of applying standard

machine learning approaches is to use them to learn extraction patterns [17, 97, 12, 71].

Another is to tackle the IE problem as a “sequence tagging” problem and use existing

sequence labeling or classification systems for this [39, 15, 37, 64].

Despite this large variation in the approaches to IE, it appears that the strategies are

highly correlated to the nature of the data. Machine learning techniques seem to work

well for texts that are somewhat structured or semistructured, such as resumés, classifieds,

bibliographies, etc. Because semistructured documents usually contain more fragments of

text that cannot be parsed, techniques that extract information from these usually do not do

a linguistic analysis of these texts and usually tend to use sequence tagging approaches. On

the other hand, for unstructured free text, where the information to be extracted is very

sparsely distributed within the text, predominantly pattern-based approaches have been

successful. The typical examples of these are everyday event descriptions in newspaper

articles, books, etc. Systems that deal with free text (newspapers, books, etc.) usually tend

to do linguistic analysis for IE.

2.3.1 Pattern-based Approaches

Typically, pattern-based strategies [124, 87, 111, 116, 110] employ patterns that rely on

linguistic analysis of text. These methods differ primarily in two respects:
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(a) The expressiveness of their patterns.

(b) The learning technique used to generate patterns.

The expressiveness of the patterns is tied to the linguistic analysis done by the system and

to the knowledge engineering involved. The patterns could be hand-created or they could

be learned automatically or semiautomatically.

Earlier systems (such as PALKA [57], FASTUS [4], AutoSlog/AutoSlog-TS [91, 92],

CRYSTAL [106], LIEP [52]) inspired by the MUC conferences essentially laid the foundation

for pattern-based IE. The PALKA system [57] composes a set of extraction patterns for an

IE task using sentence-level and clause-level relevance judgments (by a human expert) of

training text. Relevant sentences along with semantic class assignments to words are used

to generate IE patterns. This is somewhat related to our research, in that the PALKA

system uses “relevant regions” (sentences/clauses) to learn IE patterns. However, finding

the relevant regions requires some human oversight, and are only used in training, and not

in the end system. The FASTUS system [4] uses hand-made extraction patterns encoded

into a finite state transducer for IE. CRYSTAL [106] uses training examples to learn its set

of extraction patterns (or “Concept Node definitions”), which are then generalized using

similar patterns from the text. Similarly, AutoSlog [91] relies on the answers in the answer

key templates to generate extraction patterns for a given task. All of these systems use

patterns representing a tight local context surrounding the desired extractions.

The AutoSlog-TS [92], which is employed in this research as a baseline and for pattern

generation, creates lexico-syntactic patterns based on a shallow parse of the text. The

patterns are designed to match constituents in the text, and one or more of the matched

constituents is extracted. Its pattern learning process is minimally supervised, in that it

requires only a set of relevant and irrelevant documents for learning. The learning process

relies on the distribution of patterns between the relevant and irrelevant documents to

generate a ranking for the patterns. The AutoSlog-TS system is a successor to the AutoSlog

system [91], which did not have the benefit of a pattern ranking and thus required more

human effort for pattern selection. The primary drawback of both systems (AutoSlog and

AutoSlog-TS) is the requirement of a human expert to inspect patterns, to assign patterns

to specific event roles, and to discard the inferior patterns.

Many recent systems [124, 87, 111, 110] are attempting to use minimal supervision, in

the form of manually created seeds or queries, for pattern learning. The patterns used

by Yangarber et al. [124] rely on a partial parse of the text, which is enhanced with

some domain-specific semantic information. The primary contribution of this work is the
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pattern discovery process, which uses only a set of seed patterns and a set of domain-

specific documents for the learning process. Stevenson and Greenwood [110] use pattern

structures similar to those by Yangarber et al. They also use a set of seed patterns to

initiate the pattern induction process. However, rather than using the relevance of the

documents to rank new patterns, they define a pattern similarity measure based on word

and concept similarity measures. From the set of patterns generated from a document set,

they iteratively select the most similar patterns to the seed patterns and add those to the

seed set.

Sudo, Sekine and Grishman [111] introduce a new pattern model for IE, and show

that it performs better than two existing models. They use queries to an IR system to

collect documents that are relevant to the task. Patterns are generated from these using

dependency parse links between named entities, and are then ranked based on a TF-IDF

function and filtered on frequency cutoffs. Poibeau and Dutoit [87], on the other hand,

use patterns based on predicate-argument structures. Their system also uses a set of seeds

to locate new patterns in unannotated text. The pattern discovery process uses the seed

patterns to look for other similar patterns in the text by locating words in identical syntactic

constructs. This is done by using a semantic network, and by expanding upon the existing

pattern set using syntactic variants.

Similarly, there exist IE systems that require greater supervision for pattern discovery.

Surdeanu et al. [116] employ a very unique approach to pattern discovery using a ma-

chine learning approach. Their extraction patterns are also based on predicate-argument

structures found in a full parse of the text. They train a decision tree algorithm on fully

parsed and annotated training data to automatically identify argument constituents of the

predicate, and to automatically map the arguments to roles. Constituents corresponding to

specified roles are then extracted.

Many systems [17, 97, 12, 71] use similar learning strategies to learn rules or patterns

from annotated data. An example of a rule used by Califf and Mooney [12] is shown in

Figure 2.2. All of the rule-based systems do some word-level processing of text, such as

part-of-speech tagging, morphological analysis, and semantic tagging of words. Ciravegna’s

system [17] learns separate rules for finding the start of extractions and the end of extrac-

Syntax: {noun, adj} Word:"leader" Semantic: human Word: {"killed", "assassinated"}Word: "was"

Prefiller Extraction Postfiller

Figure 2.2: An example of a pattern matching rule for the Rapier system
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tions, and uses a covering algorithm to learn rules from an annotated training set. The

system by Roth and Yih [97], and by Califf and Mooney [12], both use some variation on

relational learning, to learn extraction rules from training texts.

2.3.2 Sequence Tagging Approaches

Sequence tagging approaches view the documents as a sequence of tokens and the IE task

is formulated as identifying subsequences of the tokens as extractions. This is typically done

by training a Machine Learning classifier on training data to classify each token as belonging

to an extraction or not. These approaches differ primarily in the Machine Learning approach

that is used, and the features used for training. These approaches work particularly well

for semistructured texts where the information can be found in “fields,” and where parsing

is difficult.

A system by Freitag and McCallum [39] uses Hidden Markov Models (HMMs) for

identifying the extraction strings in the documents. The probabilities for the HMM are

gathered from the training data. Some of the states of the HMM are categorized as target

states and some are not. During the classification phase, it determines the sequence of

states that has the highest probability for generating the document. The tokens which are

associated with the target states are deemed to be the extractions. The most significant

contribution of this work is that the system automatically builds the structure of the HMM

by stochastic optimization using the training data. Following the success of this work, other

systems [126, 47] implemented some variations based on HMMs. Yu et al. [126] introduced

a cascaded multilevel approach to process resumé data. Gu and Cercone [47] described a

segment-based approach to improve performance.

Chieu, Ng and Lee [15] compare three different Machine Learning systems used for

IE. More importantly, they do a deeper linguistic analysis of text using a parser, and

include a number of features based on the parse trees as input to the learning algorithms.

Their algorithm operates on a “sequence” of syntactic phrases or chunks, unlike most other

sequence tagging systems, which process streams of words or tokens. Chieu, Ng and Lee

show that using these syntactic features improves performance.

Many of the sequence tagging approaches employ SVMs [37, 64] for IE because of their

proven track record. The algorithm by Finn and Kushmerick [37] applies two stages of

classification. The first stage uses a high precision SVM classifier to tag the start and end

boundaries of each extraction. The second stage uses a high recall SVM classifier to then

identify extractions for cases where one of the boundaries may have been missed by the first

stage classifier. This two-stage approach improves the coverage and the overall performance
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of the IE system. Li et al. [64] attempt to overcome the imbalance between the number of

positive and negative training examples for IE by experimenting with uneven margin SVM

and Perceptron. Both of these approaches use word-based features such as tokens in the

local context, parts-of-speech, semantic tags and surface features like capitalization.

Recently, researchers have also used CRFs [36, 104] for IE. These approaches primarily

rely on lexical features like word-types, parts-of-speech and semantic tags. Finkel, Grenager

and Manning [36] attempt to capture long distance relations in language by using nonlocal

features obtained through Gibbs Sampling. Bunescu and Mooney [8] use a variation of

CRFs called Relational Markov Networks to exploit relations between features for learning.

2.3.3 Other Related Approaches

While a great deal of research has gone into identifying role fillers of events from

semistructured and unstructured texts, there is also a substantial amount of related work

in other areas of NLP that should be acknowledged.

One variation of event-based IE is the task of “relation extraction” which is the task

of identifying specific relations between entities mentioned in text. It is different from

event-based IE, because the relations to be extracted are not tied to specific events. Rather

these relations are real-world “facts” described within text documents. For example, the

location of a company is a factual relation between that company and the city (or state).

Maslennikov, Goh and Chua [70] use a pattern-based approach using dependency relations

for this task. Similarly, Zhou and Zhang [130] take a machine learning approach, applying

SVMs for relation extraction.

Most the IE work described so far has been targeted towards predefined tasks, relations

or event types. However, in a variation of traditional IE, called Open Domain Information

Extraction, the set of relations are not defined beforehand. Rather it is the job of the IE

system to discover the set of relation types, before extracting instances of these relations

between entities from free text. Systems designed for this task rely on redundancy of

relations in large corpora in identifying and extracting relations. For instance, the ODIE

system [101, 102] exploits redundancies in a corpus (typical of the Web) to extract relations

pertaining to a user query. Similarly, with the growth of the Internet, a number of

systems attempt to exploit the vast quantity of free text available on the Web for IE.

The KnowItAll system [34] uses the Web to learn named entities and relations between

them with the goal of automatically creating an ontology. Large text resources such at the

Web, however, need not be limited to relation extraction. Patwardhan and Riloff [81] show
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how the Web can be used to learn event-based extraction patterns, which could augment

an existing IE system.

2.4 Incorporating Global Information

One common observation about the systems designed for IE is that most of them focus

only on the local context surrounding the candidate strings that are under consideration

for extraction (see Figure 1.2 and Figure 2.2 for examples). However, many researchers are

realizing the importance of global information for this task. Focusing on the local context

can lead to some ambiguity regarding the relevance of the text. Also many discourse cues

can provide additional information about the relevant events. Thus, some recent approaches

have made attempts to incorporate global information.

Recent work by Maslennikov and Chua [69] describes a technique for including long dis-

tance relations into pattern-based IE by using discourse cues. They use an existing discourse

parser [107] to generate discourse links between different parts of each sentence, and between

sentences. Such long distance discourse links are then used to connect local dependency

relations from different parts of the document. This leads to improved performance for IE.

However, their work focuses on a specific types of global information, while the research

presented relies on event recognition in sentences as a source of global information for IE.

Other attempts at including global information into IE have also been made. Finkel,

Grenager and Manning [36] use a sequence labeling model for IE. Their research incorporates

nonlocal information into their model by enforcing label consistency within a document

using Gibbs Sampling. Their hypothesis is that within a document different mentions of

the same entity should get the same label. Similarly, Chieu, Ng and Lee [15] use a machine

learning system with a wide range of features to locate the desired information. Coreference

links between entities in the text is one of the features used by them to take advantage of

the global discourse cues provided by coreference. Again, unlike the research described here,

these systems rely on very specific types of global information for IE.

Finally, a related strategy for IE employed by Xiao, Chua and Cui [123], while not

actually attempting to incorporate global information into the IE system, does try to

address one of the problems of current IE systems mentioned in Chapter 1. Since most

extraction patterns are not completely accurate in all contexts, their research describes a

technique of selectively applying extraction patterns using, what they call, soft matching

patterns. Soft matching patterns are probabilistic extraction patterns learned using a

weakly supervised bootstrapping algorithm. The research presented here also plans to
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selectively apply local contextual clues for IE, but our approach instead relies on the

recognition of event descriptions in a wider context.

2.5 Relevant Regions in Text

The IE system presented in this research intends to incorporate global relevance in-

formation into an IE model by using an event sentence identification module before text

extraction. Thus, to gather some insights about various possible techniques for sentence

classification, this section will provide some background on this subtask. Specifically, we

will look at different ways in which regions of interest within documents are identified in

applications.

The problem of relevant region identification is essentially the problem of text classifi-

cation at the sentence or region level. Thus, we could consider using standard text classi-

fication systems for this. However, most text classification systems are designed to work

on entire documents, and not on smaller units of text, like sentences or paragraphs. These

regions contain significantly less information compared to documents. Thus, classification

of regions would require more specialized classification strategies.

To perform classification of regions of text without using annotated data, a class of

machine learning systems called multiple instance learning [32] has evolved over recent

years. These were originally developed for classifying segments of images without requiring

segment-level annotations of images. The systems are trained using positive and negative

bags. A positive bag is a set of instances of which at least one is positive, while in a

negative bag all instances are negative. Systems train over the bags and then are able to

assign instance-level labels during testing. Thus, multiple instance learning allows us to do

without instance labels (or region-level annotation in our case). This greatly reduces the

annotation cost involved. Recently, this type of learning has been used in natural language

applications, such as text categorization [3] and relation extraction [11]. We employ one

such strategy in our IE models for event recognition in sentences.

While the use of a text classification as the basis for recognizing event descriptions is

investigated in our IE models presented later in this dissertation, there exist a number of

other related approaches for identifying relevant sentences, such as information retrieval

and text summarization techniques, which need to be acknowledged here.

In Information Retrieval (IR), the primary focus of researchers is to effectively and accu-

rately retrieve information that is relevant to given queries from large document collections.

The most common examples of this are the commercial search engines used by millions of

people to locate relevant pages on the Web. IR systems have also been applied in natural
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language tasks, such as Question Answering (QA) systems. In such systems, an IR module

is used to retrieve passages that are relevant to a given question. An answer to the question

can then be extracted from these retrieved passages. Thus the QA systems, in essence,

contain a relevant region identification phase as part of their strategy.

Passage retrieval with respect to an input query is a well-studied problem in IR. Tech-

niques to address this problem attempt to match relevance of passages within a collection

of documents with the text queries. Commonly, the matches between queries and passages

are weighted by the IDF values associated with the matching words [19]. Such techniques

for passage retrieval have been extended by using other measures of “matching” to improve

retrieval. For example, a research group at IBM [53] uses synonyms from a thesaurus

and a number of measures based on the distribution of words to determine relevance of

passages. Tellex et al. [117] provide an in-depth analysis of a number of passage retrieval

systems in the context of QA. All of these systems based on word matching are termed as

“density-based passage retrieval.” Likewise, researchers have also seen success by exploiting

dependency relations between the entities [25, 112], language modeling [67] and HMMs [77]

to perform passage retrieval.

Another natural language application that is closely related to region classification is

that of automatic text summarization. One of the techniques for automatically generating

summaries for text documents is to identify a subset of the most important sentences

within these documents and output them as the summary of the document. This is closely

related to our goal of identifying event sentences, with the primary difference being that

the summarization systems are not built for specific events.

A minimally supervised approach for automatic text summarization is a Bayesian query-

focused summarization technique [29], which uses the relevance between queries (in the

context of Information Retrieval) and documents to define a measure of the importance of

sentences, and a Bayesian model trained for identifying the important sentences. Similarly,

researchers have also tried strategies that use no supervision [6, 5, 78, 74]. The idea behind

these approaches is to use different kinds of “links” between sentences to define their strength

or importance, and then extract the most important sentences as summaries. Azzam et al.

[5], and Barzilay and Elhadad [6] use coreference chains and lexical chains to link sentences

in text. Inherent characteristics of the chains and the text are used to define a measure

of the strength of these chains, which can then be used to extract the strongest chain of

sentences as the summary. Mihalcea [74] uses a graph-based approach for summarization,

where sentences are the nodes of a graph and the edges are similarity values connecting
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sentences. Sentences and nodes from this graph are then extracted for the summary using

graph-based ranking algorithms used to assign weights to the nodes.

To sum up, we see a number of natural language applications that are indirectly tied

with our goal of event sentence identification. The research presented in this dissertation,

however, only investigates approaches based on text classification for event recognition in

sentences. The other related approaches described here can open up several avenues for

future research in this field.

2.6 Event-based IE Data Sets

While the methods and techniques developed in this dissertation are generally applicable

to different types of events, here the models will be trained and evaluated on two domains to

demonstrate performance and consistency of the methods across domains. Therefore, as this

dissertation develops the models for IE, it will refer to examples and present discussions for

these two domains. Consequently, the two domains — terrorist events and disease outbreaks

— and the data sets for each are described here to provide better context for the ensuing

discussions in this dissertation.

2.6.1 Latin American Terrorist Events

The terrorist events data set consists of documents about Latin American terrorist

events, along with corresponding answer key templates. The data was created during the

MUC-3 and MUC-4 conferences [113, 114] as a standard testbed for IE evaluation. A set

of guidelines establish the notion of “terrorism,” which includes several types of terrorist

events, including attacks, bombings, arson, kidnappings, robberies and forced work stoppages.

The MUC-4 guidelines define a terrorist event as:

Relevant incidents are, in general, violent acts perpetrated with political aims

and a motive of intimidation. These are acts of terrorism.

These include terrorist acts at various stages of accomplishment — threatened, attempted

and accomplished. The data set was constructed from newswire articles or documents.

A document may contain no relevant event description, in which case it is considered an

irrelevant document and has an empty answer key template associated with it. Alterna-

tively, a document may contain one or more relevant event descriptions, in which case it

it considered a relevant document and has an associated event template for each event

description contained within it. About 54% of the documents in this data set are relevant,

while 46% are irrelevant.
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Figure 2.3 shows a sample document and its corresponding answer key event template

from the MUC-4 terrorist events data set. The document describes a terrorist attack on a

Peruvian Defense Minister. The answer key template contains the key pieces of information

of this event in slot-fillers. The official MUC-4 guidelines define about 24 different slots to

be filled by role fillers for each event. Some of these slots are “string” slots that are filled

by text strings taken verbatim from the document. For example, the perpetrators of the

terrorist attack is filled by the string THREE YOUNG INDIVIDUALS taken directly from

the document. The other type of slots are the “set fill” slots that are filled by entries from

a fix set on possible values. For example, the type of terrorist event, selected as one of six

possible values — attack, bombing, arson, kidnapping, robbery or forced work stoppage. As

DEV-MUC3-0011 (NOSC)

LIMA, 9 JAN 90 (EFE) — [TEXT] AUTHORITIES HAVE REPORTED THAT FORMER PERU-
VIAN DEFENSE MINISTER GENERAL ENRIQUE LOPEZ ALBUJAR DIED TODAY IN LIMA AS
A CONSEQUENCE OF A TERRORIST ATTACK.

LOPEZ ALBUJAR, FORMER ARMY COMMANDER GENERAL AND DEFENSE MINISTER
UNTIL MAY 1989, WAS RIDDLED WITH BULLETS BY THREE YOUNG INDIVIDUALS AS HE
WAS GETTING OUT OF HIS CAR IN AN OPEN PARKING LOT IN A COMMERCIAL CENTER
IN THE RESIDENTIAL NEIGHBORHOOD OF SAN ISIDRO.

LOPEZ ALBUJAR, 63, WAS DRIVING HIS OWN CAR WITHOUT AN ESCORT. HE WAS SHOT
EIGHT TIMES IN THE CHEST. THE FORMER MINISTER WAS RUSHED TO THE AIR FORCE
HOSPITAL WHERE HE DIED.

0. MESSAGE: ID DEV-MUC3-0011 (NCCOSC)
1. MESSAGE: TEMPLATE 1
2. INCIDENT: DATE 09 JAN 90
3. INCIDENT: LOCATION PERU: LIMA (CITY): SAN ISIDRO

(NEIGHBORHOOD)
4. INCIDENT: TYPE ATTACK
5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED
6. INCIDENT: INSTRUMENT ID -
7. INCIDENT: INSTRUMENT TYPE GUN: “-”
8. PERP: INCIDENT CATEGORY -
9. PERP: INDIVIDUAL ID “THREE YOUNG INDIVIDUALS”
10. PERP: ORGANIZATION ID -
11. PERP: ORGANIZATION CONFIDENCE -
12. PHYS TGT: ID -
13. PHYS TGT: TYPE -
14. PHYS TGT: NUMBER -
15. PHYS TGT: FOREIGN NATION -
16. PHYS TGT: EFFECT OF INCIDENT -
17. PHYS TGT: TOTAL NUMBER -
18. HUM TGT: NAME “ENRIQUE LOPEZ ALBUJAR”
19. HUM TGT: DESCRIPTION “FORMER ARMY COMMANDER GENERAL

AND DEFENSE MINISTER”: “ENRIQUE LOPEZ
ALBUJAR”

20. HUM TGT: TYPE FORMER GOVERNMENT OFFICIAL / FORMER
ACTIVE MILITARY: “ENRIQUE LOPEZ ALBUJAR”

21. HUM TGT: NUMBER 1: “ENRIQUE LOPEZ ALBUJAR”
22. HUM TGT: FOREIGN NATION -
23. HUM TGT: EFFECT OF INCIDENT DEATH: “ENRIQUE LOPEZ ALBUJAR”
24. HUM TGT: TOTAL NUMBER -

Figure 2.3: Sample MUC-4 terrorist event document and template
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seen in the figure, this slot is filled in by the value ATTACK.

Note that the event templates associated with the documents in MUC-4 are quite large

and complex. Additionally, the set fill slots require techniques to map information from

text to the set of possible values. The focus of the research presented in this dissertation

is to identify event role slot fillers within a text document. Thus, we consider only on the

string slots associated with the MUC-4 documents. Specifically, this research focuses on the

following five string slots associated with terrorist events: victim, human target, perpetrator

individual, perpetrator organization, weapon.

The MUC-4 data set consists of 1700 documents, divided into 1300 development (DEV)

texts, and four test sets of 100 texts each (TST1, TST2, TST3, and TST4). We used

1300 texts (DEV) as our training set, 200 texts (TST1+TST2) for tuning, and 200 texts

(TST3+TST4) as a test set. All 1700 documents have corresponding answer key templates.

We will see later in the dissertation how these documents are used for the training and

evaluation of the IE models presented in this research.

2.6.2 Disease Outbreak Events

The disease outbreaks data set [86, 82] consists of disease outbreak reports obtained from

ProMed-mail,2 an online reporting system for outbreaks of infectious diseases. For each

of these documents, human annotators have created corresponding answer key templates

containing various pieces of information pertaining to the outbreaks. In creating this data

set, a list of guidelines was specified for the human annotators, defining the notion of an

“outbreak.” According to the guidelines:

A template should be created only for reports of a specific outbreak. General

descriptions of outbreaks (e.g., “a widespread outbreak of anthrax would cripple

society”) are NOT relevant.

Only current/recent outbreaks are of interest, especially those ongoing at the

time the article was written. Any outbreak described as having happened more

than a year before the article is written should be avoided. There is a bit

of leeway — for instance, if an article was written in July and refers to “last

summer,” that is close enough, and similarly 367 days ago is close enough. Use

your judgment on these borderline cases.

2http//www.promedmail.org
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Outbreaks do not need to have identifiable victims. Outbreaks do need implicit

or explicit victims, or have a confirmed organism or disease that creates a

potential health hazard. The latter would include terrorist actions, such as

anthrax mailings, even if no one was infected.

Multiple outbreaks of the same disease in the same country, if authorities claim

they are unrelated, should be marked up as separate outbreaks.

In this data, a report may contain no relevant event description, in which case it is considered

an irrelevant document and does not have an answer key template associated with it.

Alternatively, a document may contain one or more relevant event descriptions, in which

case it it considered a relevant document and has an associated event template for each

event description contained within it. About 82% of the documents in this data set are

relevant, while 18% are irrelevant.

Figure 2.4 shows a sample document and its corresponding answer key event template

from the ProMed disease outbreaks data set. The document describes an outbreak of

Legionnaires’ disease in Australia. The answer key template contains the key pieces of

information of this event in slot-fillers. As was the case in the MUC-4 documents, here too

some of these slots are “string” slots and some are “set fill” slots. For example, the disease

Another four people in Australia were Thursday confirmed with legionnaires’ disease sourced
to the Melbourne Aquarium, bringing the number of such cases to 91. So far the aquarium
outbreak has claimed two lives while 19 people are still in hospital, six of them in critical
condition. A 77-year-old man died Wednesday night following complications from the disease
but he had not been confirmed as a victim of the aquarium outbreak, health officials said. The
officials said they were unable to speak to the man and his relatives had not been sure whether
he visited the aquarium during the 11-25 Apr 2000 danger period. Federal Finance Minister
John Fahey is among those diagnosed with the illness and is recovering at home after visiting
the aquarium for a Liberal Party function last month. The outbreak is the largest [outbreak
of legionellosis] in Australia, although the worst [outbreak] was in 1987 when there were fewer
cases but 10 people died.

Story: 20000514.0753
ID: 1
Date: June 14, 2000
Event: outbreak
Status: confirmed
Containment: —–
Country: AUSTRALIA
Disease: legionnaires’ disease / legionellosis
Victims: 91

Bytespans (Template 1): 444-466 1229-1242 540-542

Figure 2.4: Sample ProMed disease outbreak document and template



33

slot is a string slot filled by the disease string legionnaires’ disease taken directly from

the document. In contrast, the status slot is a set fill slot, which can be filled with one of

confirmed or not confirmed. As seen in the figure, this slot is filled in by the value confirmed.

Also note that these templates contain byte-span references to the exact position in the text

where the strings can be found. These byte-spans are not utilized in this research. Again,

following the arguments presented for the MUC-4 data, here as well this research focuses

only on the string slots: disease and victim.3

The disease outbreaks data set consists of 265 ProMed articles with corresponding

answer key templates. Of these, we use 125 as a training set, 20 as a tuning set, and 120

as the test set. Most of the ProMed articles contain email headers, footers, citations, and

other snippets of non-narrative text, so a “zoner” program4 was used to automatically strip

off some of this extraneous information. All of these documents (relevant and not relevant)

and the answer keys comprise the second data set that is used later in this dissertation to

demonstrate the prowess of our IE models that were developed as part of this research.

3The “victims” can be people, animals, or plants that are affected by a disease.

4The term zoner was introduced by Yangarber et al. [125].



CHAPTER 3

PIPELINING EVENT DETECTION AND

EXTRACTION

The goal of this research is to automatically identify event roles in text, especially in

cases having weak local contextual evidence of their role in an event. The hypothesis

is that knowing about event descriptions in regions of text can enable the IE model to

make inferences about event roles even with weak or inconclusive evidence of the role in

the local context. Chapter 1 presented a brief overview of Piper, a two-stage pipelined

model that realizes this idea. This chapter presents a detailed description of this model.

Section 3.1 presents the outline of the pipelined approach, and discusses the characteristics

expected of the two primary components of the pipeline. Section 3.2 and Section 3.3 cover

the details of the sentential event recognizer component of the Piper model, including

training strategies and features used. Section 3.4 then emphasizes the purpose of weak

local evidence in event sentences, and describes pattern-based methods for the localized text

extraction component of Piper. Section 3.5 presents a variation of the pipelined approach,

where selective application of patterns by the localized component can further improve IE

performance. Finally, Section 3.6 puts these components together into a single pipeline,

and discusses the characteristics of various configurations of the pipeline model.

3.1 Event Detector and Extractor Pipeline

Most current IE systems rely on direct evidence of event role fillers in the context

surrounding the candidate phrases in text documents. For example, a verb phrase like

was assassinated provides evidence of a criminal act described in the document, and the

subject of this verb phrase can be quite reliably extracted as the victim of that criminal act.

However, a many event role fillers have no direct evidence in their local contexts linking

them to the described event. In a majority of these cases, human readers make leaps of

inferences about role fillers based on indirect evidence from the wider context. The goal of

this research is to automatically identify such role fillers for IE.

Many of the inferences made by human readers are based on the recognition of event
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descriptions in the wider context. Take the text snippet1 in Figure 3.1 for instance, which

describes the scene in the aftermath of Typhoon Morakot in China. Observe that the

news story first describes the state of the human casualties (people feared dead), and the

property damage (buildings have toppled over), and then goes on to say that a typhoon

hit parts of Taiwan and China. These two pieces of information are loosely connected by

the preposition “after,” and human readers have no trouble making the causal connection

between the typhoon and its destructive effect on humans and property.

For an automated IE system that relies solely on local contextual evidence, however,

making such inferences in nontrivial. Using the local context surrounding the candidate

role fillers for this event, an automated IE system can determine the state of the entities

mentioned (people who are feared dead or stranded, and buildings that are toppled). To

determine that these entities are role fillers in a particular event, the system needs to infer

that the cause of their state is the event of interest. This information appears later in the

sentence, and must be used to make the correct inference about event roles of the event.

This research presents an approach for automatically making such inferences based on

the recognition of event descriptions in the wider context. The approach comprises of

a sentential event recognizer, whose job is to identify sentences containing descriptions

of events of interest. This information can then be used by the localized text extraction

component to make inferences about the roles played by entities within these sentences.

Thus, in the example presented in Figure 3.1, our Piper model for IE first determines

that the sentence is describing a natural disaster event. Then, the localized text extraction

component makes the inferences that the people who are feared dead are the victims of this

natural disaster, and the toppled buildings are the property damaged in this event. The

two components of this IE model are organized in a pipeline, such that the output of one

component is “piped” as input to the second component.

The inspiration for a pipeline approach implemented in the Piper model for IE comes

from various NLP systems that employ a cascaded strategy for language processing. Putting

Hundreds of people are feared dead, thousands stranded, buildings have toppled over and more

than a million people have fled their homes after Typhoon Morakot lashed Taiwan and China

with heavy rains and strong winds.

In China, the storm triggered a massive landslide in eastern Zhejiang province that toppled six

apartment buildings and buried an unknown number of residents.

Figure 3.1: Text snippet illustrating inferences made by human readers

1Quoted from Al Jazeera online English edition (http://english.aljazeera.net), August 11, 2009.
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components in a pipeline, with the output of one processed as the input by the other is a

natural way to organize the modules. This is a common practice in many NLP applications,

where data are sequentially processed by cascaded data processing engines. In addition, this

organization can also be seen as a filtering operation, which enables the pipelined extraction

model to focus on the text of interest. A similar filtering paradigm is presented by Riloff

et al. [96], who preprocess the input text with a sentiment analysis system to improve the

performance of pattern-based IE. Similarly, typical Question Answering systems [89, 20, 48]

employ a pipeline approach, consisting of a document or passage retrieval stage followed

by an answer selection or answer extraction stage. Following these examples of pipelined

systems, this research implements the sentential component and the local component in a

pipelined or cascaded framework for IE.

The basic idea of this research is to detect event descriptions in regions of text, and use

this information to make better extraction decisions. There are many possible definitions

for region of text (e.g., Salton et al. [99], Callan [13]), and exploring the range of possibilities

is an interesting avenue for future work. This research simply uses sentence boundaries to

define regions in text. This has the advantage of being an easy boundary line to draw (i.e.,

it is relatively easy to identify sentence boundaries) and it is a small region size yet includes

more context than most current IE systems do.2 With this definition of regions, the specific

aims of this research are to identify sentences in text that discuss events of interest, and

then use local context to extract event roles from these sentences.

The Piper model for IE consists of two components to achieve these objectives. The

components operate on the input text independently of one another, which has some

benefits for the overall system. For one, decoupling these tasks simplifies the learning

process. Identifying event sentences amounts to a text classification task, albeit the goal is

to identify not just relevant documents, but relevant subregions of documents. Within an

event sentence the local context may not need to be as discriminating. So a more general

learning approach may suffice for the local contextual component. The two components of

the Piper IE model are organized in a pipelined framework, where one component processes

the input text and sends its output to the second component for further processing.

Figure 3.2 presents an overview of Piper, the two-stage pipelined model for IE. First

in the pipeline, the sentential event recognizer operates on input text documents to detect

event sentences. The localized text extraction module that follows in the pipeline extracts

event roles, and can now capitalize on the fact that it will only be dealing with the event

2Most IE systems consider a context window of a few words on either side of a potential extraction.
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Figure 3.2: Overview of Piper — a pipelined model for IE

sentences in the input text, and not with the entire text document itself. Thus, contextual

clues that may have previously been inconclusive in nonevent sentences, can now be more

useful for the localized component in identifying event roles.

The task of the first component in the pipeline, the sentential event recognizer, is very

similar to that of text classification systems, with the primary difference being that here we

are dealing with the classification of sentences, as opposed to entire documents. Following

previous work in text classification, this research takes a machine learning approach for the

classification decisions of the sentential event recognizer. The module assesses the strength

of various features in each sentence and decides on a class for the sentence — event sentence

or nonevent sentence.

The task of the localized text extraction component of the IE model is to extract event

roles from the event sentences identified by the sentential event recognizer. This is similar

to the task performed by current IE systems. However, one main difference here is that

the localized text extraction component in this IE model is applied only to event sentences

identified by the first component. This enables the localized component to use weaker

evidence in making decisions about event roles, based on the knowledge of event sentences

from the sentential event recognizer. The localized text extraction component of the Piper

model analyzes various local contextual features associated with a word or a phrase to

decide its role in an event, accounting for the fact that the word or phrase appears within

an event sentence.

Thus, the goals of this pipelined approach for IE are to train the two components

such that they are applied independently of one another, but the localized text extraction

component can benefit from the decisions made by the sentential component. The remainder

of this chapter explores strategies for training these two components, addressing issues of

contextual representation, features, learning algorithm, training data, extent of supervision,

etc. The two trained components are then put together to make up the Piper model.
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3.2 Sentential Event Recognizer

The sentential event recognizer is tasked with identifying event sentences in text docu-

ments. Given a new (unseen) text document, a sentence boundary detector segments the

document into individual sentences. The sentential event recognizer extracts features from

each sentence, and creates a feature vector for classification by a machine learning classifier.

The classifier analyzes the features in the feature vector and uses these to assign an event

or nonevent label to the corresponding sentence. Various types of features are useful to

the classifier in making these decisions: lexical items such as terrorist, assassination, are

good indicators of a terrorist event; similarly, semantic classes of words, such as diseases and

symptoms, can be indicators of disease outbreak events; syntactic features and patterns from

a parse tree can also be useful in recognizing event sentences. A more detailed description

of the features appears in Section 3.3. Here, we focus on issues concerning the training of

the sentence classifier.

One of the primary issues encountered in this component of the IE model is obtaining

training data to train the classifier. The training data for this task consist of sentences with

event and nonevent labels assigned to them. This then begs the question: what constitutes

an event sentence? For many sentences there is a clear consensus among people that an

event is being discussed. For example, most readers would agree that sentence (1) in Figure

3.3 is describing a terrorist event, while sentence (2) is not. However it is difficult to draw

a clear line. Sentence (3), for example, describes an action taken in response to a terrorist

event. Is this a terrorist event sentence? Precisely how to define an event sentence is not

obvious.

Chapter 5 presents answers to these questions, through human annotation studies and

data analysis. But, for the purposes of this discussion, let us take a peek into some of

those findings. A clear consensus on event sentences is seen when a general time frame

of the events is delineated. Our study finds that by breaking down the event description

into smaller “incidents,” and then deciding on the sentence labels based on their occurrence

within the time frame achieves high agreement in humans. For example, the time frame

for a disease outbreak event typically starts with the observation of specific symptoms in

(1) Al Qaeda operatives launched an attack on the Madrid subway system.

(2) Madrid has a population of about 3.2 million people.

(3) City officials stepped up security in response to the attacks.

Figure 3.3: Defining event sentences (example cases)
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patients or victims, which is followed by a diagnosis, and in most cases ends with either

a treatment, recovery or possible fatalities. Human readers tend to agree on the event

sentence label for event descriptions in sentences that fall within this time frame.

Sometimes, however, the sentences refer to events in their entirety (e.g., the bombing,

last month’s outbreak, etc.), as opposed to subincidents within the events (e.g., the car

exploded, the windows blew out, etc.). These mentions of events are usually accompanied

by an event-specific detail (such as the location, victim, etc.) associated with the event.

The human annotation study shows that there is again a strong agreement among human

readers on the event sentence label for such sentences.

Our studies indicate that, to a large extent, human readers agree on what constitutes

event and nonevent sentences. The human annotators achieve interannotator agreements

of 0.77 and 0.72 Cohen κ for two types of events, respectively (see Chapter 5 for details of

the study).

Human annotated sentences would be the ideal source of training data for the sentential

event recognizer. The problem, however, is that human annotated data are expensive to

create. Additionally, the need for such data restricts IE system portability by requiring new

annotations from human experts for each new domain or task that the IE model is applied

to. Consequently, this research explores alternate strategies for training the sentential event

recognizer, without the need for human effort in sentence-level annotations.

3.2.1 Training with IE Answer Keys

Having humans annotate sentences with event and nonevent labels is an expensive

proposition. One possibility for avoiding this annotation task is to approximate these

using existing resources for IE. Rather than having human experts generate additional

sentence-level annotations to create training data for the sentential event recognizer, lever-

aging existing resources to approximate these annotations allows for greater flexibility and

portability of the model.

The supervised approach described here approximates event sentence annotations using

standard IE data sets. Most current IE data sets typically consist of answer keys to enable

the training and evaluation of IE systems. As described in Chapter 2, the data usually

appear in the form of text documents with corresponding answer key templates. These

answer key templates have been created by human experts, capturing the information

pertaining to specific events of interest (e.g., terrorist events). An answer key template exists

for each relevant event described in the document. For instance, in an IE task to extract

event roles associated with terrorist event descriptions (weapons, victims, perpetrators, etc.)
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the answer key template would contain the role fillers for the set of predefined event roles.

The objective of IE systems trained for this data set is to identify this event role information

in the given documents. The information in these answer key templates can be used to

approximate the annotations of event sentences.

Given text documents and their corresponding IE answer key templates, the goal is to

automatically assign event and nonevent labels to sentences in the documents using infor-

mation from the templates. The answer key templates contain strings from the document

that represent specific event roles within event descriptions. Mapping these event role

strings to the document and identifying sentences that contain these strings can enable us

to assign labels to these sentences. A sentence that contains a string from its corresponding

answer key templates is considered an event sentence. All other sentences in the document,

which do not contain a string from the templates, are labeled as nonevent sentences. The

hypothesis underlying this approximate annotation scheme is that the event role strings are

highly likely to be mentioned within event sentences as opposed to nonevent sentences.

Figure 3.4 illustrates this approximate annotation scheme using IE answer key templates.

Answer Key Template

Text Document

provinces of Iraq, with several terrorist attacks occurring within

caused by an IED, presumably transported into the building in a

regulation army backpack. An investigation is currently underway.

region of the country. The government has stepped up security in

these neighborhoods. Additional US troops have been deployed at

security check points and government buildings.

There has been a resurgence of violence in the Southern

attack on a police station in Basra yesterday, resulting in the deaths

the past week. Militants affiliated with Al Qaeda launched a gruesome

of five police personnel. Authorities said that the explosion was

Al Qaeda has recently developed a strong presence in this

Perpetrator Org: Al Qaeda

Location: Basra

Physical Target: a police station

Victim: five police personnel

Weapon: an IED

Figure 3.4: Approximate annotation with IE answer key templates
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The text document in the figure describes a terrorist event, and the associated answer key

template lists the event role fillers of that terrorist event. Any sentence in that document

containing one of the listed role fillers is labeled as an event sentence. In this example,

the sentences containing the strings Al Qaeda, a police station, Basra, five police personnel

and an IED are considered event sentences (represented by the shaded sentences). The

unshaded sentences do not contain any of the listed role fillers, and are considered nonevent

sentences.

Observe, however, that these annotations can be noisy. In Figure 3.4, the second

reference to “Al Qaeda” appears in a nonevent context: Al Qaeda has recently developed a

strong presence in this region of the country. This sentence does not contain the description

of a terrorist event. But because of the presence of the string “Al Qaeda,” it gets incorrectly

labeled as an event sentence. Similarly, sentences may incorrectly be labeled as nonevent

sentences because they do not contain one of the listed role fillers. This can happen in

cases where an event role is referenced as a pronoun, for example, and is not listed in the

template. Thus, the noisy labels in the training data can be because of false positives as

well as false negatives. In the grand scheme of things, however, these noisy labels do not

occur too often. If the noise is acceptable for the classifier and answer keys are available,

their use is preferred over the additional expense of sentence annotations by human experts.

Standard machine learning classifiers are trained on these data, and then used to identify

event sentences in new unseen text. This research explores the use of discriminative Support

Vector Machine (SVM) [119] classifiers, and generative Näıve Bayes classifiers. SVMs are

discriminative classifiers that estimate a hyperplane separating the classes, based on given

training data. Given a new test example, an SVM can then assign a class to this example

by determining which side of the hyperplane it lies on. SVMs use kernel methods to

estimate these hyperplanes, and have emerged as a popular machine learning approach for

classification tasks. Näıve Bayes classifiers [76] employ a generative model for classification

that estimates a probability of a class label for an example, based on the features associated

with the example. The probability computation is simplified by making the assumption that

all the features are independent of one another. Despite this simplistic assumption, Näıve

Bayes classifiers have been shown to work reasonably well on real-world classification tasks.

This research explores the used of these two classifiers for identifying event sentences.

A feature vector or training instance is created for each sentence in the training data. The

features consist of lexical, syntactic and semantic properties of the input sentences. The list

of features used by this model is described later in Section 3.3. The SVM and Näıve Bayes
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classifiers are then trained on these training examples, to generate classification models for

event sentences. Now given a new (unseen) sentence, these classification models can be

used to determine if the sentence is an event or nonevent sentence. Just like the training

example, a feature vector or test instance is created from the new (unseen) sentence, and

the classification model is applied to this test instance to determine the assigned class.

3.2.2 Self Training with Document Labels

The previous section presented a simple supervised approach for training a sentential

event recognizer using standard IE data sets. Even though the use of standard IE data

sets eliminates the need for sentence-level human annotations, it still relies on answer

key templates created by human experts. This section describes a training strategy that

eliminates the need for answer key templates. The goal is to create a classifier that can

identify event sentences in text, but does not depend on manually annotated sentence data

or on IE answer keys to do so. The self-training procedure achieves this objective by

requiring as input only a set of relevant and irrelevant documents for the domain, and a few

seed patterns. Thus, rather than requiring sentence-level annotations, this approach uses

document-level annotations, which are easier to obtain.

The document-level labels required in this training procedure indicate whether a given

document contains the description of an event of interest. A document that has at least

one event of interest is labeled as a relevant document. On the other hand, if a document

contains no relevant events, it takes on the irrelevant label. Figure 3.5 shows an example

of a relevant and an irrelevant document for the terrorism domain. Additionally, we want

all of these documents from the same genre or “source,” to prevent the classifier from

picking up on stylistic or genre differences in making classification decisions. For example,

if relevant documents about terrorist events were news articles chosen from American news

sources, then the set of irrelevant documents should be other nonterrorism news articles

from similar news sources. Ideally irrelevant documents that are semantically closest to the

relevant documents are best suited for the irrelevant document set.

Observe that this results in an asymmetry in the training set. By definition, if a

document is irrelevant to the IE task, then it cannot contain any relevant event information.

Consequently, all sentences in an irrelevant document must be nonevent sentences. Thus, in

this training procedure the irrelevant documents are used as a source of nonevent sentence

training examples. In contrast, if a document is relevant to the IE task, then there must

be at least one sentence that contains relevant event information. However, most relevant

documents contain a mix of both event and nonevent sentences. These sentences are not
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There has been a resurgence of violence in the Southern

provinces of Iraq, with several terrorist attacks occurring within

the past week. Militants affiliated with Al Qaeda launched a gruesome

attack on a police station in Basra yesterday, resulting in the deaths

of five police personnel. Authorities said that the explosion was

caused by an IED, presumably transported into the building in a

regulation army backpack. An investigation is currently underway.

Al Qaeda has recently developed a strong presence in this

region of the country. The government has stepped up security in

these neighborhoods. Additional US troops have been deployed at

security check points and government buildings.

US Secretary of State Hillary Clinton says North Korea

Relevant Document

Irrelevant Document

towards its neighbors. As the UN Security Council discusses a

will face consequences for its "provocative and belligerent" actions

response to North Koreas nuclear test, Mrs. Clinton reaffirmed

that the US is committed to its allies Japan and South Korea.

Clinton spoke in Washington after North Korea’s official

news agency said Kim’s government would no longer abide by the

1953 armistice tha ended the Korean War and may respond militarily

to South Korea’s participation in a US−led program to blockships

suspected of carrying nuclear weapons or material for export. North

Korea has raised tensions with its May 25th nuclear test.

Figure 3.5: Example of relevant and irrelevant documents

labeled, so the only information we have about the relevant documents is that one or more

sentences within these documents are event sentences.

The seed patterns used in the training process are lexico-syntactic patterns like those

found in existing pattern-based IE systems. The patterns define constraints on lexical,

syntactic and semantic properties of segments of text. For the training procedure described

here, we need the seed patterns to be such that they can reliably identify event sentences.

In other words, if a segment of text meets the constraints specified by a seed pattern, we

want to be able to reliably infer that the sentence (containing that text segment) is an

event sentence. For instance, to build an IE system for terrorist events, seed patterns such

as “<subject> was kidnapped” and “assassination of <np>” would be appropriate, since

these phrases are strongly associated with terrorism and can reliably identify some terrorist

event descriptions in text.
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About 20 patterns manually created by a human expert can suffice for the training

procedure. However, in this research even the seed patterns are semiautomatically generated

from the relevant and irrelevant document sets. To obtain these seed patterns, an exhaustive

set of extraction patterns is first generated from the relevant and irrelevant documents. In

this work we use patterns based on the Sundance/AutoSlog [95] IE system.3 So, we used

the AutoSlog-TS system to generate the exhaustive set of patterns that literally extract

every noun phrase in the document set. Of these, only patterns with a frequency greater

than 50 were kept. These were then ranked by their probability of appearing in a relevant

document, and the top 20 patterns were chosen as seeds. Because of ties, sometimes more

than 20 seeds are obtained. In that case, patterns tied for last place are manually reviewed

by a human expert to whittle the list down to 20.

Now that we have the seeds and the relevant and irrelevant document sets, we can

proceed with the self-training procedure to train the sentential event recognizer. Figure 3.6

shows the self-training procedure, which begins with a handful of seed patterns to initiate

the learning process. The patterns serve as a simple high-precision pattern-based classifier

to automatically identify some event sentences. If a sentence contains one of the seed

patterns, it is labeled as an event sentence, otherwise it is a nonevent sentence. In iteration

0 of the self-training loop (shown as dotted arrows in the figure), the pattern-based classifier

is applied to the unlabeled sentences to automatically label some of them as event sentences.

Next, an SVM [119] classifier is trained using these event sentences and an equal number

of nonevent sentences randomly drawn from the irrelevant documents. The set of nonevent

sentences is initially much larger than the set of event sentences, and this can cause the

classifier to achieve a high accuracy by classifying most sentences as nonevent. Thus,

the training data are artificially balanced to bias the classifier a little towards the event

SVM
Training

Event
Sentences

Pattern−based
Classifier

Seed
Patterns

SVM
Classifier

Relevant
Documents

Unlabeled
Sentences

Non−Event
Sentences

Irrelevant
Documents

Self−training

Iterations

Figure 3.6: Self training for the sentential event recognizer

3The AutoSlog system defines about 21 types of patterns based on a shallow syntactic parse of the text.
A description of these pattern types appears in Appendix C.
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sentences, and to enable it to identify new event sentences. The feature set used by this

classifier is the same as that used by the supervised classifier from the previous section. The

features are based on the lexical, syntactic and semantic properties of each sentence, and

will be described in greater detail in Section 3.3. The SVM is trained using a linear kernel

with the default parameter settings. In a self-training loop, the classifier is applied to the

unlabeled sentences in the relevant documents, and all sentences that it classifies as event

sentences are added to the event sentences pool. The classifier is then retrained with all of

the event sentences and an equal number of nonevent sentences to obtain a new classifier

at the end of the self-training iteration.

The iterative self-training process is run for several iterations, and the SVM generated

after each iteration is evaluated on held-out data. A more detailed evaluation of this

iterative procedure appears in later chapters of this dissertation. The evaluation shows

the performance of the classifier increasing for a few iterations, then leveling off (and then

degrading). We measure SVM performance on held-out data to determine a stopping criteria

for the self-training iterations. Based on this, we obtain our final classifier for use in the

pipelined model.

This selected SVM classifier can be applied to the feature vectors generated from new

(unseen) sentences to automatically assign event/nonevent labels to these sentences. We see

that this classifier is more portable than the previous supervised classifier since it requires no

sentence-level annotations. The document-level annotations and seed patterns used by this

classifier are easier and cheaper to obtain, which enables us to quickly adapt this module

to new domains and new IE tasks that do not have IE answer key templates available for

training.

3.2.3 MIL Framework with Document Labels

The previous section describes a self-training procedure for training the sentential event

recognizer using document-level annotations. This use of document-level annotations in-

stead of sentence-level annotations closely matches a machine learning framework called

Multiple Instance Learning. The Multiple Instance Learning framework has been studied

by research groups as a way of reducing the amount of manual annotations required for

training. This section explores the Multiple Instance Learning framework to eliminate the

need for manual sentence-level annotations for training the sentential event recognizer.

Multiple Instance Learning [32] (MIL) is a learning framework developed specifically for

cases where training examples are provided in sets or “bags” of examples. A bag has a

positive label if any training instance contained within it has a positive label, and a bag
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has a negative label if all training instances within it have a negative label. The classifier

is trained using only the labels on the bags. These techniques were first developed in

image analysis applications, where only a part of an image contained an entity of interest.

Recently, these techniques have been applied to natural language applications, such as text

categorization [3] and relation extraction [11].

Observe that the MIL paradigm fits our sentence classification task. We have annota-

tions at the document-level for training a sentence-level classifier. This is analogous to the

labels on the “bags” to classify individual instances. Each document is a “bag” of sentences

(instances), where the document has a positive label (relevant) if any of its sentences has

a positive label (event sentence). Similarly, a document has a negative label (irrelevant) if

all of its sentences are irrelevant (nonevent).

A number of algorithms have been developed over the years for the MIL paradigm.

Bunescu and Mooney [11] describe one such algorithm (sMIL) for training an SVM classi-

fier. Their algorithm is specifically designed for the situation where the positive bags are

sparsely populated with positive examples. A majority of the examples in these bags are

negative examples. This is exactly the situation with our event/nonevent sentences, where

the overwhelming majority of the sentences are nonevent sentences. Thus, this research

investigates the use of this MIL algorithm for training the sentential event recognizer.

Bunescu and Mooney’s sMIL algorithm for MIL builds on the Normalized Set Kernel

(NSK) approach to MIL developed by Gartner et al. [40]. Gartner et al. develop an

SVM kernel for MIL, which effectively combines the instances in the positive bags into a

single training example, normalized by the L1- or L2-norm. An SVM is then trained on

these combined examples. This approach for MIL implicitly assumes that a majority of the

instances in the positive bags are positive, which is not true in many cases. Bunsecu and

Mooney present the sMIL approach that modifies one of the constraints in the optimization

expression of NSK, to favor smaller positive bags and sparse positive bags.

The freely available sMIL code by Bunescu and Mooney is used here to train an SVM

classifier for sentence classification. The SVM is trained using document-level labels, and

applied to feature vectors generated from new (unseen) sentences. We see that this classifier

is portable just like the previous self-trained classifier, since it requires no sentence-level

annotations. Additionally, this method uses no seed patterns, and the document-level

annotations are easier and cheaper to obtain than sentence-level annotations. Again, like

the self-trained classifier, the MIL framework enables us to quickly adapt the module to new

domains and new IE tasks that do not have IE answer key templates available for training.
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3.3 Sentential Features

The sentential event recognizers use trained classifiers to identify event sentences, based

on features associated with each sentence. The set of features is automatically generated

from the input text, and is divided into eight categories:

1. Bag of words: simple and popular type of feature used in many NLP applications.

Each token in each sentence of the training data represents one such feature. These

are all binary features, whose presence or absence in new test sentences is represented

by boolean values. Despite their simplicity, such features work surprisingly well in

text classification tasks.

2. NP-head: represents the lexical head of noun phrases. One such feature is generated

for each noun phrase appearing in the training texts. These features are somewhat

redundant with the bag of words, but are more informative because they are restricted

to noun phrases.

3. NP-sem: represents the semantic class of the head of noun phrases. Certain semantic

classes can be indicative of specific events, and as such could be useful for the classifier

decisions. For example, weapon words can be indicative of terrorist events.

4. Lexico-syntactic patterns: represent the local context surrounding a noun phrase.

These patterns are similar to extraction patterns used by existing IE systems, and

they essentially capture the lexical and syntactic properties of the context around

noun phrases.

5. NP-feature: represent specific features of a noun phrase that may indicate specific

types of entities. Four types of characteristics of a noun phrase are used for this

feature: (a) is the noun phrase a plural noun, (b) does the noun phrase contain a

nationality (to identify phrases like the German scientist, the Iraqi soldier, etc.), (c)

does the noun phrase contain a numerical modifier (for phrases like ten people, 134

civilians, etc.), (d) is the noun phrase “extracted” by a communication verb pattern

(e.g., the newspaper reported). All of these characteristics of noun phrases can be

suggestive of certain types of events.

6. Named entities: indicate names of people, locations or organizations mentioned in the

sentences. These are useful for events where names of people or organizations are

strong indicators of specific events.
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7. Sentence length: two features are generated to flag sentences longer than 35 words or

those shorter than five words. For many events, extremely long sentences or extremely

short sentences can be informative for the classifier.

8. Verb tense: features representing the tenses of verbs used in each sentence, as deter-

mined by a part of speech tagger. These features are quite useful for events that are

usually described in the past tense.

The feature set is automatically generated from the texts. Each feature is assigned a

binary value for each instance, indicating either the presence or absence of the feature.

The sentences in the training data are parsed by a shallow parser, and the syntactic

and semantic features are generated by the Sundance/AutoSlog system [95]. We use

the Sundance shallow parser to identify lexical heads and verb tenses, and we use its

semantic dictionaries to assign semantic features to words. The Sundance system consists of

semiautomatically created dictionaries of about 65,200 words, of which about 7,600 words

appear in a domain-independent dictionary, 1,200 words appear in a terrorism-specific

dictionary, and the remaining 56,400 words4 appear in a biomedical dictionary. The nouns in

this dictionary have semantic classes associated with them from a set of about 171 semantic

classes. The verb tense features are also based on syntactic features assigned to words by

the Sundance parser. Since this system is a shallow parser, it uses a relatively small tag

set (compared to full parser such as the Collins parser [22]) for its part of speech tags and

syntactic properties of words. We use its four tags — PAST, PRESENT, FUTURE and

PARTICIPLE — as four binary verb tense features. The AutoSlog pattern generator [92] is

used to create the lexico-syntactic pattern features that capture local context around each

noun phrase. Named entities in the given sentences are identified by the Stanford NER

Tagger [36]. We use the pretrained NER model that comes with the software to identify

person, organization and location names. To make the feature set more manageable we

apply a frequency cutoff of four to reduce the size of the feature set. Features appearing

four times or less in the training documents are discarded. The resulting feature set is fed

to the sentential event recognizers, to identify event sentences in text.

3.4 Localized Text Extraction

Having created a sentential event recognizer to identify event sentences in text, we

now need a text extraction technique that can take advantage of event-labeled sentences.

4A large number of biomedical terms in this dictionary, like diseases and symptoms, have been obtained
automatically from the UMLS [66] ontology.
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The local context surrounding the candidate extractions can be more informative when

considered in the perspective of the event sentences. For instance, if we are told that “Mr.

Jackson died yesterday,” the only information we glean from that phrase is that Mr. Jackson

is dead. In other words, it informs us of the state of the entity (Mr. Jackson), but not

how this state was attained. However, if we had additional information indicating that this

phrase appeared in the context of a terrorist event description, we immediately make the

inference that Mr. Jackson died as a result of the terrorist event. Thus, even though the

phrase only provides us with state information about Mr. Jackson, combining that state

information with the topic of discussion enables us to infer the role of Mr. Jackson in

the event. In addition, since writers of books and articles (and speakers in conversations)

rely on this skill of readers (and listeners) to make such inferences, direct indicators of

role information are often omitted from text (and conversations). Thus, for an automated

system to extract event role information accurately, it must be able to make such inferences.

This component of the Piper IE model aims to make such inferences about role information

based on the event sentence information obtained from the sentential event recognizer, and

on the state information about entities obtained from their local contexts.

Local contextual information has traditionally been used by IE systems in the form

of extraction patterns. Extraction patterns learned and applied by existing IE systems

essentially define constraints on the lexical, syntactic and semantic properties of the local

context of words and phrases that are candidates for extraction. Following these approaches,

in the Piper IE model too we employ lexico-syntactic extraction patterns to encode the

local context of plausible role fillers in the localized text extraction module. This model

employs patterns based on the Sundance/AutoSlog [95] IE system, just like the seeds used by

the self-trained sentential event recognizer in Section 3.2.2. A description of these patterns

appears in Appendix C. Extraction patterns learned by the localized text extraction module

are applied to the event sentences identified by the sentential event recognizer to extract

event information.

The localized text extraction module now resembles a traditional pattern-based IE

system, whose goal is to learn a set of extraction patterns for the given IE task. There

are, however, several important differences between the patterns learned by traditional IE

systems and those learned by the Piper model. Patterns learned by traditional IE systems

simultaneously decide whether a context is an event context and whether a word or phrase

is a likely role filler. On the other hand, since the Piper model already has a separate

sentential event recognizer, the Piper patterns are absolved of the responsibility to decide
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whether a context is an event context. They only need to decide if a word or phrase is

a desirable extraction within the event sentences. This completely changes the types of

patterns that need to be learned by the Piper model. Being liberated from the obligation

of identifying event contexts, the Piper patterns can be more relaxed. Patterns that would

have been considered inconclusive or weak by a traditional IE system are now useful within

the Piper model. For example, a pattern like “<subject> caught fire” extracts entities that

caught fire as the result of an accident or a deliberate act. However, within a terrorist event

sentence, we could reasonably infer that the entity that caught fire was the target of the

terrorist act. Thus, event sentence information enables the use of previously inconclusive

local contexts for identifying event role fillers.

Now that it is clear that the localized text extraction module can employ weaker patterns

for IE, we need to more precisely define the characteristics of the patterns we expect our

model to learn. Once we know that we are in a domain-relevant area of text, patterns that

simply identify words and phrases belonging to a relevant semantic class may be sufficient.

In other words, a pattern that can reliably identify weapon words (like bomb, explosive, rifle,

etc.) may be inconclusive by itself in determining the role of the weapons extracted, but

when applied in a terrorist event sentence our model can infer that the weapons extracted

are those used in the described event. So, the goal of the Piper pattern learner is to learn

patterns that extract weapon-like words or victim-like words or other plausible role fillers

of specific event roles, based on the semantics of the extractions.

Two strategies for learning patterns for the localized text extraction module are de-

scribed in the following sections — a pattern learner that uses IE answer key templates and

a semantic affinity pattern learner that relies on a semantic dictionary. The sets of patterns

learned by these approaches complete the Piper model for IE. The patterns are applied by

the localized text extraction module to event sentences identified by the sentential event

recognizer to extract role fillers from these sentences.

3.4.1 Learning Patterns with IE Answer Keys

Given an extraction pattern, our goal is to determine if the pattern frequently extracts

plausible role fillers for a specific event role. To do so we need to devise a metric that

produces a numerical approximation of the extent to which a pattern exhibits this phe-

nomenon. One simple approximation is to estimate the probability of a pattern extracting

a plausible role filler for a specific event role. Such a probability could be computed by

applying the pattern to a large corpus of text and getting frequency counts of extractions

that are plausible role fillers and those that are not. The probabilities computed from these
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counts can then be used to rank the patterns, and identify the best patterns for each event

role.

One problem in the above strategy is that the notion of “plausible role filler” is somewhat

subjective. A plausible role filler is a phrase or string that could potentially be a role filler

for an event role. For example, a toddler could potentially be the victim of a terrorist event.

However, it is unlikely to be the perpetrator of the event. Many plausible role fillers can be

ruled out based on their semantics alone. For example, role fillers for the weapon used in a

terrorist event are usually instruments or physical objects. Thus human words or phrases

can usually be ruled out as plausible weapon role fillers.5 Getting the desired frequency

counts of such plausible role fillers is nontrivial. Having human experts annotate words or

phrases with this information in the text corpus is a daunting task. We instead need to

look to existing resources to approximate this annotation.

The pattern learner described here approximates these annotations using standard IE

data sets, just like the supervised sentential event recognizer described in Section 3.2.1. As

mentioned before, current IE data sets typically appear in the form of text documents with

corresponding answer key templates. The answer key templates contain words or phrases

filling specific event roles in the corresponding documents. Since the phrases in the answer

key templates are role fillers, they provide implicit annotations for plausible role fillers in

these documents. All occurrences of words and phrases in these answer key templates can

be considered as plausible role fillers for the various event roles.

To rank patterns based on these answer key annotations, a ranking metric called lexical

affinity is defined here. This metric measures the compatibility between a pattern and

a specific event role based on a set of documents and their corresponding IE answer key

templates. The lexical affinity between a pattern p and an event role rk is determined by

applying the p to the set of documents and computing the frequency f(p, rk), which is the

number of p’s extractions that appear as event role rk in one of the answer key templates.

Then, the lexical affinity of pattern p with event role rk is formally defined as:

lex aff(p, rk) =
f(p, rk)

∑|R|
i=1 f(p, ri)

log2 f(p, rk) (3.1)

where R is the set of event roles {r1, r2, . . . , r|R|}. Lexical affinity is essentially the proba-

bility that a phrase extracted by pattern p is a plausible role filler for role rk, weighted by

5There are exceptions, like “suicide bomber,” who are human and could be considered a weapon.
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the log of the frequency.6 Note that it is possible for a pattern to have a nonzero lexical

affinity for multiple event roles.

To generate extraction patterns for the localized text extraction module, the AutoSlog

[95] extraction pattern generator is applied to the training corpus exhaustively, to literally

generate a pattern for extracting every noun phrase in the corpus. The lexical affinity of

each pattern is computed with respect to all possible event roles. This score is used to

generate a ranked list of patterns for each event role, and the top-ranked patterns for each

event role are selected for the localized text extraction module.

3.4.2 Learning Patterns with Extraction Semantics

The pattern learner described in the previous section relies on answer key templates to

generate approximate annotations for plausible role fillers in text documents. This section,

instead, describes a strategy that relies on semantic classes of words. The pattern learning

strategy captures the relationship between extraction patterns and the semantic classes of

their extractions in a metric called semantic affinity.

We developed a metric called semantic affinity [81] to automatically assign event roles to

extraction patterns. Semantic affinity measures the tendency of a pattern to extract noun

phrases that belong to a specific set of semantic categories. To calculate semantic affinity,

we use a corpus of text documents and semantic dictionaries from the Sundance/AutoSlog

[95] system. The semantic dictionaries are used to automatically assign semantic categories

to words in a document. Alternatively, a resource such as WordNet [35] could also be used

to obtain this information. Using these resources we compute the semantic affinity of each

pattern to each event role, and use it as an approximation for the tendency of the pattern

to extract plausible role fillers.

First, we define a mapping between the set of semantic categories in our dictionaries and

the set of event roles defined by the IE task. For example, one role in the terrorism domain

is physical target, which refers to physical objects that are the target of an attack. Most

physical targets fall into one of two general semantic categories: building or vehicle.

Consequently, we define the mapping “building, vehicle → Target.” Similarly, we might

define the mapping “human, animal, plant → Victim” to characterize possible victims

of disease outbreaks. Each semantic category must be mapped to a single event role.

This is a limitation of the approach for domains where multiple roles can be filled by the

6The formula used for lexical affinity is similar to other pattern ranking metrics used by previous IE
systems [92, 124].
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same class of fillers. However, sometimes a general semantic class can be partitioned into

subclasses that are associated with different roles. For example, in the terrorism domain,

both perpetrators and victims belong to the general semantic class human. But we used the

subclasses terrorist-human, which represents likely perpetrator words (e.g., “terrorist,”

“guerrilla” and “gunman”) and civilian-human, which represents ordinary people (e.g.,

“photographer,” “rancher” and “tourist”), in order to generate different semantic affinity

estimates for the perpetrator and victim roles. All semantic categories that cannot be

mapped to a relevant event role are mapped to a special “Other” role. Appendix B presents

the mappings that were used in this work.

To estimate the semantic affinity of a pattern p for an event role rk, our model computes

g(p, rk), which is the number of pattern p’s extractions that have a head noun belonging

to a semantic category mapped to rk. These frequency counts are obtained by applying

each pattern to the training corpus and collecting its extractions. The semantic affinity of

a pattern p with respect to an event role rk is formally defined as:

sem aff(p, rk) =
g(p, rk)

∑|R|
i=1 g(p, ri)

log2 g(p, rk) (3.2)

where R is the set of event roles {r1, r2, . . . , r|R|}. Semantic affinity is essentially the

probability that a phrase extracted by pattern p will be a semantically appropriate filler

for role rk, weighted by the log of the frequency.7 Note that it is possible for a pattern to

have a nonzero semantic affinity for multiple event roles. For instance, a terrorism pattern

like “attack on <np>” may have a semantic affinity for both physical targets, victims and

locations.

To generate extraction patterns for an IE task, the AutoSlog [95] extraction pattern

generator is applied to the training corpus exhaustively, so that it literally generates a

pattern to extract every noun phrase in the corpus. Then for each event role, the patterns

are ranked based on their semantic affinity for that role. The top-ranked patterns for each

event role are used by the localized text extraction module to extract information from

event sentences.

Table 3.1 shows the 10 patterns with the highest semantic affinity scores for four event

roles in two domains — the terrorism domain and the disease outbreaks domain. In

the terrorism domain, patterns are listed for the weapons and perpetrator organizations

(PerpOrg) event roles. In the disease outbreaks domain, patterns are listed for the diseases

7The formula used for semantic affinity is similar to other pattern ranking metrics used by previous IE
systems [92, 124].



54

Table 3.1: Top-ranked semantic affinity extraction patterns

Top Terrorism Patterns Top Disease Outbreak Patterns

Weapon PerpOrg Disease Victim
<subject> exploded <subject> claimed cases of <np> <# people>
planted <dobj> panama from <np> spread of <np> <# cases>
fired <dobj> <np> claimed responsibility outbreak of <np> <# birds>

<subject> was planted command of <np> <#th outbreak> <# animals>
explosion of <np> wing of <np> <# outbreaks> <subject> died
<subject> was detonated kidnapped by <np> case of <np> <# crows>
<subject> was set off guerillas of <np> contracted <dobj> <subject> know
set off <dobj> <subject> operating outbreaks of <np> <# pigs>
hurled <dobj> kingpins of <np> <# viruses> <# cattle>
<subject> was placed attacks by <np> spread of <np> <# sheep>

and victims event roles. The patterns rely on shallow parsing, syntactic role assignment

(e.g., subject (subject) and direct object (dobj) identification), and active/passive voice

recognition, but they are shown here in a simplified form for readability. The portion in

brackets (between < and >) is extracted, and the other words must match the surrounding

context. In some cases, all of the matched words are extracted (e.g., “<# birds>”). Most

of the highest-ranked victim patterns recognize noun phrases that refer to people or animals

because they are common in the disease outbreak stories and these patterns do not extract

information that is associated with any competing event roles.

3.5 Primary vs. Secondary Patterns

So far, our goal has been to find relevant areas of text, and then apply semantically

appropriate patterns in those regions. Our expectation is that fairly general, semantically

appropriate patterns can be effective if their range is restricted to event sentences. If our

sentential event recognizer is perfect, then performing IE only on event sentences would be

ideal. However, identifying event sentences is a difficult problem in its own right, and the

sentential event recognizer is far from perfect. Consequently, one limitation of our proposed

approach is that no extractions would be performed in sentences that are not deemed to be

event sentences by the classifier, and this could negatively affect IE recall.

In addition, certain event-specific patterns can reliably identify event role fillers in text

without the support of a sentential event recognizer. For example, the pattern “<subject>

was assassinated” is a clear indicator of a terrorist event, and need not be restricted by

the sentence classifier. If such a pattern matches a sentence that is classified as nonevent,

then the classifier is probably incorrect. To take advantage of such patterns, our IE model

was slightly modified to allow reliable patterns to be applied to all sentences in the text,
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irrespective of the output of the sentential event recognizer. We refer to such reliable

patterns as Primary Patterns. In contrast, patterns that are not necessarily reliable and

need to be restricted to event sentences are called Secondary Patterns.

To automatically distinguish Primary Patterns from Secondary Patterns, we compute

the probability of a pattern appearing in a relevant document, based on the relevant and

irrelevant documents in our training set. We then define an upper conditional probability

threshold θu to separate Primary patterns from Secondary Patterns. If a pattern has a high

correlation with relevant documents, then our assumption is that it is generally a reliable

pattern that is not likely to occur in irrelevant contexts.

On the flip side, we can also use this conditional probability to weed out patterns that

rarely appear in relevant documents. Such patterns (e.g., “<subject> held,” “<subject>

saw,” etc.) could potentially have a high semantic affinity for one of the semantic categories,

but they are not likely to be useful if they mainly occur in irrelevant documents. As a result,

we also define a lower conditional probability threshold θl that identifies irrelevant extraction

patterns.

The two thresholds θu and θl are used with the two pattern learners to identify the most

appropriate Primary and Secondary patterns for the task. This is done by first removing

from our extraction pattern collection all patterns with probability less than θl. For each

event role, we then sort the remaining patterns based on their lexical affinity score or their

semantic affinity score for that role, and select the top N patterns. Next, we use the

θu probability threshold to separate these N patterns into two subsets. Patterns with a

probability above θu are considered to be Primary patterns for that role, and those below

become the Secondary patterns.

3.6 Putting it Together

This chapter described a two-stage pipelined approach for IE that can make inferences

by combining information from a sentential event recognizer and a pattern-based localized

text extraction component. Several learning strategies with varying levels of supervision

were described for each of the two components.

The first stage in the pipeline is the sentential event recognizer, whose task is to

identify event sentences in text. This chapter presented three approaches for training this

module with varying levels of supervision. The first approach (Anskey) requires maximum

supervision in the form of IE answer key templates found in many standard IE data sets.

The next two approaches use weaker supervision in the form of relevant and irrelevant

documents. The self-training (Self) strategy uses a small set of seed extraction patterns
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along with the document-level labels to train a sentence classifier. The multiple instance

learning (MIL) approach views the documents with document-level labels as “bags” of

instances and applies a standard MIL approach that was designed specifically for sparse

positive “bags.”

The second stage in the pipeline is the localized text extraction module, which uses

a pattern-based approach to extract event role information from event sentences. This

chapter presented two approaches with varying levels of supervision for learning patterns

for this module. The first approach (LexAff) uses maximum supervision in the form of IE

answer key templates to generate a pattern ranking, using a lexical affinity metric. The

second approach (SemAff) uses weaker supervision from semantic dictionaries to generate

a pattern ranking, using a semantic affinity metric.

The different variations of the two components of the Piper model can be combined

in several ways to form a single pipelined model. However, it makes better sense to

combine components having equivalent levels of supervision to form the complete IE model.

Based on this strategy for putting together these components, we have the following three

configurations of the Piper model for IE:

1. PiperAnskey/LexAff : This combination consists of the Anskey approach for the sen-

tential event recognizer and the LexAff approach for the localized text extraction

module. This combination in the pipeline requires the most supervision of the various

configurations, since both components use IE answer key templates in their training

strategies. As a result, the portability of this combination is limited to domains that

have data sets consisting of IE answer key templates.

2. PiperSelf/SemAff : This combination consists of the Self approach for the sentential

event recognizer and the SemAff approach for the localized text extraction module.

Since both components rely on weak supervision for training, the combined approach

is weakly supervised, relying only on a set of relevant document, a set of irrelevant

documents, a small set of seed patterns and semantic dictionaries. This further enables

greater portability of this model to new domains and to new IE tasks.

3. PiperMIL/SemAff : This combination consists of the MIL approach for the sentential

event recognizer and the SemAff approach for the localized text extraction module.

Like the PiperSelf/SemAff model, this combination too relies on weak supervision for

training, requiring only a set of relevant documents, a set of irrelevant documents and
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semantic dictionaries. Therefore, this model is also easier to port to new domains and

to new IE tasks.

To demonstrate the benefits of our pipelined approach, an extensive evaluation of these

models is presented in Chapter 6. As we will see from the evaluation, the pipelined models

perform well on two IE tasks. However, we also see that the sentential event recognizers

employed in these models are not always perfect. The discrete decisions made in our

pipelined model can prevent the localized text extraction component from overcoming these

shortcomings of the sentential event recognizer, and can affect overall IE performance. The

next chapter describes a probabilistic model to overcome the drawbacks of our pipelined

approach.



CHAPTER 4

UNIFIED PROBABILISTIC MODEL

This chapter introduces a unified probabilistic model for IE, called Glacier, that

overcomes the drawbacks of the pipelined model for IE (Piper) described in the previous

chapter. Glacier builds on the basic approach introduced in the pipelined approach. It

combines a sentential event recognizer with a localized text extraction module to identify

event role fillers in text. However, to balance the influence of the two components, Glacier

uses probabilistic models. Its decisions are based on a single joint probability that com-

bines probabilistic estimates from the two components. This unified probabilistic model

overcomes the drawbacks of the pipelined model, and results in an effective approach for

IE. The details of this model are described in the following sections. Section 4.1 presents

an overview of the unified approach, and discusses the characteristics expected of the

components in this model. Section 4.2 covers the details of the sentential component, and

discusses training strategies to generate probabilities of event sentences in text. Section

4.3 presents strategies for computing event role extraction probabilities, based on local

contextual evidence. Section 4.4 then presents an overview of the contextual features used

by the two components. Finally, Section 4.5 puts these components together into a single

unified model, and discusses characteristics of the various configurations of this model.

4.1 Balancing the Influence of Components

The Glacier model for IE presented here builds upon the Piper pipelined approach

described previously in Chapter 3. Like the pipelined approach, the Glacier model also

includes two primary components — a sentential event recognizer, and a component for

identifying role fillers using local contextual clues. The Glacier model shares Piper’s goal

of using event recognition to better exploit local contextual clues. However, the Glacier

model has the additional goal of effectively balancing the influence of the two components,

and using various types of contextual clues in this process.

The motivation behind this model is to allow the system to use reliable evidence from

either of the two components while making extraction decisions. If the sentential event
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recognizer is supremely confident about an event sentence, then much weaker local evidence

can suffice in extracting event role fillers from the sentence. On the other hand, if the

sentential event recognizer is not very confident about an event sentence, but there is strong

local evidence for an event role filler, then in this case too the model should correctly

extract the information with the given evidence. Likewise, if both components are partially

confident about their information, the combination of the two may be strong enough to

warrant an extraction. In this way, the Glacier model aspires to more cleverly combine

the pieces of information to make better extraction decisions.

A second motivation behind the Glacier model is to combine information from several

different clues in determining the roles played by phrases in a text document. For example,

a contextual pattern such as “<subject> died” can be a small indication that the <subject>

phrase could possibly be the victim of a disease outbreak. When added with a semantic

clue, that the <subject> phrase is a human, can further strengthen the initial conjecture.

Adding an additional lexical clue, that the head of the <subject> phrase is the lexical term

“patient,” can further increase the confidence of the system in its initial assessment. Finally,

determining that this phrase appears within a disease outbreak event sentence can push its

confidence beyond a threshold to enable the extraction of this phrase as the victim role

filler of a disease outbreak. Thus, various clues can contribute to enable such an extraction.

The Glacier model achieves such a synergistic use of evidence, by generating probabilistic

estimates based on the observed contextual clues.

The model uses the contextual clues within a sentence to generate a probabilistic

estimate of the sentence being an event sentence. Similarly, it uses the local contextual

clues around a phrase to generate a probabilistic estimate of the phrase being a role filler,

assuming that it appears in an event sentence. The two probabilities are combined into a

single joint probability, which is then used to identify role fillers in text. A more detailed

description of this model appears later in this section.

Observe that this overall approach is fundamentally different from the Piper model. In

the Piper model the two components are arranged in a pipeline, with the output of one fed

as input to the other, and each component making discrete decisions independently of the

other. The discrete decisions made by the two components lead to certain drawbacks that

cause the model to overlook some event role extractions. The unified probabilistic approach

of the Glacier model can address these shortcomings and achieve better IE performance.

The first shortcoming of the Piper model is that it makes discrete decisions about event

sentences in the sentential event recognizer. This would not be as much of an issue if the
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sentential event recognizer were flawless. However, since the classifier used in the sentential

component can make mistakes, it can cause problems for the text extraction component.

Once a sentence is incorrectly discarded as a nonevent sentence by the classifier, the model

loses any chance of exploiting the weaker contextual clues for event role extraction in that

sentence. Thus, we need a way to override the decision of the sentential event recognizer, if

its confidence in the classification is low and there is strong evidence of an event role filler

in the local context of a candidate phrase.

Another shortcoming of the Piper model is that its localized text extraction component

uses extraction patterns to represent the local context of candidate extractions. An exam-

ination of event descriptions in text documents indicates that many times other types of

contextual clues can indicate event roles within event sentences. For example, the use of a

weapon word in a terrorist event sentence can be strong evidence of it filling the weapon role

in that event. Similarly, simply observing the word assailant in a terrorist event sentence

can indicate the perpetrator of the event. Such additional lexical and semantic clues could

enhance the role of lexico-syntactic extraction patterns in identifying event roles within the

event sentences. Thus, we need our model to incorporate various type of clues into the

model, and decide on event role fillers based on the aggregate contribution from all of these

clues.

The Glacier model presented here aims to overcome these shortcomings of the Piper

model by exploring a probabilistic framework for IE. The aim is to create a model that

has the flexibility to make extraction decisions based upon strong evidence from the local

context, or strong evidence from the wider context coupled with a more general local context.

For example, some phrases explicitly refer to an event, so they almost certainly warrant

extraction regardless of the wider context1 (e.g., terrorists launched an attack). In contrast,

some phrases are potentially relevant but too general to warrant extraction on their own

(e.g., people died could be the result of different incident types). If we are confident that

the sentence discusses an event of interest, however, then such phrases could be reliably

extracted. The notion of “confidence” is captured by Glacier in probability values. The

use of these probability values and using them jointly in decision-making can overcome the

drawbacks of the Piper model resulting from its discrete nature.

The two types of contextual information are combined by the Glacier model by

incorporating them into a probabilistic framework. The model is designed for noun phrase

1There are always exceptions, such as hypothetical statements, but they are relatively uncommon.
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extraction, and to determine whether a noun phrase instance NPi should be extracted as a

filler for an event role, Glacier computes the joint probability that NPi :

(1) appears in an event sentence, and

(2) is a legitimate filler for the event role.

Thus, mathematically, its decisions are based on the following joint probability:

P (EvSent(SNPi
),PlausFillr(NPi)) (4.1)

where SNPi
is the sentence containing noun phrase NPi . The term EvSent(SNPi

) indicates

that sentence SNPi
is an event sentence, and the term PlausFillr(NPi) indicates that the

noun phrase NPi in a plausible role filler for an event role. This joint probability estimate

is based on the set of various contextual features F associated with SNPi
. Including F in

the joint probability, and applying the product rule, this joint probability can be split into

two components:

P (EvSent(SNPi
),PlausFillr(NPi)|F )

= P (EvSent(SNPi
)|F ) ∗ P (PlausFillr(NPi)|EvSent(SNPi

), F ) (4.2)

These two probability components, in the expression above, form the basis of the two

modules in the IE system — the sentential event recognizer and the plausible role-filler

recognizer. In arriving at a decision to extract a noun phrase, the unified model for IE uses

these modules to estimate the two probabilities based on the set of contextual features F ,

and makes its decisions based on input from both. Note that having these two probability

components allows the system to gently balance the influence from the sentential and phrasal

contexts, without having to make hard decisions about sentence relevance or phrases in

isolation.

Figure 4.1 presents an overview of this model. Here, the sentential event recognizer is em-

bodied in the probability component P (EvSent(SNPi
)|F ). This is essentially the probability

of a sentence describing a relevant event. It operates on sentences obtained from a sentence

boundary detector and assigns event sentence probabilities to them. Similarly, the plausible

role-filler recognizer is embodied by the probability P (PlausFillr(NPi )|EvSent(SNPi
), F ).

This component, therefore, estimates the probability that a noun phrase fills a specific

event role, assuming that the noun phrase occurs in an event sentence. It operates on the

noun phrases identified by a shallow parser, and assigns event role probabilities to each

noun phrase. Finally, the probability estimates from the two components are combined into

a single joint probability to make decisions about event role extractions.
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Figure 4.1: Overview of Glacier — a unified probabilistic model for IE

Many different techniques could be used to produce these probability estimates. We need

an approach that can analyze several contextual features and generate probability estimates

for the two components based on these features. In the following sections, specific models

for each of these components are discussed.

4.2 Obtaining Sentential Probabilities

As described in the previous section, the Glacier model for IE contains a senten-

tial event recognizer, which is similar to the sentential event recognizer employed in the

pipelined model described in Chapter 3. The main difference here is that, instead of

discrete event/nonevent classification, this component estimates the probability of each

sentence being an event sentence. The task at hand for the sentential event recognizer is

to estimate probabilities of sentences in a document discussing an event of interest. Given

a new (unseen) text document, a sentence boundary detector segments the document into

individual sentences. The sentential event recognizer analyzes various features associated

with each sentence, and computes the probability of the sentence being an event or nonevent

sentence. Similar to the features employed in the Piper model, here too various lexical,

syntactic and semantic features can be useful in generating the event sentence probability.

A more detailed description of these features appears later in this section. Before that we

focus on the strategies employed for computing these probabilities.

The task of estimating event sentence probabilities is similar to that performed by

text classification systems. Text classification systems assign a class to each document

based on various features associated with the document. Here we are dealing with the

sentences, as opposed to entire documents. Also, instead of selecting a specific “class” for

each sentence, we need a probability estimate of the “class,” and not just a class label. Thus,

we can explore text classification approaches for obtaining these probability estimates. Text
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classifiers typically use supervised machine learning approaches to make decisions about text

documents. Similarly, for the probability estimates too we explore the use of such machine

learning classifiers.

In using a machine learning classifier for the sentential event recognizer, the primary issue

we need to deal with is obtaining probability estimates from the classifier. Many classifiers

make classification decisions for a data point (a sentence in our case) by estimating a score

for each class assigned to the data point, and then selecting the class with the highest

score. In probabilistic classifiers, such as the Näıve Bayes classifier, these scores are, in

fact, the probabilities of the various classes. Thus, such classifiers could be used to directly

estimate the probability of the event sentences in the given document. In other classifiers

that generate a score for each class, the score could be normalized in a 0.0 to 1.0 range

to get an approximate probability estimate. This research explores strategies to estimate

sentential probabilities and discusses the associated issues.

Like the sentential event recognizer in the Piper model (Section 3.2.1), here too we

require training data to train the sentential classifiers. To avoid having human annotators

create this training data by annotating sentences, we follow the procedure described in

Section 3.2.1 to approximate this training data using existing IE resources. Supervised

classifiers can be trained on such annotations to generate probability estimates for event

sentences in text.

Using these annotations, the sentential event recognizer can now be trained to generate

probability estimates for event sentences. This research explores the use of discriminative

Support Vector Machine (SVM) [119] classifiers, and generative Näıve Bayes classifiers. A

feature vector or training instance is created for each sentence in the training data. The

features consist of lexical, syntactic and semantic properties of the input sentences. The

classifiers are then trained on these training examples, to generate probability models for

event sentences. Now given a new (unseen) sentence, a feature vector or test instance is

created from the sentence, and the classifier is applied to this test instance to determine its

probability of being an event sentence.

4.2.1 Näıve Bayes Event Recognizer

A Näıve Bayes classifier is a generative probabilistic model for classification that esti-

mates the probability of each class based on the features of the instance. The class with

the highest probability is assigned to the instance. In our case, each instance is a sentence

SNPi
, which can be assigned one of two classes — event sentence (EvSent(SNPi

)) or nonevent

sentence (¬EvSent(SNPi
)). Based on the set of features F associated with the sentence SNPi



64

the classifier computes the probabilities P (EvSent(SNPi
)|F ) and P (¬EvSent(SNPi

)|F ). The

class corresponding to the higher probability is assigned to the sentence.

Since Näıve Bayes classifiers estimate class probabilities as part of the classification

decision, the sentential event recognizer can directly estimate P (EvSent(SNPi
)|F ) for the

unified IE model. The probability is estimated by the classifier, using Bayes’ rule:

P (EvSent(SNPi
)|F ) =

P (EvSent(SNPi
)) ∗ P (F |EvSent(SNPi

))

P (F )
(4.3)

In estimating P (F |EvSent(SNPi
)), the classifier makes the simplifying assumption that the

features in F are all independent of one another. With this assumption, the probability

estimate becomes:

P (EvSent(SNPi
)|F ) =

1

P (F )
P (EvSent(SNPi

)) ∗
∏

fi∈F

P (fi|EvSent(SNPi
)) (4.4)

where P (F ) is the normalizing constant, the product term in the equation is the likelihood,

and P (EvSentS(NPi )) is the prior, which is obtained from the ratio of event and nonevent

sentences in the training data. The features used by the model will be described in Section

4.4.

A known issue with Näıve Bayes classifiers is that, even though their classification

accuracy is often quite reasonable, their probability estimates are often poor [33, 127, 68].

The problem is that these classifiers tend to overestimate the probability of the predicted

class, resulting in a situation where most probability estimates from the classifier tend to

be either extremely close to 0.0 or extremely close to 1.0. We observed this problem in our

classifier too, so we decided to explore an additional model to estimate probabilities for the

sentential event recognizer. This second model, based on SVMs, is described next.

4.2.2 SVM Event Recognizer

Given the all-or-nothing nature of the probability estimates that we observed from the

Näıve Bayes model, we decided to try using a Support Vector Machine (SVM) [119, 56]

classifier as an alternative to Näıve Bayes. One of the issues with doing this is that SVMs

are not probabilistic classifiers. SVMs make classification decisions using on a decision

boundary defined by support vectors identified during training. A decision function is applied

to unseen test examples to determine which side of the decision boundary those examples

lie. While the values obtained from the decision function only indicate class assignments

for the examples, we used these values to produce confidence scores for our sentential event

recognizer.
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To produce a confidence score from the SVM classifier, we take the values generated

by the decision function for each test instance and normalize them based on the minimum

and maximum values produced across all of the test instances. This normalization process

produces values between 0 and 1 that we use as a rough indicator of the confidence in

the SVM’s classification. We observed that we could effect a consistent recall/precision

trade-off by using these values as thresholds for classification decisions, which suggests that

this approach worked reasonably well for our task.

4.3 Estimating Role-Filler Probabilities

The plausible role-filler recognizer generates probability estimates for noun phrases

being role fillers for specific event roles, assuming they appear in an event sentence. The

plausible role-filler recognizer is similar to traditional IE systems, where the goal is to

determine whether a noun phrase can be a legitimate filler for a specific type of event role

based on its local context. Pattern-based approaches match the context surrounding a

phrase using lexico-syntactic patterns or rules. However, most of these approaches do not

produce probability estimates for the extractions. Classifier-based approaches use machine

learning classifiers to make extraction decisions, based on features associated with the local

context. Again, these classifiers are typically used to make classification decisions instead of

generating probability estimates. Here we explore ways of generating probability estimates

for event roles based on their local context.

Like the sentential event recognizer described in the previous section, here too we look

into classifier-based methods to generate probabilities. Any classifier that can generate

probability estimates, or similar confidence values, can be plugged into our model. We

investigate probabilistic machine learning classifiers, such as the Näıve Bayes classifier, to

estimate these probabilities in the phrasal role-filler recognizer.

In our work, we use a Näıve Bayes classifier as our plausible role-filler recognizer. The

probabilities are computed using a generative Näıve Bayes framework, based on local con-

textual features surrounding a noun phrase. These clues include lexical matches, semantic

features, and syntactic relations, and will be described in more detail in Section 4.4. The

Näıve Bayes (NB) plausible role-filler recognizer is defined as follows:

P (PlausFillr(NPi)|EvSent(SNPi
), F )

=
1

P (F )
P (PlausFillr(NPi)|EvSent(SNPi

))

∗
∏

fi∈F

P (fi|PlausFillr(NPi),EvSent(SNPi
)) (4.5)
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where F is the set of local contextual features and P (F ) is the normalizing constant.

The prior P (PlausFillr(NPi)|EvSent(SNPi
)) is estimated from the fraction of role fillers

in the training data. The product term in the equation is the likelihood, which makes

the simplifying assumption that all of the features in F are independent of one another.

It is important to note that these probabilities are conditioned on the noun phrase NPi

appearing in an event sentence.

Most IE systems need to extract several different types of role fillers for each event. For

instance, to extract information about terrorist incidents a system may extract the names

of perpetrators, victims, targets, and weapons. We create a separate IE model for each type

of event role. To construct a unified IE model for an event role, we must specifically create

a plausible role-filler recognizer for that event role, but we can use a single sentential event

recognizer for all of the role filler types.

To train this classifier, we need phrase-level annotations with event role labels. Since our

model operates on noun phrases and performs noun phrase extraction, the ideal training

data for this component would be to have human experts annotate each noun phrase in the

training documents with event role labels. Since we create a separate plausible role-filler

recognizer for each event role, we also need separate sets of annotations for each event

role. As a result of the multiple event roles in each event type, the manual annotations

of noun phrases become even more complex and expensive than the sentence-level anno-

tations. Thus, once again we turn to existing resources to approximate these noun phrase

annotations.

The sentential components of both, Piper and Glacier, approximate the sentence-level

annotations using standard IE data sets. The role fillers from the answer keys are mapped

back to the corresponding documents, and any sentence containing one of the role filler

strings is labeled as an event sentence. All other sentences are nonevent sentences. A

similar strategy can potentially be applicable for annotating noun phrases as well. Identify

all the noun phrases in the document that match a specific role filler (e.g., victim of a

terrorist event) listed in the answer key template, and label these as “event role.” All the

remaining noun phrases are labeled as nonevent role. With this strategy we can obtain

approximate event role annotations for noun phrases.

The annotations obtained from this process are “approximate” annotations, because

not all of the role filler strings from the answer key templates mapped to phrases in the

document appear in an event context. For example, the answer key template may contain

the string “cows,” a role filler for the victim of a disease outbreak. This string could appear
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multiple times in a document, not all of which are in the context of the disease outbreak. But

our approximate annotation scheme assumes that all mentions of “cows” in the document

are role fillers for the victim event role. Thus, some of these get incorrectly annotated as

positive examples.

Figure 4.2 illustrates this approximate annotation scheme using IE answer key templates

for the “Perpetrator Org” event role. The text document in the figure describes a terrorist

event, and the associated answer key template lists the role fillers of that terrorist event.

Any noun phrase in that document matching the “Perpetrator Org” role filler string Al

Qaeda is labeled as an event role noun phrase. In this example, there are two Al Qaeda

noun phrases in the document, which get labeled as PerpOrg noun phrases. The remaining

unshaded noun phrases are all labeled non-PerpOrg noun phrases.

This example also illustrates the “approximate” nature of these annotations. In Figure

4.2, only the first reference to “Al Qaeda” is a role filler for a terrorist event, since it

specifically mentions the organization as being responsible for the attack. The second

Text Document

provinces of Iraq, with several terrorist attacks occurring within

of five police personnel. Authorities said that the explosion was

caused by an IED, presumably transported into the building in a

regulation army backpack. An investigation is currently underway.

region of the country. The government has stepped up security in

these neighborhoods. Additional US troops have been deployed at

security check points and government buildings.

There has been a resurgence of violence in the Southern

the past week. Militants affiliated with Al Qaeda launched a gruesome

Al Qaeda has recently developed a strong presence in this

attack on a police station in Basra yesterday, resulting in the deaths

Answer Key Template

Perpetrator Org: Al Qaeda

Location: Basra

Physical Target: a police station

Victim: five police personnel

Weapon: an IED

Figure 4.2: Approximate noun phrase annotation with IE answer key templates
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reference to “Al Qaeda,” however, is not a role filler for any event. It is only mentioned in a

general fact about the organization. But our approximate annotation scheme assumes that

both mentions of “Al Qaeda” in the document are role fillers in a terrorist event, and the

second mention of “Al Qaeda” gets incorrectly labeled as an event role noun phrase. Thus,

the noisy labels in the training data can be because of false positives such as these.

4.4 Contextual Features

We used a variety of contextual features in both components of our system, almost

identical to those used in the Piper model. The primary difference is that in the Piper

model, the features are used in the sentential component, while the localized extraction

component relies on extraction patterns. Since we both the components of the Glacier

model rely on machine learning techniques, we have two sets of features generated for

the Glacier model. Most of the types of features generated for the plausible role-filler

recognizer in this model, are reused in the sentential event recognizer, as will be described

in this section.

Since many of the plausible role-filler recognizer features are also used later, these are

described first. In this model, the plausible role-filler recognizer uses the following types

of features for each candidate noun phrase NPi : lexical head of NPi , semantic class of

NPi ’s lexical head, named entity tags associated with NPi and lexico-syntactic patterns that

represent the local context surrounding NPi . The feature set is automatically generated

from the texts. Each feature is assigned a binary value for each instance, indicating either

the presence or absence of the feature.

1. Lexical head: The lexical head of noun phrase NPi is used as a feature in this model.

This is based on our observation that certain lexical items (such as terrorist, assailant,

car-bomb, etc.) can give away the event role (e.g., perpetrator or weapon of terrorist

event) without the need for any other contextual information. One such feature is

generated for each noun phrase appearing in the training texts.

2. Semantic class: The semantic classes of the head of each noun phrase NPi is another

useful feature. Many times the semantic class of a word (e.g., Criminal) can be a

strong indicator of an event role in an event context (e.g., perpetrator of a terrorist

event). All the semantic classes of heads of noun phrases seen in the training texts

are generated as features.
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3. Lexico-syntactic patterns: To represent the local context around a noun phrase, lexico-

syntactic patterns such as those used by IE systems are employed as features. The

patterns capture the lexical properties and syntactic relations of the immediate local

context around each noun phrase. A pattern generation component from an existing

IE system is used generate an exhaustive set of lexico-syntactic patterns as features

from the noun phrases in the training set.

4. Phrase characteristics: The Piper model uses certain phrase characteristics as fea-

tures for event recognition. Four types of characteristics of a noun phrase are used for

this feature type: (a) a binary feature representing the plurality a noun phrase, (b) a

feature for noun phrases containing nationalities as modifiers (to identify phrases

like the German scientist, the Iraqi soldier, etc.), (c) a feature for noun phrases

containing a numerical modifier (for phrases like ten people, 134 civilians, etc.), (d) a

feature representing noun phrases embedded in a communication verb pattern (e.g.,

the newspaper reported). All of these characteristics of noun phrases can be suggestive

of certain types of events, and result in four features added to the feature set.

5. Named entities: Many times names of entities can indicate role fillers (for example,

the name of a city can indicate the location of an event). We use named entity features

as indicators of such cases. Three types of named entities — person, organization and

location names — are used as features to add three binary features to the feature set.

The named-entity features are generated by the freely available Stanford NER tagger

[36]. We use the pre-trained NER model that comes with the software to identify person,

organization and location names within each phrase. The syntactic and semantic features

are generated by the Sundance/AutoSlog system [95]. We use the Sundance shallow parser

to identify lexical heads, and use its semantic dictionaries to assign semantic features to

words. The AutoSlog pattern generator [92] is used to create the lexico-syntactic pattern

features that capture local context around each noun phrase. A more detailed description

of these patterns can be found in Appendix C. Finally, a simple frequency-based feature

selection method was used to reduce the size of the feature set by discarding all features

that appeared four times or less in the training set.

In the sentential event recognizer we need features at the sentence-level, indicating the

“eventness” of sentences. Since, noun phrases are subsets (or more precisely, substrings)

of sentences, the features associated with noun phrases can also be used as features of

sentences. Thus, our sentential event recognizer uses the all of the contextual features of
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the plausible role-filler recognizer, except that features are generated for every NP in a given

sentence. In addition to these phrase-based, sentence-level features are also used: sentence

length, bag of words, and verb tense, all of which are also binary features.

1. Sentence length: Most commonly we find that extremely short sentences do not contain

descriptions of events. Likewise, long sentences are more likely to contain an event

description. Thus, one binary feature representing short sentences (shorter than five

words), and one binary feature representing long sentence (longer and 35 words) are

added to the feature set.

2. Bag of words: Since all of the words appearing in a document are usually used as

features in text classification, here too the “bag-of-words” features are employed for

identifying event sentences. One binary feature is generated for each word appearing

in the training documents.

3. Verb tense: It is observed that events described in documents are frequently described

in the past tense, since these description are of things that have already happened.

Thus, the tense of the verbs used in a sentence could rule out certain sentences as

event sentences. Thus, the tenses of verbs as determined by a part of speech tagger

are added as features to the feature set.

The sentence length features and the bag of words features are based on the tokenization

of sentences using the Sundance [95] NLP system. Similarly, the verb tense features are

also based on syntactic features assigned to words by the Sundance NLP system. Since

this system is a shallow parser, it uses a relatively small tag set (compared to full parser

such as the Collins parser [22]) for its part of speech tags and syntactic properties of words.

We use its four tags — PAST, PRESENT, FUTURE and PARTICIPLE — as four binary

verb tense features. All of the different types of features obtained from the training data

result in a large feature set for the sentential event recognizer. Here too, a frequency cutoff

is applied to reduce the size of the feature set and make it more manageable. All features

appearing four times or less in the training documents are discarded. With these features,

the Glacier model for IE can be trained and used for event-based IE.

4.5 Putting it Together

This chapter described a unified probabilistic approach for IE that can make inferences

by combining information from a sentential event recognizer and a plausible role-filler

recognizer component. This unified model overcomes the drawbacks of the two-stage
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pipelined Piper model by using probabilistic estimates instead of hard discrete decisions at

each stage. This enables the model to gently balance the influence of the two components for

IE. The different variations of the two components of Glacier can be combined in several

ways to form a single unified model. The components use machine learning approaches to

generate probability estimates. Combining the variations of the two components, we have

the following configurations of the Glacier model:

1. GlacierNB/NB: This configuration consists of a Näıve Bayes sentential component,

along with a Näıve Bayes phrasal component.

2. GlacierSVM/NB: This configuration consists of an SVM sentential component, used

in combination with a Näıve Bayes phrasal component.

The components within this configuration are all trained with approximate annotations

using standard IE data sets with answer key templates. We note that compared to some

configurations of the Piper model the Glacier model does require a greater level of

supervision in the form of IE answer key templates. However, an empirical evaluation in

Chapter 6 will illustrate the benefits of joint decision-making in the the unified probabilistic

approach presented here.

Although an extensive evaluation will be done later in this dissertation, to provide some

insights into the Glacier model, Figure 4.3 presents specific examples of extractions that

are failed to be extracted by other localized models for IE, but are correctly identified

by Glacier. Observe that in each of these examples, Glacier correctly extracts the

underlined phrases, in spite of the inconclusive evidence in their local contexts. For example,

in the last sentence in Figure 4.3, Glacier correctly infers that the policemen in the bus

are likely the victims of the terrorist event, without any direct evidence of this fact. This

does not, however, provide any insights into why sentential information can be beneficial.

The next chapter will present various analysis of event sentences to illustrate how sentential

event recognition benefits IE.
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THE MNR REPORTED ON 12 JANUARY THAT HEAVILY
ARMED MEN IN CIVILIAN CLOTHES HAD INTERCEPTED
A VEHICLE WITH OQUELI AND FLORES ENROUTE FOR
LA AURORA AIRPORT AND THAT THE TWO POLITICAL
LEADERS HAD BEEN KIDNAPPED AND WERE REPORTED
MISSING.

PerpInd: HEAVILY ARMED MEN

THE SCANT POLICE INFORMATION SAID THAT THE
DEVICES WERE APPARENTLY LEFT IN FRONT OF THE TWO
BANK BRANCHES MINUTES BEFORE THE CURFEW BEGAN
FOR THE 6TH CONSECUTIVE DAY — PRECISELY TO
COUNTER THE WAVE OF TERRORISM CAUSED BY DRUG
TRAFFICKERS.

Weapon: THE DEVICES

THOSE WOUNDED INCLUDE THREE EMPLOYEES OF THE
GAS STATION WHERE THE CAR BOMB WENT OFF AND
TWO PEOPLE WHO WERE WALKING BY THE GAS STATION
AT THE MOMENT OF THE EXPLOSION.

Victim: THREE EMPLOYEES OF THE GAS STATION
Victim: TWO PEOPLE

MEMBERS OF THE BOMB SQUAD HAVE DEACTIVATED
A POWERFUL BOMB PLANTED AT THE ANDRES AVELINO
CACERES PARK, WHERE PRESIDENT ALAN GARCIA WAS
DUE TO PARTICIPATE IN THE COMMEMORATION OF THE
BATTLE OF TARAPACA.

Victim: PRESIDENT ALAN GARCIA

EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW
UP A BRIDGE AS A PUBLIC BUS, IN WHICH SEVERAL
POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Victim: SEVERAL POLICEMEN

Figure 4.3: Examples of Glacier extractions



CHAPTER 5

EVENT SENTENCES AND EVENT ROLES

One of the key ideas presented in this research is the emphasis on recognizing rele-

vant events in regions of text for improved extraction of event role fillers. The pipelined

Piper model for IE and the unified Glacier model for IE both accomplish this with a

sentential event recognizer for detecting event sentences in text. Automatically recognizing

event sentences in text is nontrivial. Numerous questions arise in regards to this task:

What constitutes an event sentence? Can humans recognize event sentences effectively and

consistently? How easy is this task for automated systems? Answers to these questions

bring out various issues that arise in recognizing event sentences, and also enable us to

define the boundary between event and nonevent sentences. This chapter delves into the

issues pertaining to event recognition, and starts (in Section 5.1) with an exploration of

the role of event sentences within event descriptions. Section 5.2 then establishes a specific

definition for event sentences, and investigates the agreement among human subjects on

the task of recognizing such event sentences. In Section 5.3 we compare human annotations

with approximate annotations from IE answer key templates. Finally, in Section 5.4, the

relationship between event roles and event sentences is examined. This includes analyses

of the data to quantify the potential benefits of sentential event recognition. The chapter

concludes with a summary of these analyses in Section 5.5.

5.1 Event Descriptions in Text

To establish a clear definition for event sentences, we need to understand the types of

roles they play within event descriptions. Each sentence written about a specific event

typically serves a specific purpose in the event description. For example, some sentences

describe the actions that took place at the scene of the event, while others describe properties

or characteristics of entities at the scene. Knowing the purpose of a sentence within an event

description can help more clearly separate event sentences from nonevent ones. We use such

observations about event descriptions to establish a precise definition for event sentences.

This section presents our observations regarding event descriptions that form the basis for
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a human annotation study of event sentence recognition.

An analysis of documents containing event descriptions reveals several functional char-

acteristics of the sentences in the given text. We find that some of these sentences are

clearly distinguishable as event sentences. Typically, these are sentences that summarize

the happenings in an event. We refer to these sentences as event incident sentences. Such

event incident sentences attempt to paint a picture of the event by describing actions

and characteristics of entities as observed during the occurrence of the event. Likewise,

sentences that are completely unrelated to the event are easily identified as nonevent

sentences. We refer to these (unsurprisingly) as not relevant sentences. Apart from these

two types of sentences, we observe a number of sentences that lie on the boundary between

event and nonevent sentences. These sentences contain information that is somewhat

peripheral to the event description. We further categorize these border cases into three

functional categories — event consequence, event precursor and incidental information.

These functional categories are further discussed in the following paragraphs.

Event incident sentences assume that an event comprises of multiple incidents that take

place chronologically in the real world. Each of these incidents contributes to the event

as a whole. For example, a disease outbreak event starts with the observation of specific

symptoms in patients or victims, which is followed by a diagnosis, and in most cases ends

with either a treatment, recovery or possible fatalities. Event incident sentences describe the

various incidents that comprise the event of interest. Note that even though the incidents

occur chronologically in the real world, they need not be described in the same order in

the event description. These sentences also vary in their level of detail, depending on the

intended audience and the nature of the event description. For example, when an event is

described as a fleeting reference in a single sentence, usually very little detail of that event

is provided. On the other hand, complete stories exclusively about an event go into a lot

more detail about the event. In addition to these incident descriptions, sometimes sentences

refer to the event as a whole (e.g., the outbreak, the attack, etc.) with some specific detail

about the event (such as the location, the time it took place, a victim of the event, etc.).

These are also considered as event incident sentences.

The event precursor and event consequence sentences are related but are somewhat pe-

ripheral to the actual event description itself. These sentences essentially describe incidents

that take place before or after an event, and are causally related to the event. Event

precursors are incidents that are thought to be the cause of the described event. Similarly,

event consequences are incidents that take place after an event and are considered to be
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caused by the event. For instance, a government organization may step up security in a

region as a result of a terrorist attack. This government action is a consequence of the

attack. Similarly, if the terrorist attack is in retaliation to an earlier incident, then that

earlier incident is an event precursor of the terrorist attack. The temporal or spatial nearness

of precursors and consequences to the event incidents can make it difficult for humans to

agree on event/nonevent labels for such sentences, and thus are considered to be boundary

cases between event and nonevent sentences.

The third type of sentences that lie on the periphery of event descriptions are the

incidental information sentences. These sentences do not pertain directly to the event

description, but usually contain additional information about the entities mentioned in

the event description. Such sentences occur in news stories because, frequently to capture

reader interest, writers include intriguing facts or properties of the location, persons or

objects involved in the event. Sometimes, interesting facts pertaining to the date or time at

which the event took place are described in the document. Usually, these sentences do not

relate specifically to the event or to the consequences of the event, but only are details of

the persons, objects, dates or locations playing a part in the event. For instance, consider

the following sentences:

The explosion blew out all the windows of an empty building. The building was

constructed in 1901, and had been scheduled for demolition next month.

The second sentence presents some information (potentially interesting to the reader) per-

taining to the building mentioned in the first sentence. The second sentence is a factual

statement and does not specifically relate to the explosion incident mentioned in the first

sentence. We consider such sentences to be incidental information sentences. Additionally,

sentences that refer to the event as a whole, but provide only “meta-information” about

the event (i.e., no event-specific detail) are also considered incidental information sentences.

For example, a sentence such as:

This is the third such bombing in Bogota in the past three months.

does not provide a specific detail about the bombing itself, but puts it into perspective with

other bombing events. As such, this sentence is also considered incidental information.

Finally, sentences that do not pertain to an event of interest at all are considered not

relevant sentences. Since these sentences are unrelated to the event of interest, these present

little ambiguity by way of event/nonevent sentence labels, and are usually easy to recognize

as nonevent sentences by human readers.
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Figures 5.1 and 5.2 illustrate the five types of functional sentence categories in documents

describing two events. Figure 5.1 shows the sentence types in a story about a terrorist event.

There are three main regions (groups of sentences) of text that describe core incidents

of the terrorist event (event incidents). Another two regions of text then provide some

additional information (incidental information) about entities or objects mentioned in the

event incident sentences — the two US missionaries, the FAL terrorist organization and

the message left by the terrorists. Towards the end of the document we come across two

regions providing incidental information about the event itself, and one region describing

the consequences of the event. A sentence that is not relevant to the event description is

seen at the end of the document. A similar analysis of a disease outbreak event is shown in

Figure 5.2. The first region in this document lists the event incident sentences describing

the core happenings of the event itself. In the remainder of the document, two regions then

contain further information (incidental information) about the Tularemia disease, and one

region of text describes the consequences of the disease outbreak event. At the bottom of

the document, we see a sentence that is not relevant to the disease outbreak event.

Such analysis of documents can enable us to take the first steps towards a clear definition

of event sentences. In addition, they can also give us some insights into the nature of the

event description. For example, if a document contains only one or two event incident

sentences surrounded only by sentences that are not relevant, then the description is most

likely a fleeting reference to an event. Similarly, if the document is densely populated by

event incident sentences, it most likely contains a blow-by-blow account of the event. Most

documents, however, lie somewhere in between these two extreme cases. Such analysis

enables a better understanding of the functional roles of sentences, which is used in setting

up a human annotation study, described next.

5.2 Human Annotation Study

The Piper and Glacier models for IE described previously in this dissertation both

contain components designed to identify event sentences in text, and aim to improve IE

performance using this information. The knowledge of event sentences enables the system

to make inferences about event roles, even with weak local evidence. Before evaluating the

two IE models in their entirety, it would be interesting to evaluate the performance of the

componentsin isolation, and then evaluate their impact on the aggregagte IE models. To

measure their individual performance, we need to determine if the event sentences identified

by these components match a human expert’s notion of event sentences.
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terrorists from the Zarate Wilka Armed Forces of Liberation (FAL).
Two U.S. missionaries −− aged 19 and 21 −− were shot to death last night by a group of

This is the same terrorist group that claimed credit for the foiled attack against former U.S.
Secretary of State George Shultz in August 1988, and later in October caused a power
outage in La Paz.

The murder took place at 2220 last night and, 30 minutes later, the terrorists left messages
with local newspapers claiming to be the assailants.

The U.S. citizens −− Todd Ray Wilson Burdenson and Jefferey Brent Ball −− were
missionaries of the Christian church of the Latter Day Saints (headquartered in Utah),
which in recent years has extended its activities into Bolivia.

Both missionaries had lived in the vicinity of the general cemetery located in a densely
populated La Paz district.

no other option but to take up arms, and our war is to our death. −− FAL, Zarate Wilka."
cannot remain unpunished. This is a warning to the invaders of our country. We poor have
The message was handwritten, and said: "The violation of our national sovereignity

They were killed with two bursts of machine gun fire.

A church spokesman called on the police to solve the murders.

The Bolivian Government has condemned the attack and ordered an immediate investigation.
Deputy Interior Minister Walter Costas announced that the Traffic and Police departments will
carry out dragnets in La Paz.

The killing of the U.S. missionaries has coincided with the arrival of the first contingent of U.S.
military engineers, technicians and troops in charge of building an airport for the city of Potosi.

Bolivia with plans to fight drug trafficking.

In recent days, there have been rumors that members of the US armed forces have come to

Incidental Information

Precursor/Consequence

Key

Not Relevant

Event Incident

Figure 5.1: Sentence types in a terrorist event description
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Incidental Information

Precursor/Consequence

Key

Event Incident

Not Relevant

A copy of recent outbreak reports can be found on the Global Outbreak Alert and Response

Tick with rabbit fever found in East County.

according to the county Department of Environmental Health.
A tick infected with a potentially fatal disease called tularemia was found in the East County,

The tick was found on a dog just south of Mount Helix County Park, said Patricia Cawthon,
the county’s acting chief of community health.

It cannot be transmitted between humans, Cawthon said.

Antibiotics can be used to treat the disease easily, "but it has to be diagnosed," Cawthon said.

The disease causes sudden fever, an ulcer at the site of a bite, and swollen, painful lymph nodes.

Cawthon said.
Tularemia, commonly known as rabbit fever, is primarily transmitted by ticks and biting flies,

It’s the first discovery on a canine in at least 20 years.

Signs have been posted where the tick was found to warn residents about the danger of
contracting the disease from insects.

Tularemia infections are a "fairly common occurrence in the mountains and the Midwest" but
rare here, Cawthon said.

The term tularemia was derived from its description in Tulare County, California, although
the disease seems to be more endemic in the midwestern USA as well as Martha’s Vineyard,
an island off the coast of Massachusetts.

Network.

Figure 5.2: Sentence types in a disease outbreak description
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Thus, we developed a gold standard data set through a human annotation study. The

annotation study also provides us with insights into the feasibility of this task. This section

describes the human annotation study, including the guidelines that were provided to the

human annotators, the details of the annotation software used, and the agreements that

were obtained on this task.

5.2.1 Annotation Guidelines

An event is broadly defined as an occurrence, incident or happening at a given place

and time. With this broad definition of events, a single text document can simultaneously

contain descriptions of many different events. Almost every action or incident described in

the document could be considered as a separate event. However, for the purpose of this

research our interest specifically is in events pertaining to the given IE task. The objective

of our IE models presented in this research is to recognize descriptions of those specific

events whose role fillers we need to extract from the text documents. Thus, our definition

for the events of interest is obtained from the instructions associated with the given IE task.

For example, the MUC-4 task for extracting role filler for terrorist events, defines terrorist

events as “violent acts perpetrated with political aims and a motive of intimidation.” Our

sentential event recognizers must then identify event sentences using this definition of an

“event” for this given IE task. The goal of this annotation study is to determine if humans

agree on event sentences based on such a definition of an event.

Simply defining an event sentence as one that contains the description of a relevant event

is rather vague. Given this simple definition of event sentences, we could imagine a wide

variation in the way people assign labels to sentences. One person might decide to include

consequences of events in an event description, while another person might choose to leave

those out. Similarly, one person might consider incidental information as part of an event

description, while others might discard such information as being not event-related. Wide

variations in human judgements on a task make it impossible to evaluate an automated

system, since there is no established ground truth.

The problem is that a simple definition of event sentences leaves a lot of decisions for

the human annotators, which can be influenced by their individual biases, preferences and

contexts. What we need is a more specific definition for event sentences that matches the

requirement of our IE task. Accordingly, we describe here the guidelines for labeling event

and nonevent sentences in text, to develop a gold standard data set. The goal is to have

guidelines that (a) are specific enough that internal biases of the human experts do not

affect their annotations very much, (b) are general enough to be adaptable to different
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event types, and (c) capture the essence of “event sentences” as required for the IE task.

To incorporate these requirements into the annotation guidelines, we use the sentence

types that were observed in Section 5.1. The sentence types encompass five different types

of information — event incidents, event precursors, event consequences, incidental infor-

mation and not relevant. By definition, the event incident sentences describe the incidents

comprising the event of interest, and thus are likely to be event sentences. Similarly, the not

relevant sentences, by definition, are sentences that do not pertain to an event of interest.

Therefore, these sentences are likely to be nonevent sentences. The remaining three types

— event consequences, event precursors and incidental information — contain information

that is somewhat peripheral to the event descriptions and, therefore, can be considered the

borderline cases.

To establish the formal annotation guidelines based on the above five sentence types,

we relied on the expertise of human annotators. The annotation study (described later

in Section 5.2.3) consisted of a “training phase,” during which the annotators learned the

annotation scheme and got familiar with the annotation interface. Part of this training phase

was also used to obtain feedback from the annotators to refine the annotation guidelines.

The annotators were initially asked to annotate sentences with the five sentence type labels

mentioned above. From these initial annotations we found that, while the agreement of the

annotators on event incident and not relevant sentences was quite high, their agreement on

the remaining three sentence types was quite poor. Additionally, we found that the event

precursor, event consequence and incidental information sentences were often confused with

the not relevant sentence type. Thus, our final annotation guidelines for event sentence

labels were based on the event incident sentence type described earlier, and the nonevent

sentence labels were based on the remaining four sentence types. The exact annotation

guidelines that were developed and provided to the annotators are presented verbatim in

Appendix A and are briefly summarized in the following paragraphs.

Based on these established annotation guidelines, event sentences now follow the defini-

tion of the event incident sentences and assume that an event is decomposed into a sequence

of smaller incidents, which lie on a chronological time frame. The event is then described

by recounting the noteworthy incidents that occurred during this event time frame. Any

incident descriptions from this time frame (and pertaining to the event) are labeled as

event sentences. Additionally, sentences that refer to the event as a whole and contain

event-specific details are also labeled as event sentences.

Similarly, based on the final annotation guidelines, the remaining four sentence types
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comprise the nonevent sentences. Reiterating the properties of these, the event precursor

and event consequence sentences describe incidents that are typically outside the primary

event time frame (but causally related to the event). Similarly, the incidental information

sentences describe facts or characteristics of specific entities mentioned in the event or

provide additional context for the event itself. These sentences may contain references to

event roles, but not in the context of the event. Finally, the not relevant sentences do not

contain any information directly pertaining to the event, and are also labeled as nonevent

sentences.

All of the guidelines discussed so far assume a single event description per document.

However, in practice, a single document may contain descriptions of multiple events. In

other words, it is quite common to see documents containing descriptions of two or three

separate terrorist events. In a full-fledged IE task, it is important to separate the event

roles of the various events described. While the goal of this research is not to separate the

event roles extracted, we do hope that the annotations created here can be useful in the

future for the full-fledged task. Therefore, in addition to the event/nonevent annotations

assigned to sentences, the annotators are asked to attach one or more event identifiers

to each event sentence annotated by them. An event identifier indicates a specific event

description within a document. In documents containing more than one event description,

the event sentences are mapped to the corresponding event descriptions through the event

identifiers. So, it is the annotators’ task to identify event sentences belonging to the

description of the same event (represented by an identifier) and those belonging to separate

events. The annotation guidelines provide instructions about assigning event identifiers to

event sentences.1

In assigning event identifiers to event sentences, the annotator first needs to identify

the number of different event descriptions in any given document. This is a nontrivial

task, since the annotators now need to also interpret the event definition provided for the

IE task in addition to the event sentence guidelines provided here. To simplify the task

for the annotators, we use the IE answer key templates associated with a document to

automatically determine the number of event descriptions in a document. An IE answer

key template can be considered to be an “event summary” of an event description in the

document. Thus, the number of answer key templates associated with a document is an

indicator of the number of event descriptions in that document. We automatically generate

1Nonevent sentences, by definition, cannot be part of an event. Therefore, they are not assigned event
identifiers.
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event identifiers and brief event summaries using these answer key templates, and require

the annotators to select only one or more of these identifiers for each event sentence labeled

by them. Section 5.2.2 shows how this is done within the annotation interface provided to

the annotators.

5.2.2 Annotation Interface

In addition to the guidelines defining event and nonevent sentences, human annotators

are provided with an annotation interface to ease the annotation task for them. The purpose

of the annotation interface is threefold. Firstly, by having a point-and-click interface the

annotations can be done much faster. Secondly, it provides a single standard input/output

format for storing and accessing the annotations, and provides a single standard method

for segmenting the given documents into sentences for annotation. Finally, it enables the

annotators to save partially annotated data and return to the annotation task as their

schedule permits. In addition, the annotation software also contains an agreement scorer

that reads in multiple annotations of a single data set and generates a summary of the

annotator agreements.

The annotation interface created for this task is a Graphical User Interface (GUI) that

can load a data set consisting of text documents and enable the annotation of sentences

in these documents by simple point-and-click interactions with this interface. Figure 5.3

shows a picture of this interface in action. The interface consists of three main parts. On

the extreme left of the GUI is the list of text files in the loaded data set. The middle of

the GUI contains sentences of the current document being annotated. The extreme right

contains the status and annotations of the current sentence under consideration. The figure

shows a data set of disease outbreak events loaded in the GUI, and shows one partially

annotated document in this data set. The application also contains progress bars to track

the annotation progress on the current file and on the entire data set as a whole.

To start off the annotation process the annotator selects Setup Annotations in the

Annotation menu, a drop-down menu at the top of the interface. This brings up a dialog

that requests four pieces of information:

1. Domain: a Sundance domain representing the type of event. The interface relies heav-

ily on the Sundance/AutoSlog system [95], and uses its event domains for the event

type to be annotated. For example, the bio domain in Sundance represents disease

outbreak events, and the terror domain represents terrorist events. A “domain” in

Sundance essentially loads domain-specific dictionaries and other document format
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rules (e.g., skipping appropriate document headers) for the given event type. Note,

however, that in this interface Sundance is used only for sentence segmentation, and

therefore does not use the domain-specific dictionaries.

2. Output Directory: the directory where the annotations will be written. One annotation

file is created in this directory for each input document in the data set. This directory

can be empty initially. If the directory already contains annotations for the data set,

those are loaded into the interface. Any other files appearing in the directory are

ignored.

3. SList of Text Files: the data set to be annotated is specified in an “SList” file. SList

files are used by the Sundance system to represent a set of files or documents. An

SList file contains a path to the directory containing the files, followed by a list of file

names. Here, the SList file points to a set of text documents to be annotated by the

annotators.

4. Answer Key: the IE answer key templates corresponding to the text files. This is

an optional field also specified as an SList file representing a set of IE answer key

template files. The purpose of these IE answer keys in the annotation process will

become clear later in this section.

With this information, the list of documents in the data set is loaded into the list on the

left side of the GUI. The text area in the middle, and the annotation information to the

right are initially empty or disabled. The status bar at the bottom initially lists the event

type (from the domain field) and the output directory that the annotations will be written

to.

As indicated in the previous paragraph, if the output directory already contains anno-

tations for the loaded data set, then these annotations are loaded into the interface. This

feature is meant to enable the annotators to save partially annotated data and come back to

it later as time permits (without having to leave the GUI or their computer running). For

each document in the data set, the corresponding annotations in the output directory are

stored in a file with the name of the document with a “.ann” appended to it. For instance,

the annotations corresponding to a document in a file named “MUC4-TST4-0039” will

appear in a file named “MUC4-TST4-0039.ann” in the output directory. Thus, when the

data set is loaded, the interface looks for the corresponding annotation files in the output

directory. If the annotation files are found there, then annotations for those documents are
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loaded into the interface. If no corresponding annotation files are found, then the documents

are assumed to be unannotated.

The progress indicators below the document list enable the annotators to keep track

of their work, and get an estimate of how much remains. Thus, when the documents are

initially loaded, if no annotations already exist in the output directory, these progress bars

are initialized to zero. On the other hand, if partial or complete annotations for the data

are loaded from the output directory, then the progress bars reflect the extent of the work

already completed. The progress on a data set that is loaded for annotation is, therefore,

immediately visible in the “Total Progress” progress bar (the second progress bar) below

the document list.

Having loaded the data set into the annotation interface, the annotator can now begin the

annotation process. To start, the annotator selects from the list of documents, a document

to be annotated. Double-clicking on the document name loads that document into the text

area in the middle of the GUI. The document is sentence-segmented using the Sundance

system, and the sentences are displayed in the text area. Having all the sentences of the

document be visible together in the text area, enables the annotation of these sentences in

the context of the entire document, rather than in isolation. The goal of the annotator now

is to assign labels to each of these sentences.

To assign a label to a sentence, it first needs to be selected from the list of sentences.

Clicking on a sentence selects it for annotation. A selected sentence appears with a gray

background in the GUI. As soon as a sentence is selected, the state of the annotation status

and controls on the right side of the GUI are enabled and updated to reflect the current

annotation of the sentence. The filename and the sentence number are listed at the top of

these controls. Below that, two checkboxes reflect the label assigned to the sentence — event

sentence or nonevent sentence. If both checkboxes are unchecked, the sentence is unlabeled.

A label is assigned to the sentence by selecting one of the checkboxes. The interface prevents

an annotator from selecting both checkboxes for a sentence. Sentences that have a label

assigned to them, appear with a green background in the middle text area. This color-coding

of sentences enables annotators to jump directly to the unannotated sentences and complete

those annotations, thus speeding up the overall annotation process.

As mentioned in the guidelines, the event sentences in the annotations have an additional

component — an event identifier. The event identifier helps segregate event sentences

belonging to separate event descriptions in the document. This event identifier is selected

from the list of identifiers appearing directly below the label checkboxes on the right side
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of the GUI. An event sentence is only considered to be completely annotated (i.e., with a

green background) when an event identifier from this list is selected along with the event

sentence checkbox. The list of event identifiers available for selection is based on the IE

answer keys specified during the “Setup Annotations.”

The IE answer keys specified during setup are used to generate a summary of the events

mentioned in the document. A unique integer corresponding to each event summary is

used as the event identifier for the event. Thus, while annotating a sentence as an event

sentence, the annotator selects one or more event identifiers from this list to complete the

annotation of the event sentence. The set of event identifiers and summaries for a document

is automatically generated from the IE answer key template associated with the document.

Figure 5.4 shows example event identifiers and event summaries for a document containing

two terrorist event descriptions. The two event identifiers correspond to the two answer key

templates associated with the document. The event summaries paired with the identifiers

(1) and (2) are generated from the templates by connecting some of the key pieces of

information about the event listed in the template (event type, target/victim and location)

with appropriate prepositions. In this example, the annotators would select either event

Text Document

BOGOTA, 7 JUL 89 (EFE) — [TEXT] COLOMBIAN OFFI-
CIALS REPORT THAT GUERRILLAS PRESUMED TO BE
MEMBERS OF THE PRO-CASTRO ARMY OF NATIONAL
LIBERATION (ELN) TODAY ONCE AGAIN DYNAMITED
THE CANO LIMON-COVENAS OIL PIPELINE, COLOM-
BIA’S MAJOR OIL PIPELINE.

AN ECOPETROL SPOKESMAN SAID THAT THE EXPLO-
SION TOOK PLACE AT KM - 102 OF THE PIPE NEAR
BENADIA IN ARAUCA INTENDANCY, IN THE EASTERN
PART OF THE COUNTRY.

THIS ATTACK TAKES PLACE 25 DAYS AFTER A PREVI-
OUS GUERRILLA ACTION, WHICH INTERRUPTED THE
PUMPING OF CRUDE THROUGH THE 780 - KM LONG
PIPELINE. ON 16 JUNE, THE ELN DESTROYED THE
CANO LIMON-COVENAS OIL TERMINAL ON COLOM-
BIA’S ATLANTIC COASTLINE, IN WHAT IS CONSIDERED
THE MOST SERIOUS ATTACK AGAINST COLOMBIA’S
PETROLEUM INDUSTRY IN ITS HISTORY. SINCE THAT
TIME, COLOMBIA HAS BEEN FORCED TO SUSPEND AN
AVERAGE OF 180,000 OF THE 220,000 DAILY BARRELS
OF CRUDE PIPED THROUGH THE COUNTRY’S LEADING
PIPELINE. . .

IE Answer Templates

Event #1

Type: BOMBING

PerpInd: GUERILLAS

PerpOrg: ELN

Target: OIL PIPELINE

Victim: -
Location: BENADIA

Date: -

Event #2

Type: ATTACK

PerpInd: -
PerpOrg: ELN

Target: OIL TERMINAL

Victim: -
Location: COLOMBIA

Date: 16 JUNE

Event summaries with event identifiers:

(1) BOMBING OF OIL PIPELINE IN BENADIA
(2) ATTACK ON OIL TERMINAL IN COLUMBIA

Figure 5.4: Example event summaries from IE event templates
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identifier (1) or (2) or both for any sentence from the document that they label as an event

sentence.

The interface described here essentially provides a front-end for the sentence annotations

stored in text files in the output directory. The format of these annotation files is such that

they could be potentially edited by other external tools (e.g., a text editor) in the absence

of the annotation interface. Additionally, the format allows for increasing the scope and

use of the annotations in future research. Figure 5.5 shows sample annotations on a disease

outbreak document. Each sentence annotation consists of a sentence on one line of the

text file followed by its labels on the following line. The sentence is indicated by the

string “Sentence:” preceding the sentence. The label for that sentence appears on the

following line within parentheses, preceded by the string “LabelSet.” To allow for more

fine-grained annotations in the future, the format uses EVENT INCIDENT as the label for

event sentences, and NOT RELEVANT as the nonevent sentence label. Thus, in the future,

additional labels from the guidelines, such as EVENT CONSEQUENCE, EVENT PRECURSOR

and INCIDENTAL INFORMATION can be incorporated. An earlier version of the interface

allowed the annotators to assign a confidence score (integer ranging from 1 to 3) to the

sentence labels. These confidence scores are stored by the format as an integer in square

brackets following the label. Since the current version of the interface does not allow

confidence scores, all labels get assigned a score of 3 by default. The format, therefore,

allows for confidence scores to be potentially reintroduced in the future. Finally, the

Sentence: Indira Gandhi Memorial Hospital has recorded a sudden increase in patients admitted with
diarrhea accompanied by vomiting.
LabelSet(EVENT INCIDENT[3]) EventID(1)

Sentence: The Department of Public Health said that viral hepatitis cases have also marked an increase
along with diarrhea patients.
LabelSet(EVENT INCIDENT[3]) EventID(1,2)

Sentence: DPH quoted doctors as claiming that the cause for the cases were the consumption of
non-fresh food and impure water.
LabelSet(NOT RELEVANT[3]) EventID()

Sentence: IGMH director Ali Mohamed told Haveeru that diarrhea patients marked an increase [since]
14 Feb 2000.
LabelSet(EVENT INCIDENT[3]) EventID(1)

Sentence: Additional information about the etiology of this outbreak would be appreciated.
LabelSet(NOT RELEVANT[3]) EventID()

Figure 5.5: File format of event sentence annotations
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event identifiers associated with event sentences appear as comma separated integers in

parentheses indicated by the string “EventID.” Note that there are no event identifiers

associated with nonevent sentences.

This completes the description of the interface, which affords great flexibility to the

annotators. The Save Annotations option in the Annotation menu enables an annotator to

save partially or fully completed annotations, close the interface, and come back to view

or complete the annotations later. The architecture of the interface allows an annotator to

quickly select and annotate any sentence in any document in the collection. Additionally, the

annotation guidelines are accessible for quick reference through the Help menu. Overall, the

point-and-click annotation interface facilitates relatively quick and convenient annotations

of event/nonevent sentences in text documents.

5.2.3 Agreement Studies

The annotation guidelines and the annotation interface developed to manually assign

labels to sentences are used to conduct an annotation study for this task. The primary goal

of this study is to determine if it is possible for humans to perform this task adequately.

The difficulty of this task for humans can give us an upper bound on the performance that

can be expected from an automated system for this task. Another goal of this study is

to investigate the extent to which people differ in their notion of event sentences. What

it means for a sentence to be an event sentence can vary a lot from one person to the

next. Therefore, an important question we would like to answer is: given the guidelines for

event sentence annotations, can humans agree on event sentences? This annotation study

explores these issues and presents a summary of its findings.

The annotation study starts with a training phase, where the annotators learn the

annotation scheme and get familiar with the annotation interface. Part of the training phase

was also used to refine the annotation guidelines to formulate a precise conceptual definition

for event and nonevent sentences. The training phase was followed by an interannotator

agreement study to measure the agreement of human annotators on identifying event

sentences in text, based on the annotation guidelines provided. Finally, the annotators

create gold standard data sets for two domains that are used to evaluate the performance

of the sentential components of the Piper and Glacier IE models.

5.2.3.1 Training phase. One of the objectives of the training phase is to calibrate each

annotator’s notion of event sentences with respect to the specific provisions in the annotation

guidelines. The guidelines essentially describe characteristics of sentences that make them

event or nonevent sentences. These are high-level characteristics, not tied to any specific type
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of event, based on the sentence types observed in Section 5.1. The training phase provides

concrete annotation examples for specific types of events, and includes training exercises for

annotators to understand how the guidelines are practically applied to real-world examples.

The training session started with a four-hour instructional session, which provided

an overview of the annotation guidelines and examples of specific types of events. This

session included paper-and-pencil exercises, where the annotators hand labeled sentences

provided to them on paper. A similar paper-and-pencil training approach has been used

in other annotation tasks, such as the annotation study conducted by Wiebe et al. [121]

for sentiment and opinion annotations. Here we followed a similar training approach for

event sentence annotation. The paper-and-pencil event sentence annotations were compared

and verbally discussed among the annotators and the instructor, with a focus on the

borderline cases and the reasons behind the annotations. The annotators then got a chance

to practice annotations with the annotation GUI on several practice documents. These

practice annotations were performed by the annotators on the laboratory PCs or home

computer systems at their leisure. Just like the paper-and-pencil annotations, these practice

annotations were also then compared and discussed in subsequent instructional training

sessions. Several such practice annotations and instruction sessions were conducted, totaling

about 22 hours of training per annotator. This included five in-class training sessions and

five “at-home” exercises with the annotation GUI. In addition, the initial training sessions

were also used to iteratively refine the annotation guidelines based on annotator feedback.

5.2.3.2 Interannotator agreement study. Two annotators, who were trained accord-

ing to the training phase described above, participated in an interannotator agreement study

to measure human agreement on this task. The annotators were computer science graduate

students not involved in this information extraction project. They had not previously come

across the data used for the study, and had no prior experience with such annotation. The

annotators did have prior experience in Natural Language Processing, and thus were aware

of the difficulty of the task.

The annotators were provided with 30 documents each for two types of events —

terrorist events and disease outbreak events. These documents were randomly selected

from the MUC-4 terrorist event data [114] and the ProMed disease outbreaks data [86, 82],

respectively. These data sets are standard IE data sets (described earlier, in Chapter 2)

that consist of documents containing event descriptions and corresponding IE answer key

templates.2 The annotators were asked to independently annotate event sentences in the

2Some documents in these data sets may contain no event descriptions. For this study, however, only
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randomly selected documents using the annotation GUI.

Table 5.1 briefly summarizes some characteristics of the data, and some characteristics

observed from the annotations. The 30 documents in the terrorist event data contain 454

sentences for annotation, making the average size of a document in this domain about

15 sentences long. On the other hand, the disease outbreaks data have 701 sentences for

annotation, making the documents in this domain significantly larger, with an average size

of about 23 sentences per document. All of these sentences are annotated by the two

annotators (identified here as Annotator #1 and Annotator #2), and Table 5.1 gives a

breakdown of the event and nonevent sentences annotated by them on the two domains. The

numbers show that Annotator #2 tends to annotate more sentences as event sentences

than Annotator #1. Across the two domains, Annotator #1 consistently has between

6.3% and 7.0% fewer event sentences, which reflects the internal human perceptions of event

descriptions.

Despite the difference in the number of event/nonevent sentence annotations, we see

from Table 5.2a that the annotators achieve relatively good agreements on the two domains.

The agreements are calculated as Cohen κ coefficients [21], which essentially compute the

probability of the observed agreements over agreements by chance. The κ coefficient is

given by the formula:

κ =
Po − Pe

1 − Pe
(5.1)

where, Po is the probability of the observed agreements, and Pe is the probability of

agreements by chance. The annotators achieve an agreement of 0.77 on the terrorist events

data and 0.72 on the disease outbreaks data, which according to the Landis and Koch

[61] guidelines3 for interpreting the Cohen κ represents “substantial agreement.” In raw

percent agreement, annotators achieve agreements of 90.3% and 88.7% on the two domains,

Table 5.1: Data characteristics and annotator characteristics

Terrorist Events Disease Outbreaks

Data Files 30 30
Total Sentences 454 701

Annotator #1 Annotator #2 Annotator #1 Annotator #2

Event Sentences 121 (26.7%) 153 (33.7%) 166 (23.7%) 217 (31.0%)
Nonevent Sentences 333 (73.3%) 301 (66.3%) 535 (76.3%) 484 (69.0%)

documents with at least one event description were chosen for annotation.

3While these guidelines have not been completely substantiated, they do provide some insight into the
extent of interannotator agreement for a given task.
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Table 5.2: Results of the agreement study

(a) Interannotator agreement

95% Confidence Percent

Cohen’s κ Interval Agreement

Terrorist Events 0.77 [0.68, 0.86] 90.3%
Disease Outbreaks 0.72 [0.65, 0.79] 88.7%

(b) Confusion Matrices

Terrorist Events Disease Outbreaks

A
n
n
o
ta

to
r

#
1 Annotator #2

Event Nonevent Event Nonevent
Sentences Sentences Sentences Sentences

Event
115 6 152 14

Sentences
Nonevent

38 295 65 470
Sentences

respectively. Thus, this annotation study shows that there is relatively good agreement

among human annotators for this sentence annotation task, within the specified definition

for event descriptions.

Table 5.2b presents the confusion matrices for the annotation study on the two domains,

displaying the raw numbers of agreements and disagreements between the annotators.

The matrices show that the maximum number of disagreements occur in the cases where

Annotator #1 labels a sentence as nonevent, while Annotator #2 labels it as an event

sentence. Analyzing these specific examples indicates that many of the disagreements are

on sentences that contain a reference to an event of interest, but there is some ambiguity

regarding the mention of an event-specific detail in reference to the event. For example, in

the following sentence:

This murder has made evident the lack of guarantees in the country, guarantees

that the Government has systematically denied the opposition parties.

the event “this murder” is mentioned, but there is disagreement about whether the sentence

contains an event-specific detail. Another reason for many of the disagreements stem from

an inconsistent notion of the event time frame between the annotators. Thus, incidents

occurring at the edges of the time frame sometime have different labels from the annotators.

These disagreements suggests that an automated system designed for this task likely will

face similar issues in locating event sentences.

5.2.3.3 Gold standard data annotation. After completing the agreement study,

and obtaining good human agreement scores on this task, we then created a gold standard
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data set of event sentence annotations. A data set with human expert annotations can be

used to evaluate the performance of the sentential components of IE models, and can help

detect deficiencies in that component of the models. Additionally, such data can serve as

the “perfect” sentential component to enable us to study the upper bounds on performance

achievable in our IE models.

For the gold standard data set, our goal was to get human annotations for 100 documents

(TST3) from the test set for terrorist events, and the entire 120 document test set for disease

outbreaks. Of the 100 terrorist event documents, 31 documents have no relevant event

described in them. All the sentences in these 31 documents are nonevent sentences. We,

therefore, need human annotations for only 69 documents in this domain. Similarly, for the

disease outbreaks data, we need human annotations for only 99 of the 120 documents (the

remaining 21 contain only nonevent sentences). Furthermore, the 30 terrorism documents

and 30 disease outbreaks documents which were used earlier in the agreement study were

a subset of the 69 documents and 99 documents, respectively. Thus, we have human

annotations on these from the agreement study. However, since we have two sets of

annotations (from the two annotators) on these 30 documents in each domain, a process

of “adjudication” was carried out to convert this into a single set of annotations. In this

process, the two annotators came together and discussed the conflicting cases to come

to a decision on the labels for these. Finally, the annotators annotated the remaining 39

terrorism documents and 69 disease outbreaks documents to complete the annotation of the

gold standard data set. The entire undertaking, including the training phase, the agreement

study and the creation of the gold standard data set, took a total of 77 person-hours of

effort by the annotators.

5.3 Annotations with IE Answer Keys

Because of the time, expense and effort associated with developing human annotations,

Chapter 3 and Chapter 4 both propose approximating these sentence-level annotations

using IE answer key templates. Since such templates are available for a number of IE data

sets, this method can be used to quickly generate approximate sentence-level annotations

for those data sets. The annotations are then used in the pipelined Piper model and the

unified probabilistic Glacier model for training the sentential components.

These approximate annotations from IE answer key templates are done by “reverse-

engineering” the answer keys with the corresponding documents. Given a text document

and the corresponding answer key template, the system locates within the document each



93

of the answer key strings listed in the template. Any sentence in the document found

to contain one of these answer key strings is then labeled as an event sentence, and the

remaining sentences are labeled as nonevent sentences. The basic assumption underlying

this approximate annotation scheme is that since the answer key templates represent the

information from the event descriptions, any sentence containing this information (the

answer key strings), most likely, is part of an event description.

However, as mentioned in Chapter 3 and in Chapter 4, this assumption does not always

hold. Many times, an answer key string appears at multiple places in the document, only

some of which are part of an event description. As a result, the annotations obtained from

this process can be noisy. The questions that then come up are: How noisy are these

annotations? Can we do away with the human annotations altogether? Now that we have

done a human agreement study and have a gold standard data set created by human experts,

we are in a position to answer these questions.

One way to evaluate the approximate annotations from IE answer key templates is to

consider this approximate annotation technique as just another annotator in an agreement

study. To do this, approximate annotations are generated for the 30 documents (for

each domain) used in the human agreement study described earlier. Pretending that this

annotation technique is Annotator #3 in the agreement study, we can now compare its

annotations to those of the human annotators.

Table 5.3 briefly summarizes some characteristics of the data, and some annotator

characteristics observed from the annotations. Note that these annotations behave quite

differently in the two domains. For terrorist events, the number of event sentences identified

by the answer keys is in the same ballpark as those identified by the two human annotators

— 31.7% event sentences from the approximate annotations, compared to 26.7% and 33.7%

identified by the two human annotators, respectively. For disease outbreaks, however, the

Table 5.3: Approximate annotation characteristics

Terrorist Events

Data Files 30
Total Sentences 454

Annotator #1 Annotator #2 Annotator #3

Event Sentences 121 (26.7%) 153 (33.7%) 144 (31.7%)
Nonevent Sentences 333 (73.3%) 301 (66.3%) 310 (68.3%)

Disease Outbreaks

Data Files 30
Total Sentences 701

Annotator #1 Annotator #2 Annotator #3

Event Sentences 166 (23.7%) 217 (31.0%) 308 (43.9%)
Nonevent Sentences 535 (76.3%) 484 (69.0%) 393 (56.1%)
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number of event sentences is quite a bit (over 12%) more than those identified by the human

annotators. The approximate annotations identify almost 43.9% of the sentences as event

sentences, compared to 31.0% and 23.7% for humans.

This difference in the numbers of event/nonevent sentences across the two domains is

reflected in the agreement scores for the approximate annotations. Table 5.4 contains the

agreement scores in this setup (i.e., considering the approximate annotations as Annotator

#3). The pairwise Cohen κ is calculated for each pair of annotators (#1 and #2, #1 and

#3, #2 and #3), and the average of this pairwise κ is presented in the table. The average

pairwise Cohen κ coefficient in this interannotator agreement study is 0.70 for terrorist

events, which is 0.07 lower than the human agreements. For disease outbreaks, however, the

average Cohen κ is 0.43, almost 0.29 lower than the human agreements! This difference in

agreement scores with the approximate annotations indicates that approximate annotations

with answer keys can be close to human judgement for certain types of events, but may

not consistently apply across all event types. This difference can also be outcome of the

difference in the document characteristics across the two domains.

Using answer key templates to locate event sentences makes the assumption that any

mention of an entity listed in an answer key must appear only in event descriptions in

the text document. This assumption does not always hold. An entity may be mentioned

multiple times within a document, not all of which may be within event descriptions. From

Table 5.3 and Table 5.4 we see that the assumption seems to hold, for the most part, in

terrorist event descriptions, but breaks down in the case of disease outbreaks. Reading

through the disease outbreaks data we find that diseases are mentioned many times in

the documents, but many of these disease mentions are in nonevent contexts. Typically,

once the disease outbreak has been mentioned, other general characteristics of the disease

are described. These nonevent sentences get tagged as event sentences in the approximate

annotation scheme.

5.4 Event Role Analysis

Now that we have explored the use of IE answer key templates for approximating event

sentence annotations, let us take a look at another aspect of IE answer keys — their

Table 5.4: Interannotator agreement scores with approximate annotations

Average 95% Confidence Avg. Percent

Cohen’s κ Interval Agreement

Terrorist Events 0.70 [0.61, 0.80] 87.4%
Disease Outbreaks 0.43 [0.36, 0.50] 73.9%
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relationship with event roles. Using IE answer key templates for identifying event sentences

relies on the assumption that entities playing a specific role in an event are likely to appear

only within the description of an event of interest. Thus, an implicit relationship between

event roles and event sentences is assumed. This section explores this relationship and other

characteristics of the data in greater depth.

Recall that the pipelined model for IE (Piper) described in Chapter 3 first locates event

sentences in text, and then uses a text extraction component to identify the role fillers within

these sentences. The question that arise here are: Do all the role fillers appear within the

event sentences? Or are we likely to lose some of these, which happen to appear in nonevent

sentences? Essentially, what we would like to measure is the maximum achievable recall

as a result of discarding nonevent sentences. When we have all the sentences to extract

information from, the maximum achievable recall is 1.0, since all the role fillers are present

within these sentences. However, once we discard some of the sentences, some event roles

may get discarded in the process. This situation can occur when a role filler is not mentioned

as part of an event incident, but in a non event sentence containing incidental information

or an event consequence. For example, consider the sentences:

Three armed men attacked a military convoy in Iraq yesterday. The attackers

are believed to be members of Al Qaeda.

The first sentence describes a terrorist event, while the second sentence provides incidental

information about the attackers mentioned in the event description. According to the

annotation guidelines, the second sentence is a nonevent sentence. However, it does contain

information about the organization that the perpetrators belong to. Thus, we would like

to measure the effect of discarding nonevent sentences on such event roles.

We conducted an experiment to measure the maximum achievable recall on the human

annotated event sentences (gold standard data). The idea was to see if having perfect event

sentence annotations could enable us to locate all the role fillers for an event. We simulated

a perfect extraction system that extracts event role fillers only from the event sentences. For

terrorist events, we find that the perfect extraction system can achieve a maximum possible

recall of 0.89 if applied only to event sentences. This means that 11% of terrorist role fillers

are in the nonevent sentences. For disease outbreaks, the maximum achievable recall is

0.94 within event sentences. Table 5.5 shows the breakdown of this maximum achievable

recall for the various event roles in the two domains. The “Perpetrator Individual” and

“Perpetrator Organization” event roles in the terrorism domain are the two that occur most

often in nonevent sentences. Over 20% of these entities are mentioned only within nonevent
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Table 5.5: Maximum achievable recall within event sentences

Terrorist Events
Perpetrator Individual 0.78
Perpetrator Organization 0.77
Physical Target 1.00
Human Victim 0.93
Weapon 1.00

Disease Outbreaks
Disease 0.95
Victim 0.94

contexts. This observation illustrates the need for our probabilistic model (Glacier) over

the pipelined model (Piper), which discards nonevent sentences.

5.4.1 Impact of Event Recognition on Recall

The observation about the maximum achievable recall illustrates the potential loss of

recall one might face with the use of event/nonevent sentence information in IE. However,

there are also benefits of incorporating event sentence information in IE, which we highlight

here. We find that the two main characteristics of data that affect the performance of an IE

system are redundancy of answer opportunities and density of event sentences. Redundancy

of answer opportunities is the number of relevant answer strings in the text corresponding

to each event role in the IE answer key. This primarily affects the recall of an IE system.

Greater redundancy provides multiple opportunities for an event role extraction system to

locate the correct extractions. For example, elephants that are victims of a disease outbreak

may be mentioned multiple times in a document. Extracting any one of those mentions

results in a correct extraction for that event role. Light et al. [65] have shown, in the context

of Question Answering, a direct correlation between redundancy in answer opportunities

and system performance. Density of event sentences is the proportion of event sentences in

the data set. It directly affects the precision of an IE system. Each nonevent sentence in

the data translates to a greater chance of incorrect extractions from the nonevent sentences.

To better understand the extent of the redundancy of answer opportunities and their

variation across event roles and domains, we measured the redundancy of answer oppor-

tunities on our two domains — terrorist events and disease outbreaks. We also measured

the effect of classifier performance trade-offs on this redundancy, by randomly discarding

some of the sentences containing event role fillers. Figure 5.6 shows the findings from this

experiment for the two data sets (on 200 documents for terrorist events and 120 documents

for disease outbreaks). The x-axis represents the percentage of sentences discarded, and the
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98

y-axis plots the average number of answer opportunities in the text for each answer in the

answer key templates. The error-bars indicate the variation in these values across ten runs.

Overall, the average amount of redundancy is about 2.5 answer opportunities for each

terrorism event answer, and nearly 6 answer opportunities in the disease outbreaks data

set. However, the more interesting observation is that the different event roles have different

amounts of redundancy. In the terrorist event data set, the perpetrator organization answer

opportunities appear almost 3.5 times per answer in the data set. In the disease outbreaks

data, the disease role filler strings appear almost 12 times per answer! Even if 50% of the

sentences were discarded, we would be left with about 6 disease answer opportunities per

answer.

In addition, we see that the amount of redundancy decreases linearly as we randomly

discard sentences. After discarding about 40% of the sentences containing event roles in

the two data sets we still have about 1.5 answer strings for each correct answer. Thus,

some weaknesses in event recognition can be tolerated by the IE system. A reasonable

extraction coverage could potentially be achieved even with a sentential event recognizer

that incorrectly discards many event sentences.

To test this hypothesis we ran a second experiment. This experiment measures the effect

on maximum achievable recall of randomly discarding sentences containing role fillers in each

data set. Figure 5.7a plots the maximum achievable recall on the y-axis corresponding to

the percentage of discarded sentences on the x-axis (in the two data sets). The effect of

the redundancy is that the maximum achievable recall drops slowly initially, and the drop

is sharper as the percentage of discarded sentences approaches 100%. What this means is

that even after losing 30% of the sentences containing role fillers, an IE system could still

potentially achieve a recall of 0.78 on the terrorist events data, and 0.85 on the disease

outbreaks data. As seen in Figure 5.7b, this effect is far more pronounced for the individual

event roles with high redundancy — perpetrator organization in the terrorism data set and

disease in the disease outbreaks data set.

5.4.2 Impact of Event Recognition on Precision

One of the goals of this research is to design classifiers for sentential event recognition

as a component in the two IE models. We hope that such classifiers would eliminate only

those sentences that do not contain event role fillers, and keep those sentences that contain

an event role filler. The extraction side of these models can benefit from such a classifier by

having fewer false-positive extractions in their search for role fillers within the event-specific

regions of the text. The sentential event recognizer acts as a filter in this model, and discards
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nonevent sentences. This in turn can improve the precision of an extraction system, by

preventing incorrect extractions from nonevent sentences.

To determine the extent to which an IE system could possibly benefit from event sentence

recognition, we devised an experiment to empirically analyze the effect of such sentences

on IE precision. We started by measuring the proportion of sentences containing event

role fillers for each data set and found that only 19% of the sentences in the terrorism

data set contain role filler strings, and about 28% of the sentences in the disease outbreaks

data contain role filler strings. The large number of sentences containing no event role

fillers can cause an IE system to incorrectly extract information from nonevent sentences,

negatively affecting its precision. We artificially filter these data by randomly discarding

from the two data sets those sentences that contain no role fillers. We apply an existing

pattern-based IE system to these data and measure its precision. For this experiment,

we used the AutoSlog-TS system [92, 95], which is a weakly supervised pattern-based IE

system. It comes trained for the terrorist events and the disease outbreaks IE tasks.

Figure 5.8 shows the effect of varying amounts of irrelevant sentences on the precision

of the IE system in two domains. On each graph, the x-axis plots the percentage of these

irrelevant sentences in the data set, while the y-axis plots the precision of the AutoSlog-TS

IE system applied to this data set. We observe that the precision of the IE system increases

almost linearly as the irrelevant sentences are discarded. Furthermore, we see a nearly 20%

precision gain when the data contain only sentences with at least one role filler. Comparing

the various event roles, we find that the irrelevant sentences have a much greater effect on

event roles such as weapon and perpetrator organization in the terrorism data set. Since

most role filler strings tend to appear in event sentences, this experiment demonstrates

the potential benefits of sentential event recognizers, to eliminate as many of the nonevent

sentences as possible.

5.5 Summary of the Analyses

Various types of analyses of data have been presented in the preceding sections, providing

insights into the nature of text we are dealing with. Before concluding this chapter, we

briefly summarize the key observations from these analyses:

1. In developing the annotation guidelines for the interannotator agreement study, we

identified five types of sentences, based on their purpose within event descriptions.

These sentence types were useful in establishing a clear definition for event sentences

in text.
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2. Based on the annotation guidelines developed, an annotation study was conducted

to determine if humans agree on the notion of event sentences. The study finds that

there is strong agreement between humans, when given a specific definition of event

sentences. An interannotator agreement of 0.72 Cohen κ and 0.77 Cohen κ is attained

by annotators on two event types.

3. Having conducted the interannotator agreement study, an experiment was conducted

to determine if the approximate annotations using IE answer key templates match

up with human annotations. The experiment shows that the answer to this varies by

different event types. For terrorist event descriptions, a relatively good agreement is

seen between the approximate annotations and the human annotations. However, for

disease outbreak events, there is very little agreement.

4. An experiment was conducted to determine if all the event role fillers can be found

within event sentences. The results show that for terrorist events 89% of the event

role fillers are mentioned in the event sentences, and for disease outbreaks this value

is 94%. This suggests that some event role fillers are mentioned only within nonevent

sentences, and would likely be missed by our pipelined model. The experiment shows

that the perpetrator organization and perpetrator individual in terrorist events tend to

be mentioned in nonevent sentences about 22% of the time.

5. The redundancy of an event role is the number of answer strings corresponding to

one event role filler. An event role with high redundancy can achieve good recall

even if some of the answer strings are discarded by the sentential event recognizer.

An experiment was conducted to determine the “tolerance” of the data sets and the

various event roles to such discarded strings. The experiment shows that the terrorist

events data have a redundancy of about 2.5, and the disease outbreaks data have a

redundancy of about 6 answer strings per event role filler.

6. The large proportion of nonevent sentences in the data set makes the task of finding

event role fillers extremely challenging. An experiment was conducted to predict

the kinds of performance improvements we could hope to see if all of the nonevent

sentences are discarded. This effects the precision of IE systems, and our experiment

finds that an existing pattern-based achieves a 20% improvement in precision by

correctly discarding nonevent sentences. The potential improvement can be even

more if the IE system is specifically designed to deal only with event sentences.
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The various types of data analyses indicate that recognizing event sentences before

performing event role extraction can be beneficial for IE, and should benefit our Piper

and Glacier models. The design of the sentential event recognizer can be tailored to the

specific characteristics of the data to extract maximum benefit from the system.



CHAPTER 6

EMPIRICAL EVALUATION

This dissertation presents two novel approaches for IE that combine information from the

wider sentential context with the local contextual evidence to make inferences about event

role extractions. The first approach is a pipelined model (Piper) applying a sentential event

recognizer to text documents, followed by a pattern-based extraction system for identifying

event roles within event sentences. Addressing the drawbacks of this pipelined approach is

a unified probabilistic model for IE (Glacier), which avoids making discrete decisions by

using probabilities to gently balance the influence of the two components. In this chapter, we

evaluate the performance of these models. Section 6.1 lays down the plan for this evaluation.

Section 6.2 first evaluates the sentential components of the IE models. Section 6.3 describes

the data and methodology used in the IE evaluation. Section 6.4 then describes the baseline

IE systems that are compared with our new models, and presents IE evaluation results for

these baselines. This is followed in Section 6.5 and Section 6.6 by an extensive evaluation

of the Piper and Glacier models for IE. An analysis of the features used is presented

in Section 6.9, and a summary of the evaluation and our observations therein are finally

presented in Section 6.12.

6.1 Evaluation Plan

The goal of this research is to perform effective extraction of event role information from

free text. Our evaluation of the IE models presented in this dissertation is based on their

performance at the task of identifying event role fillers of relevant events. Implementations

of the IE models are applied to text documents to extract event role fillers, and the extracted

information is compared against gold standard IE event templates to estimate the IE

accuracy. Note that this differs from the complete IE task (the Scenario Template task),

which requires the IE system to create event templates — one template per event. Our work

focuses on extracting event role fillers and not on template generation per se (e.g., we are

not concerned with coreference resolution or which extraction belongs in which template).

Consequently, our experiments evaluate the accuracy of the extractions individually.
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In this dissertation, all of the evaluation is done for two event types — terrorist events

and disease outbreaks. Each of these event types has it corresponding data sets containing

documents, along with the answer key templates. The use of two data sets for the evaluation

aims to illustrate the portability of the models for various IE tasks, and also serves to bring

forth various issues associated with cross-domain portability. The terrorist events data set

is a standard IE data set, which was developed for a comparative evaluation of IE systems

participating in the MUC-3 [113] and MUC-4 [114] conferences. The disease outbreaks data

set [86, 82] was created from reports of disease outbreaks posted to ProMed-mail, a freely

accessible global electronic reporting system for outbreaks of infectious diseases. A more

detailed description of both these data sets appears in Chapter 2 (Section 2.6).

Since the models for IE presented in this dissertation all rely on the detection of event

descriptions in text, we would first like to measure the efficacy of this individual component.

The weaknesses of individual components can contribute to the accuracy of the overall IE

system, and the evaluation of this component can indicate the contribution of the sentential

event recognizer to the IE model. Before performing the complete IE evaluation, therefore,

an evaluation of the sentential event recognizers in the IE models is first presented. The

evaluation is performed on the two event types using the human annotated gold standard

data created in Chapter 5 (Section 5.2).

Additionally, several variations of the sentential components of the IE models are tuned

using tuning data in the two domains. The sentential event recognizers in the Piper

model identify event sentences in text using classifiers, whose parameters can be tuned.

For example, the proportion of event sentences identified by a classifier can be influenced

by choosing an appropriate threshold for classification. This is especially important for

IE, because usually such data are highly skewed. The number of nonevent sentences far

surpasses the number of event sentences for typical IE data sets. This data skew can affect

the Glacier model too. Thus, some tuning of these classifiers is needed.

Following the sentential component evaluation, a full-fledged evaluation of the IE models

is performed. Implementations of the two IE models are applied to the test documents in

the data sets, to extract event role fillers of the events described. The extracted role

fillers are matched against the role fillers listed in the answer key templates associated

with the documents. Based on this, the precision, recall and F-score of the extractions are

used to measure the performance of the IE models. These performance metrics are used to

compare our new IE models with one another and with other IE models that do not have the

advantage of event sentence information. Thus, the following sections aim to demonstrate
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the prowess of our IE models through empirical evaluation.

6.2 Sentential Event Recognizer Evaluation

Chapter 5 presented several analyses of the data indicating various potential benefits

and risks associated with the use of sentential event recognizers in the IE systems. We

now study the performance of our sentential event recognizers in practice. The sentential

components of our two IE models (Piper and Glacier) are evaluated with respect to

human annotations of sentences, to provide us with an estimate of their effectiveness at this

subtask.

6.2.1 The Piper Model

Chapter 3 (Section 3.2) described three classifier-based variations of the sentential

event recognizer used in the Piper model for IE. All three variations classify sentences as

event/nonevent sentences based on features associated with the sentences. The differences

are primarily in the strategies employed for training these components: (a) using IE answer

key templates (Anskey), (b) self-training with seed patterns and document labels (Self),

and (c) multiple instance learning with document labels (MIL). All three variations were

evaluated against human annotations of event sentences on two types of events — terrorist

events and disease outbreaks.

6.2.1.1 Anskey. An SVM classifier and a Näıve Bayes classifier were trained using

approximate sentence annotations with IE answer key templates. The SVMlight [56] im-

plementation of the SVM and the Weka Toolkit [122] implementation of the Näıve Bayes

were used. The SVM employed a linear kernel with the default configuration from the

software package, and the Näıve Bayes used its default configuration in the Weka Toolkit.

For terrorist events, 1,300 MUC-4 documents with corresponding answer keys were used for

training. This resulted in 3,092 positive training examples (sentences), and 16,221 negative

training examples (sentences). The feature vectors representing the training examples used

the eight types of features described in Chapter 3 (Section 3.3). These features were

generated from the training data, and a frequency cutoff of four was applied to the features.

Only features appearing four or more times in the training data were used in the feature

vectors; the remaining features were discarded. This generated a feature set of 14,432

features in each feature vector. For disease outbreaks, the training data set was much

smaller, containing 125 ProMed documents with answer keys. These provided 1,005 positive

training examples and 2,546 negative training examples. Here too a frequency cutoff of four

was applied to the feature set, resulting in 3,978 features in each feature vector.
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Observe that the training data are highly skewed in favor of the negative examples. In

the test data too, the number of negative examples far surpasses the number of positive

examples. As a result of this skew, classifiers trained on these data tend to be biased towards

the negative class. An SVM or a Näıve Bayes classifier trained on this data tends to achieve

a high accuracy by classifying most examples as negative. Consequently, it turns out that

the recall of such a classifier on identifying event sentences is relatively low. Applying the

trained classifiers to the human-annotated test sentences (100 terrorist event documents

and 120 disease outbreaks documents) we obtained the results shown in Table 6.1. The

table lists the overall accuracy of the classifier, and its precision, recall and F-score on the

two classes. Note that the recall for the SVM on event sentences is 0.41 and 0.31 on the

two domains, respectively. This implies that almost 59% to 69% of the event sentences were

being mislabeled as nonevent sentences by the classifier.

Because most of the event role fillers are mentioned within event sentences, a low recall

on these sentences can be a problem for our IE models. A low recall on event sentences

results in many event sentences getting incorrectly labeled as nonevent sentences by the

classifier. As a result of this, an extraction model can fail to extract role fillers present in

these sentences. Thus, the effect of data skew on sentential event recognition recall is an

issue that needs to be addressed in our IE models.

One way in which the effect of skewed data can be countered is to try alternate thresholds

of the decision boundaries used by the classifiers in making their decisions. In case of

SVMs, the decision is made based on the value of the decision function applied to the test

example. A test example is classified as positive if this value is greater than zero, negative

otherwise. A Näıve Bayes classifier computes the probability of the two classes and assigns

the class with the higher probability (which implicitly implies a threshold of 0.5 for a binary

classifier). Thus, we try other thresholds to influence the balance of positive and negative

classes identified by the classifiers.

To identify the best thresholds in our two classifiers, they were applied to the tuning

Table 6.1: Evaluation of Anskey classifiers

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events (MUC-4)

SVM 0.89 0.83 0.41 0.55 0.89 0.98 0.94
NB 0.83 0.50 0.70 0.58 0.94 0.86 0.90

Disease Outbreaks (ProMed)

SVM 0.75 0.43 0.31 0.36 0.81 0.88 0.84
NB 0.74 0.45 0.53 0.48 0.85 0.80 0.82
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documents in each domain, and evaluated against the answer key annotations (since human

annotations are not available on the tuning data). The tuning data consist of 200 docu-

ments (TST1+TST2) for terrorist events and 20 documents for disease outbreaks, all with

corresponding answer key templates. Table 6.2 shows the results of using various thresholds

for the classifiers in the two domains. For the SVM, the decision values were normalized

between 0.0 and 1.0, and several thresholds within this range were applied. The Näıve

Bayes used probability values for its classification, which were already in between the 0.0

and 1.0 range. For this classifier too, several thresholds in this range were applied.

The table shows that the SVM achieves the highest accuracy at the 0.5 threshold.

However, at this threshold the F-score of the event sentences is only 0.32 for terrorist events

and 0.46 for disease outbreaks. At a threshold of 0.3, we observe a much higher F-score of

0.60 and 0.58 (and a higher recall) on event sentences for the two domains respectively. This

increase in F-score is at the cost of a slightly lower accuracy and a slightly lower F-score

on nonevent sentences. But this trade-off is acceptable if we want a higher recall on event

sentences. The 0.3 threshold for the SVM corresponds to a decision function value of −0.82

for terrorist events and −0.57 for disease outbreaks. Thus, we chose these decision function

values as thresholds for the SVM classifier. The Näıve Bayes classifier, on the other hand,

was not affected very much by the different thresholds. So, we kept the default 0.5 threshold

of the Näıve Bayes for labeling event sentences.

Having used the tuning set to select thresholds for the classifiers, the chosen classifiers

were then applied to the human-annotated test sentences to gauge their true performance on

identifying event sentences in text. Table 6.3 presents the results of applying these selected

classifiers (with the chosen thresholds) to the 100 human-annotated documents for terrorist

events, and the 120 documents for disease outbreaks. Compared to their unmodified

counterparts in Table 6.1 the SVM accuracies are slightly lower, but their performance

Table 6.2: Identifying a threshold for classifiers

Terrorist Events (MUC-4) Disease Outbreaks (ProMed)
Event Nonevent Event Nonevent

Acc Pr Rec F Pr Rec F Acc Pr Rec F Pr Rec F

S
V

M

.1 0.22 0.20 0.99 0.33 0.94 0.03 0.07 0.45 0.39 0.95 0.56 0.85 0.16 0.26

.3 0.83 0.55 0.66 0.60 0.91 0.87 0.89 0.69 0.58 0.58 0.58 0.76 0.76 0.76

.5 0.84 0.86 0.20 0.32 0.84 0.99 0.91 0.72 0.76 0.33 0.46 0.71 0.94 0.81

.7 0.81 0.95 0.03 0.06 0.81 1.00 0.90 0.68 1.00 0.13 0.23 0.66 1.00 0.80

.9 0.81 1.00 0.00 0.01 0.81 1.00 0.89 0.65 1.00 0.03 0.05 0.64 1.00 0.78

N
B

.1 0.82 0.52 0.68 0.59 0.92 0.85 0.88 0.71 0.60 0.66 0.63 0.79 0.74 0.77

.3 0.82 0.53 0.65 0.59 0.91 0.87 0.89 0.72 0.62 0.60 0.61 0.77 0.78 0.78

.5 0.83 0.55 0.63 0.58 0.91 0.88 0.89 0.72 0.63 0.56 0.59 0.76 0.81 0.79

.7 0.83 0.56 0.60 0.58 0.90 0.89 0.89 0.72 0.64 0.55 0.59 0.76 0.82 0.79

.9 0.84 0.58 0.57 0.57 0.90 0.90 0.90 0.70 0.63 0.47 0.53 0.73 0.84 0.78
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Table 6.3: Evaluation of best Anskey classifiers on human annotations

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events (MUC-4)

SVM (−0.82) 0.86 0.54 0.75 0.63 0.95 0.88 0.91
NB (0.5) 0.83 0.50 0.70 0.58 0.94 0.86 0.90

Disease Outbreaks (ProMed)

SVM (−0.57) 0.69 0.38 0.52 0.44 0.84 0.75 0.79
NB (0.5) 0.74 0.45 0.53 0.48 0.85 0.80 0.82

on identifying event sentences is markedly different — achieving a higher recall in both

domains. The Näıve Bayes results are unchanged from before, since we use the default

threshold (of 0.5) for this classifier.

6.2.1.2 Self. To reduce the amount of supervision used in training the classifiers, a self-

training strategy was introduced to train the sentential event recognizer. The self-training

strategy employed for training an SVM sentence classifier uses only a set of seed extraction

patterns, a set of relevant documents and a set of irrelevant documents. Using these data

the SVM is iteratively self-trained to obtain a classifier that is then used to identify event

sentences in text. The details of this training and an evaluation of the classifier are presented

here.

For terrorist events, the sets of relevant and irrelevant documents used in the self-training

were obtained by separating the 1,300 MUC-4 documents into two sets — documents

containing the description of a relevant event and those that do not contain any relevant

events. This was determined by using the answer key templates associated with the

documents. Documents that have a nonempty answer key template are relevant documents,

while those that do not are not. This resulted in 700 relevant and 600 irrelevant documents

for terrorist events. For the disease outbreaks domain we had only a small amount of data

with answer key templates. Consequently, the set of relevant and irrelevant documents were

collected in a different manner for this domain. The relevant document set was collected

by downloading disease outbreak reports from ProMed-mail,1 a freely accessible global

electronic reporting system for outbreaks of diseases. Since the online resource is designed

for the submission of disease outbreak reports, most of the documents obtained from here

were relevant documents. The irrelevant documents were obtained from PubMed,2 an online

repository of biomedical journal abstracts. Specific queries were used to ensure that the

1http://www.promedmail.org

2http://www.pubmed.gov
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documents collected from PubMed were not related to disease outbreaks. As a result of

this process, we obtained 2,000 relevant and 4,000 irrelevant documents with roughly equal

word counts for disease outbreaks.

While the seed patterns used to start off the self-training can be manually created by

human experts, here they were semiautomatically generated from the relevant and irrelevant

documents sets. First, an exhaustive set of patterns was automatically generated using the

AutoSlog-TS [92] system. This set is exhaustive in the sense that patterns are generated to

extract literally every noun phrase in the relevant and irrelevant documents. Appendix C

describes the types of patterns generated by the system. Of these patterns, those appearing

in the data set 50 times or more were ranked by their probability of appearing within a

relevant document. The top 20 patterns from this ranked list (for each domain) were chosen

as the set of seed patterns. We had several ties in probability values, and thus obtained

more than 20 seeds in each data set. To reduce each seed set to 20, the last-ranked patterns

were manually inspected by a human expert and the least relevant patterns were discarded.

The resulting seed patterns are listed in Table 6.4.

The documents and the seed patterns were used in the iterative self-training process to

generate an SVM for each domain. The process employed the SVMlight [56] implementation

of an SVM, using the default configuration with a linear kernel. All of the features that

were used by the Anskey SVM model described earlier were also used for this self-trained

model — a total of 14,432 features and 3,978 features for the terrorist events and the disease

outbreaks, respectively.

The self-training strategy implemented here does not define an automatic stopping

criteria for the iterative process. Additionally, the SVM here had the same problem that

was encountered with the Anskey version — that of skewed data. As a result of the skewed

data, the SVM tends to err on the side of classifying sentences as nonevent sentences,

resulting in a lower recall on event sentences. To remedy this, once again we looked at

thresholds on the decision function of the SVM, with the goal of better balancing the

positive and negative classifications. From an analysis of several SVM thresholds on tuning

data, we determined appropriate thresholds of 0.5 for terrorist events and 0.3 for disease

outbreaks. These thresholded SVMs were iteratively self-trained and evaluated against the

tuning data in each domain to determine the stopping criteria for the iterations. A new

SVM was generated after each iteration, and the one selected was based on its F-score on

event sentence labels. The reason for this is that recall on event sentences is an important

characteristic desired from the classifier.
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Table 6.4: Seed patterns used for self-training

Terrorist Events Seeds Disease Outbreaks Seeds

<subject> exploded <subject> imports
assassination of <np> outbreak on <np>

death of <np> <#th case>
<subject> was kidnapped <subject> was destroyed
murder of <np> outbreak with <np>

caused <dirobj> outbreak from <np>

bogota in <np> <subject> killed people
<subject> was injured crows in <np>

destroyed <dirobj> <# source>
<subject> was located <# crows >

responsibility for <np> <#th cases>
claimed <dirobj> bse in <np>

<subject> was murdered <# mosquito >

<subject> destroyed crow in <np>

<subject> located <# crow>

<subject> caused <subject> spreading
attack against <np> <subject> is outbreak
was taken to <np> dengue in <np>

<subject> took place died of <np>

attack in <np> mosquito in <np>

Table 6.5 summarizes the results of this evaluation on tuning data. Recall that iteration

#0 in this table refers to the seeds that start off the self-training process. Again, we

based our choice of classifier on its F-score on event sentences so as to achieve higher recall

on event sentences. Accordingly, we find that the event sentence F-score of the classifier

levels off (and starts degrading) after the fifth iteration for terrorist events, and after the

second iteration for disease outbreaks. Thus, the classifiers generated at the end of these

iterations, respectively, were selected as the sentential event recognizer in each domain.

To determine the true performance of the selected classifiers, they were then evaluated on

the human-annotated gold standard data sets. Table 6.6 presents the evaluation of these

selected SVMs on the human-annotated data. Even though we selected our classifier based

on its F-score on event sentences, we note that its overall accuracy and its F-score on

nonevent sentences are also relatively high.

6.2.1.3 MIL. Another weakly supervised approach for training a classifier for sentential

event recognition is to use a multiple instance learning strategy. This strategy can train

a classifier for sentence classification, using only document-level labels. Here, we use the

sMIL multiple instance learning framework of Bunescu and Mooney [11] to train an SVM

classifier for using only a set of relevant and irrelevant documents. The sMIL framework is

specifically designed for training from a sparse distribution of the positive examples, which

is precisely the nature of our data set. We use the same documents that were employed
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Table 6.5: Self-training iterations evaluated on tuning data

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events (MUC-4)

(Seeds) Iter #0 0.82 0.64 0.21 0.31 0.84 0.97 0.90
Iter #1 0.83 0.68 0.22 0.33 0.84 0.98 0.90
Iter #2 0.83 0.70 0.23 0.34 0.84 0.98 0.90
Iter #3 0.79 0.46 0.60 0.52 0.90 0.84 0.87
Iter #4 0.78 0.45 0.64 0.53 0.90 0.82 0.86
Iter #5 0.81 0.50 0.58 0.54 0.90 0.86 0.88
Iter #6 0.81 0.51 0.54 0.53 0.89 0.88 0.88
Iter #7 0.81 0.52 0.54 0.53 0.89 0.88 0.88

Disease Outbreaks (ProMed)

(Seeds) Iter #0 0.67 0.80 0.11 0.20 0.66 0.98 0.79
Iter #1 0.69 0.59 0.50 0.55 0.74 0.80 0.77
Iter #2 0.65 0.52 0.62 0.56 0.75 0.67 0.71
Iter #3 0.44 0.37 0.78 0.50 0.66 0.25 0.36
Iter #4 0.46 0.38 0.77 0.51 0.68 0.29 0.41

Table 6.6: Evaluation of best Self classifiers on human annotations

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events SVM (0.5, iter #5) 0.83 0.48 0.73 0.58 0.94 0.85 0.89

Disease Outbreaks SVM (0.3, iter #2) 0.65 0.37 0.70 0.49 0.88 0.64 0.74

previously in the self-training process (Self) for training — a total of 700 relevant and 600

irrelevant documents for terrorist events, and 2,000 relevant and 4,000 irrelevant documents

for disease outbreaks.

Again, the SVM obtained at the end of this process needs to be appropriately thresholded

to achieve a better balance of positive and negative examples identified by the classifier.

Using the tuning data, −0.92 and −0.91 are determined as the best thresholds for the

terrorist events and disease outbreaks, respectively. These thresholds are again determined

based on their F-score on event sentences. The SVM generated from the sMIL technique

is applied to the human-annotated test sentences (100 terrorist event documents and 120

disease outbreaks documents) to evaluate its sentence classification accuracy. These results

are presented in Table 6.7.

6.2.1.4 Summary of the models. To enable a comparison of the three sentential

Table 6.7: Evaluation of best MIL classifiers on human annotations

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events (MUC-4) SVM (−0.92) 0.86 0.58 0.62 0.60 0.92 0.91 0.92

Disease Outbreaks (ProMed) SVM (−0.91) 0.64 0.35 0.64 0.45 0.86 0.64 0.74
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event recognizers (Anskey, Self and MIL) in the Piper model, their evaluation on human

annotations is summarized in Table 6.8. We observe that, despite using different amounts

of supervision, the performance of the weakly supervised Self and MIL classifiers is not

drastically different from the Anskey classifiers. Between the two data sets, the overall

performance of the classifiers is higher on the terrorist events data, indicating a higher level

of difficulty of event recognition in the disease outbreaks data.

On the terrorist event data set, the overall accuracy of all four classifiers is between

83% and 86%. Of the two Anskey classifiers, the SVM-based classifier is clearly superior in

the terrorism domain, achieving a higher overall accuracy and higher F-scores on the two

labels. Of the weakly supervised classifiers, the Self model achieves a recall of 0.73 on the

terrorism event sentences, just 2% lower than the AnskeySVM model, but has a precision

6% lower. The MIL model, on the other hand, has a much higher precision of 0.58 on the

terrorism event sentences, but at the cost of much lower recall of 0.62. Between the two

weakly supervised classifiers there is an even precision-recall trade-off on the terrorism event

sentences, with the self-trained classifier achieving greater recall. Overall, for the terrorist

events data, AnskeySVM is the best classifier among the four, and illustrates the benefits of

the greater supervision.

On the disease outbreaks data set the overall performance of all classifiers is somewhat

lower, in the range 64% through 74%. Additionally, the trends in performance are different

from those seen in the terrorist events data set. In this domain, between the two Anskey

classifiers, the Näıve Bayes Anskey classifier achieves better overall performance (accuracy

and F-scores on the two labels) than the SVM. This is likely due to the much smaller size

of the disease outbreaks training data set, which may have a greater effect on the SVM.

Even though AnskeyNB achieves the best overall accuracy of 74%, the weakly supervised

classifiers have a greater recall on the disease outbreaks event sentences. On this data

Table 6.8: Evaluation of event recognizers on human annotations

Event Nonevent

Acc Pr Rec F Pr Rec F

Terrorist Events (MUC-4)

AnskeySVM (−0.82) 0.86 0.54 0.75 0.63 0.95 0.88 0.91
AnskeyNB (0.5) 0.83 0.50 0.70 0.58 0.94 0.86 0.90
SelfSVM (0.5, iter #5) 0.83 0.48 0.73 0.58 0.94 0.85 0.89
MILSVM (−0.92) 0.86 0.58 0.62 0.60 0.92 0.91 0.92

Disease Outbreaks (ProMed)

AnskeySVM (−0.57) 0.69 0.38 0.52 0.44 0.84 0.75 0.79
AnskeyNB (0.5) 0.74 0.45 0.53 0.48 0.85 0.80 0.82
SelfSVM (0.3, iter #2) 0.65 0.37 0.70 0.49 0.88 0.64 0.74
MILSVM (−0.91) 0.64 0.35 0.64 0.45 0.86 0.64 0.74
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set, the Self classifier has a 13% higher recall and 8% lower precision on event sentences

compared to the AnskeyNB classifier, resulting in a slightly (1%) higher F-score. Going by

this measure, the self-trained classifier is the best in this domain. On the other hand, going

by overall accuracy (and precision on event sentences), the AnskeyNB classifier is found to

do well for disease outbreaks.

Table 6.9 presents a slightly different perspective for evaluating classifier performance.

Each of these classifiers identifies event sentences for the localized text extraction model,

and discards nonevent sentences. The extraction model can then focus on extracting event

role fillers only from the event sentences identified by the classifiers. Thus, from the point

of view of the extraction model, a higher proportion of event sentences within the classified

data set can help improve extraction precision, since the extraction model would be less

distracted by the irrelevant information in nonevent sentences. On the other hand, any

event sentences incorrectly classified as nonevent sentences negatively affects the extraction

model, since it is unable to extract role fillers from the discarded sentences. These two

properties of the classified data are captured in Table 6.9. The Nonevent Recall and Event

Recall columns in the Classifier side of the table list the recall of the classifiers on the two

labels (taken directly from Table 6.8). The EvSent Ratio column in the Data side of the

table lists the proportion of event sentences that remain after filtering the sentences labeled

as nonevent sentences by the classifier. The EvSent Lost column lists the percentage of event

sentences erroneously classified as nonevent sentences (i.e., discarded) by the classifier.

The “All EvSent” rows in both domains indicate the original state of the data, when no

classifier is applied. This is equivalent to applying a classifier that classifies all sentences as

event sentences. We observe from the original distribution of the data that only 16% of the

Table 6.9: Classifier effect on data sets

Classifier Data

Event Nonevent EvSent EvSent

Recall Recall Ratio Lost

Terrorist Events (MUC-4)

All EvSent 1.00 0.00 16% 0%
AnskeySVM (−0.82) 0.75 0.88 55% 25%
AnskeyNB (0.5) 0.70 0.86 48% 30%
SelfSVM (0.5, iter #5) 0.73 0.75 36% 27%
MILSVM (−0.92) 0.62 0.91 56% 38%

Disease Outbreaks (ProMed)

All EvSent 1.00 0.00 23% 0%
AnskeySVM (−0.57) 0.52 0.75 39% 48%
AnskeyNB (0.5) 0.53 0.80 44% 47%
SelfSVM (0.3, iter #2) 0.70 0.64 36% 30%
MILSVM (−0.91) 0.64 0.64 35% 36%
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sentences are event sentences in the terrorist event data, and only 23% of the sentences are

event sentences in the disease outbreaks data. The proportion of event sentences changes

significantly after applying our sentential event classifiers. In the terrorist events data, the

MIL classifier changes proportion of event sentences to almost 56%. But this is at the cost

of 38% of event sentences incorrectly discarded (classified as nonevent). The AnskeySVM,

on the other hand, achieves a similar event sentence proportion of 55%, at the cost of losing

only 25% of the event sentences. On the disease outbreaks data, we find that both Anskey

classifiers are quite aggressive, with AnskeyNB losing almost 47% of the event sentences,

in improving the event sentence proportion from 23% to about 44%. In this analysis, the

weakly supervised Self classifier appears to be much better, losing only 30% of the event

sentences and improving the event sentence proportion from 23% to 36%.

From this analysis, the AnskeySVM classifier appears to be the best sentential event

recognizer for the terrorist events IE task, and the SelfSVM classifier appears to be the best

for the disease outbreaks IE task.

6.2.2 The Glacier Model

Chapter 4 (Section 4.2) describes sentential models for estimating the probabilities of

event sentences in given documents. A probabilistic Näıve Bayes approach and a normalized

SVM approach are presented for obtaining these probabilities. Both approaches estimate

the probability of each sentence being an event or nonevent sentence based on features

associated with the sentence. These models are exactly the same as the Anskey classifiers

in the Piper model. However, unlike the sentential event recognizers of the Piper model,

these classifiers are not used for classification, but for generating probability estimates

of event sentences. An evaluation of these probability estimates would require human

judgements of probability estimates on sentences in the data set. Such human estimates

are much harder to obtain, as compared to event/nonevent labels, which makes it difficult

to evaluate the estimates from the classifiers. A rough idea of their performance was seen

in the previous section evaluating the sentential event recognizers of the Piper model. In

that evaluation, the thresholded Anskey classifiers were evaluated on human annotations.

It was found that the SVM performed well on the terrorist events data set, while the Näıve

Bayes classifier worked well on the disease outbreaks data. The next section evaluates the

full-fledged IE systems and provides an indirect assessment of probability values from the

Glacier sentential event recognizers.
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6.3 IE Evaluation Data and Methodology

Having evaluated the sentential components of our two models for IE, we can now employ

these within the complete IE system for event role identification. The models are applied

to test data to empirically illustrate the need in IE for event description information in the

wider context. The evaluation serves to show the benefit of using a unified probabilistic

model over a pipelined approach for incorporating information from the wider context. Our

models for IE are also compared against other IE systems that rely only on local contextual

information for identifying event role fillers in text.

Like the sentential event recognizers, the IE models are evaluated on two types of events

— terrorist events and disease outbreaks. The test data consist of 200 documents from the

MUC-4 data set for terrorist events and 120 ProMed documents for disease outbreaks. All of

these documents come with corresponding IE answer key templates. The task for terrorist

event (MUC-4) IE is to identify five types of event role fillers from reports about terrorist

events: weapon, perpetrator organization, perpetrator individual, victim and physical target.

For the disease outbreaks domain, the IE models are required to extract two types of event

role fillers from the test documents: disease, victim. Recall that an answer key template

contains event role filler strings from the corresponding document. A document may have

one or more event templates for the various event descriptions within it. A document may

have no event templates if it does not contain any relevant events. The IE systems are

evaluated on all of the test documents.

The complete IE task (the Scenario Template task) requires the IE system to create

event templates, one template per incident. Template generation is a complex process,

requiring coreference resolution and discourse analysis to determine how many incidents

were reported and which facts belong with each incident. Our work focuses on extraction

of event role strings and not template generation, so we evaluated our IE models directly

on the extractions themselves, before template generation would take place. For example,

suppose that the word grenade is extracted as the weapon used in a terrorist event. This

extraction is presumed to be a correct extraction if any of the answer key templates

associated with this document contains grenade as the role filler for the weapon event role.

This approach directly measures how accurately the models identify event role information,

without confounding factors from the template generation process. For example, if a

coreference resolver incorrectly decides that two extractions are coreferent and merges them,

then only one extraction would be scored. We use a head noun scoring scheme, where an

extraction is considered to be correct if its head noun matches the head noun in the answer
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key.3 Also, pronouns were discarded from both the system responses and the answer keys

since no coreference resolution is done. Duplicate extractions (e.g., the same string extracted

by different patterns) are conflated before being scored, so they count as just one hit or one

miss.

A scoring program implementing these extraction scoring rules is used to compute the

precision, recall and F-score for the various IE models. The precision of an IE system can

be computed based on the fraction of extracted role filler strings correctly matched to the

answer key templates. Similarly, the coverage or recall of the system can be calculated

based on the fraction of strings in the answer key templates that were extracted by the

system. The precision, the recall and their harmonic mean (the F-score) over a test data

set are used as the measure of success of the IE models.

6.4 Baselines for IE Evaluation

To determine whether our IE models perform better than existing approaches, we

compare their performance on two IE tasks to that of baseline IE systems that rely only on

the local context surrounding the candidate extractions. The baselines include an existing

pattern-based IE system and a classifier-based system. Additionally, an extraction system

that simply uses the semantic classes of words is evaluated as a third baseline.

6.4.1 AutoSlog-TS

The first baseline used in this evaluation is an existing pattern-based IE system called

AutoSlog-TS [92]. This system uses lexico-syntactic extraction patterns for identifying event

role fillers in text. The patterns are learned in a weakly supervised manner from a set of

relevant and irrelevant documents. Figure 6.1 presents an overview of the AutoSlog-TS

system. The system first generates an exhaustive set of extraction patterns, such that they

literally extract every noun phrase in the relevant and irrelevant documents. The types

of patterns generated by AutoSlog-TS are listed in Appendix C. The primary component

of this system is the pattern ranking module which ranks the exhaustive set of extraction

patterns based on their likelihood of occurring within a relevant document. It uses a ranking

metric called rlogf for this purpose. A human expert then examines the patterns near the

top of the list and selects the best patterns for the task at hand. Additionally, the human

expert is also tasked with separating the patterns into groups based on the event role fillers

they extract. Thus at the end of this process, the system obtains extraction patterns for

3For example, “armed men” will match “five armed men.”
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Figure 6.1: Overview of the AutoSlog-TS IE system

each event role in the IE task. These IE patterns are then applied by the system to unseen

text documents to extract event role fillers from them.

The AutoSlog-TS system is freely available software, which comes trained for the MUC-4

terrorist event IE task, and for the ProMed IE task of extracting information about disease

outbreaks. The system consists of 600 extraction patterns for the MUC-4 terrorist events,

and 111 extraction patterns for the ProMed disease outbreaks IE task. Table 6.10 presents

the IE evaluation of this system on test sets in the two domains. The table includes the

aggregate performance at this task, and the performance of the system broken down by

event role. Because we do not do template generation, these scores cannot be directly

compared to existing IE systems that have been designed for these data sets. However,

with this caveat, these performance numbers are in the same ballpark as those achieved by

other IE systems.4 So, this baseline is indeed a competent one.

6.4.2 Unconstrained Näıve Bayes Extractor

The unified probabilistic model for IE presented in this research consists of a phrasal

component called the Plausible Role-Filler Recognizer, which is conditioned on event sen-

Table 6.10: AutoSlog-TS evaluation on the test data

Terrorist Events (MUC-4) Disease Outbreaks (ProMed)
Event Role Pr Rec F Event Role Pr Rec F

PerpInd 0.33 0.49 0.40 Disease 0.33 0.60 0.43
PerpOrg 0.52 0.33 0.41 Victim 0.36 0.49 0.41
Target 0.54 0.59 0.56 Aggregate 0.35 0.53 0.42
Victim 0.48 0.54 0.51
Weapon 0.38 0.45 0.41
Aggregate 0.45 0.50 0.47

4For a summary of MUC-4 performance scores, see the work by Chieu et al. [15].
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tences so as to incorporate event information from the wider sentential context. If the effect

of the sentential component were to be eliminated from this model, the plausible role-filler

recognizer would then become an unconditioned classifier-based extraction system, which

relies on the local contextual evidence surrounding the phrases for recognizing event role

fillers. Thus, as our second baseline, we train a Näıve Bayes IE classifier (unconditioned NB)

that is analogous to the plausible role-filler recognizer in the Glacier IE model, except

that this baseline system is not conditioned on the assumption of having event sentence

information. Consequently, this unconditioned NB classifier is akin to a traditional super-

vised learning-based IE system that uses only local contextual features to make extraction

decisions. Formally, the unconditioned NB classifier uses the formula:

P (PlausFillr(NPi)|F )

=
1

P (F )
P (PlausFillr(NPi)) ∗

∏

fi∈F

P (fi|PlausFillr(NPi)) (6.1)

where F is the set of local features, P (F ) is the normalizing constant, the product term

in the equation is the likelihood, and P (PlausFillr(NPi)) is the prior probability, which

is obtained from the ratio of the class labels in the training data. For this unconditioned

NB system we again use the Weka Toolkit [122] implementation of Näıve Bayes, with the

default classifier configuration. The features used in this system are obtained in exactly

the same way (described in Chapter 4, Section 4.4) as they were for Glacier’s plausible

role-filler recognizer.

The unconditioned NB classifier is trained using the answer key templates associated

with the training documents for the MUC-4 and ProMed data sets. The answer keys

are used to create approximate annotations of noun phrases as being a filler for an event

role or not. We identify all instances of each answer key string in the source document

and consider these as positive training examples. All other noun phrases in the document

that do not match an answer string in the answer key template are considered as negative

examples for training. This produces noisy training data, however, because some instances

occur in undesirable contexts. For example, if the string “man” appears in an answer key

as a victim, one instance of “man” in the text document may refer to the actual victim

in an event sentence, while another instance of “man” may occur in a nonevent context

(e.g., background information) or may refer to a completely different person. Using these

approximate annotations, unconditioned NB classifiers are trained for extracting event role

fillers for the MUC-4 terrorist events, and for the ProMed disease outbreaks IE tasks.
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The trained unconditioned NB classifiers are applied to the test data in the two domains,

and evaluated against the answer key templates on their precision, recall and F-score.

For the Näıve Bayes classifier, the natural threshold for distinguishing between positive

and negative classes is 0.5, but we also evaluated the classifier with thresholds of 0.7 and

0.9 to see if we could effect a recall/precision tradeoff. Table 6.11 presents the results of

the unconditioned NB systems. The classifier performs comparably to the AutoSlog-TS

baseline on most event roles, although a threshold of 0.90 is needed to reach comparable

performance on the disease outbreaks data. The relatively low numbers across the board

indicate that these corpora are challenging, but these results suggest that our plausible

role-filler recognizer is competitive with other IE systems.

6.4.3 Semantic Class Extractor

Both of the models for IE presented in the dissertation (Piper and Glacier) advocate

the need for evidence from the wider context to enable the use of local contextual information

for identifying event role fillers. By recognizing event descriptions in the wider context, much

weaker local contextual clues can now be useful for identifying event role fillers in text. If the

semantics of an entity match those expected of an event role filler, then within the context

of an event description this evidence can sometimes be sufficient to extract that entity as

an event role filler. For example, if we see a weapon word (like gun) mentioned within the

context of a terrorist event description, this information can be sufficient to extract the

weapon word as the instrument used in the terrorist event. Thus, we implement a baseline

extraction system that simply extracts certain semantic class words as event role fillers, if

they appear in an event sentence context.

This baseline system uses the two-stage pipelined approach of the Piper model. It

Table 6.11: Unconditioned NB evaluation on the test data

NB 0.5 NB 0.7 NB 0.9
Event Role Pr Rec F Pr Rec F Pr Rec F

Terrorist Events (MUC-4)

PerpInd 0.36 0.34 0.35 0.41 0.25 0.31 0.51 0.17 0.25
PerpOrg 0.35 0.46 0.40 0.43 0.31 0.36 0.56 0.15 0.24
Target 0.53 0.49 0.51 0.58 0.42 0.48 0.67 0.30 0.41
Victim 0.50 0.50 0.50 0.58 0.37 0.45 0.75 0.23 0.36
Weapon 1.00 0.05 0.10 1.00 0.04 0.07 1.00 0.02 0.04

Aggregate 0.55 0.37 0.44 0.60 0.28 0.38 0.70 0.17 0.27

Disease Outbreaks (ProMed)

Disease 0.20 0.73 0.31 0.23 0.67 0.34 0.34 0.59 0.43
Victim 0.29 0.56 0.39 0.37 0.52 0.44 0.47 0.39 0.43

Aggregate 0.25 0.65 0.36 0.30 0.60 0.40 0.41 0.49 0.44
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first applies a sentential event recognizer component to the input text, and then extracts

event role fillers from the event sentences based on their semantic classes. To decide which

semantic classes to extract as event role fillers, this baseline uses the semantic class to

event role mapping that were created for the semantic affinity model (described in Chapter

3, Section 3.4.2). Recall that this semantic class mapping is based on a human expert’s

knowledge of the event domains. Based on real world knowledge of event contexts, semantic

classes that tend to be role fillers for specific event roles are mapped to those event roles.

For example, buildings are usually targets of terrorist attacks, so the building semantic class

is mapped to the physical target event role in terrorist events. Using this mapping, event

role fillers are extracted by this baseline from event sentences.

The semantic classes of words and phrases in text are identified using the semantic class

tagger included in the Sundance NLP system [95]. This tagger is based on dictionary lookups

in a semantic dictionary. The Sundance system consists of semiautomatically created dictio-

naries of about 65,200 words, of which about 7,600 words appear in a domain-independent

dictionary, 1,200 words appear in a terrorism-specific dictionary, and the remaining 56,400

words5 appear in a biomedical dictionary. The nouns in this dictionary have semantic

classes associated with them from a set of about 171 semantic classes. The event sentences

in this experiment are obtained using the Anskey sentential event recognizer, which is a

supervised classifier trained on approximate sentence annotations using the IE answer key

templates. Based on the performance scores of the variations of this classifier presented

in Section 6.2, we use the SVM (-0.82) Anskey classifier for the terrorist events data, and

the NB (0.5) Anskey for the disease outbreaks data. Using the sentential event recognizer,

the Sundance-based semantic tagger, and the semantic class to event role mapping, this

baseline system extracts event role fillers from event sentences in a given document.

Table 6.12 shows the results of this system on the two test data sets. Observe that on

Table 6.12: Semantic class baseline evaluation on the test data

Terrorist Events (MUC-4) Disease Outbreaks (ProMed)
Event Role Pr Rec F Event Role Pr Rec F

PerpInd 0.34 0.46 0.39 Disease 0.12 0.70 0.20
PerpOrg 0.30 0.55 0.39 Victim 0.12 0.65 0.20
Target 0.24 0.78 0.36 Aggregate 0.12 0.68 0.20
Victim 0.18 0.48 0.26
Weapon 0.34 0.69 0.45
Aggregate 0.24 0.57 0.34

5A large number of biomedical terms in this dictionary, like diseases and symptoms, have been obtained
automatically from the UMLS [66] ontology.
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three of the terrorism event roles — PerpInd, PerpOrg and Weapon — this simple strategy

matches the performance of the pattern-based AutoSlog-TS system. In fact, the Weapon

event role clearly surpasses the AutoSlog-TS baseline. However, on the remaining event

roles there is a sharp performance drop in comparison with AutoSlog-TS. In these cases,

the semantic extractions get a high recall, but are extremely poor on precision. Note that

the event roles that match AutoSlog-TS in performance are those whose role fillers are

closer together in the semantic space, and more clearly distinguishable from other semantic

classes. For example, perpetrator words like assailant, terrorist and militant are strongly

associated with perpetrators of terrorism, and are clearly distinguishable from the other role

fillers. Similarly, weapon words like grenade, explosive and rifle are strongly associated with

the weapon event role and can be easily told apart from the other event roles. The victim

event role fillers on the other hand can be filled by any of the human entities mentioned

in the text, such as the reporter, chairman and president, who could just as easily play

any other event roles (or no event roles) and are not particularly tied to the victim event

role. The semantic notion of this event role is, therefore, somewhat nebulous and requires

more contextual evidence to enable a clearer delineation of “victims” in the semantic space.

Similarly, the disease event role fillers are names of diseases, but not all mentions of disease

names appear as an outbreak. Some diseases are ongoing infections, others are mentioned

to compare symptoms with an outbreak. A common occurrence we found in these data was

the extraction of general terms such as “an illness,” “a virus” and “a disease” as disease

terms. None of these cases satisfy the definition of an outbreak, and require additional

contextual information to filter out the incorrect role fillers. This illustrates that only

relying on semantics of the potential role fillers is not sufficient for their extraction from

event sentences.

6.5 Piper Model Evaluation

Chapter 3 describes several configurations of the Piper model for event role extraction

that combine variations of the sentential event recognizer with variations of a pattern-based

localized text extraction module, organized in a pipeline. All of these configurations consist

of a sentential event recognizer that identifies event sentences in text, followed by a pattern-

based text extraction component applied to the event sentences identified by the sentential

component. We evaluate these IE models here on the two domains, and compare these

results against those of the baseline IE systems.
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6.5.1 PiperAnskey/LexAff

This configuration of the Piper model consists of the Anskey approach for the sentential

event recognizer and the LexAff approach for the localized text extraction module. The

sentential event recognizer uses a supervised classifier, trained on approximate annotations

from the answer key templates, for identifying event sentences in text. The localized

text extraction component is a pattern-based extraction system that learns extraction

patterns using a lexical affinity metric computed from answer strings in the answer key

templates. This combination in the pipeline requires the most supervision of the various

Piper configurations, since both components use IE answer key templates in their training

strategies.

The sentential event recognizer used for event sentence identification in the terrorism

domain is an SVM thresholded at −0.82, and in the disease outbreaks domain is a Näıve

Bayes classifier thresholded at 0.5. These classifiers and their corresponding thresholds

were selected based on the evaluation of the sentential event recognizers described earlier in

Section 6.2. The classifiers were applied to text documents to identify a subset of sentences

that contain event descriptions. The localized text extraction component then provided

ranked patterns for identifying event roles. The performance of this IE model was measured

based on its accuracy of the event role fillers extracted.

The patterns learned by the localized text extraction component were obtained by first

generating an exhaustive set of all possible extraction patterns in the training data using

the AutoSlog pattern generation system. All patterns that appeared three times or less in

the training data were discarded. Additionally, a lower probability threshold θl of 0.5 was

applied to discard those patterns whose probability of appearing in relevant documents was

0.5 or lower. The remaining patterns were then ranked using the lexical affinity metric,

which uses answer key strings to identify appropriate patterns for use within the event

sentences. A separate ranking of these patterns was created for each event role to be

extracted. Top N patterns, for chosen values of N , were then selected for each event role

and applied to the event sentences to extract event role fillers.

The parameter N , therefore, needed to be determined for each event role, before the

model could be evaluated on the test data. This parameter was determined in our experi-

ments by applying the model to tuning data in each domain, and measuring IE performance

for a range of values of N . Table 6.13 shows these results on the tuning set (200 documents

for terrorist events, 20 documents for disease outbreaks) for values of N ranging from 50

through 250. Each set of top N patterns was applied only to the event sentences identified
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Table 6.13: Parameter tuning for PiperAnskey/LexAff

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

N P R F P R F P R F P R F P R F

50 .32 .13 .18 .38 .11 .18 .50 .43 .46 .49 .40 .44 .73 .45 .56
100 .29 .23 .25 .44 .20 .27 .41 .46 .43 .45 .44 .44 .69 .49 .57
150 .27 .23 .25 .41 .21 .28 .41 .52 .46 .40 .46 .43 .64 .51 .57
200 .26 .26 .26 .30 .32 .31 .39 .56 .46 .35 .47 .40 .55 .53 .54
250 .25 .30 .27 .30 .32 .31 .39 .56 .46 .36 .49 .41 .55 .53 .54

Disease Outbreaks (ProMed)
Disease Victim

N P R F P R F

50 .50 .32 .39 .67 .31 .43
100 .35 .37 .36 .60 .38 .46
150 .33 .37 .35 .50 .41 .45
200 .33 .37 .35 .50 .41 .45
250 .30 .37 .33 .50 .44 .47

by the sentential event recognizer. Extractions from these sentences were evaluated against

the role fillers listed in the answer key templates. The precision, recall and F-score was

computed for each value of N across the various event roles. Based on this experiment, the

values of N selected for each event role are shown by the highlighted cells in Table 6.13.

To enable a comparison of our IE model with other systems and with the baseline

systems, our selected model was then evaluated on the test data, which consist of 200

MUC-4 documents for terrorist events and 120 ProMed documents for disease outbreaks,

along with their answer key templates. The evaluation of the PiperAnskey/LexAff model

on the official test data is presented in the highlighted rows of Table 6.14. The rows

labeled “PiperAR-All” present the results of applying the lexical affinity patterns to the

entire test set, without the use of the sentential event recognizer. These results show the

Table 6.14: PiperAnskey/LexAff evaluation on the test data

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

PiperAR-All .19 .43 .27 .36 .51 .42 .43 .45 .44 .38 .55 .44 .44 .55 .49
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
PiperAR-Sel .26 .38 .31 .46 .45 .45 .54 .45 .49 .48 .50 .49 .48 .55 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

PiperAR-All .38 .54 .45 .28 .48 .35
PiperAR-Rel .43 .51 .47 .33 .43 .38
PiperAR-Sel .40 .52 .45 .30 .45 .36
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20
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performance of the lexical affinity patterns by themselves, without the support provided by

event sentences. On the other hand, the rows labeled “PiperAR-Rel” enumerate the results

of the case where the patterns are applied only to event sentences (from the sentential

event recognizer). These results are the true results of our pipelined approach. Finally,

the “PiperAR-Sel” rows present results of our enhanced version of the pipelined model,

which separates primary patterns from secondary patterns. In this enhancement, the top

N patterns are separated into two sets — primary and secondary patterns — based on

threshold θu applied to their probability of appearing in relevant documents. Patterns with

a probability greater than 0.8 are considered primary patterns, and those with a probability

of 0.8 or less are considered secondary patterns. The primary patterns are applied to the

entire tuning data set, while the secondary patterns are applied only to the event sentences

identified by the sentential component. This enhancement to the pipelined model allows

certain patterns representing extremely strong local evidence to override the event sentence

information.

Looking at the PiperAR-All rows, we see relatively good recall on most event roles,

but the precision is usually low. Comparing PiperAR-All with PiperAR-Rel, we observe

that in every case precision improves, demonstrating that our sentence classifier is having

the desired effect. However, the precision gain comes with some loss in recall points. By

selectively applying patterns in the PiperAR-Sel method, we see some of the lost recall

gained back in four of the seven event roles. However, a comparison of the F-scores shows

that the PiperAR-Rel model is preferred over the other two PiperAnskey/LexAff models.

For comparison, results from the baseline IE systems are presented in the rows below the

highlighted rows. The rows labeled “AutoSlog-TS” contains the results of the AutoSlog-TS

IE system. The rows labeled “NB-Ex” contain the results of the unconstrained Näıve Bayes

classifier. The rows labeled “Sem-Ex” contain the results of the semantic class extrac-

tor. Comparing the PiperAnskey/LexAff model with the baselines, we see that PerpOrg,

Weapon and Disease event roles get a better F-score than all of the baselines. The

PerpInd event role in the terrorist events data and the Victim event role in the disease

outbreaks data have F-scores lower than the baselines, primarily due to lower precision.

On the other hand, the Target and Victim event roles in the terrorist events data have

F-scores slightly lower than the baseline primarily due to their lower recall on the IE task.

6.5.2 PiperSelf/SemAff

This configuration of the Piper model consists of the Self approach for the sentential

event recognizer and the SemAff approach for the localized text extraction module. The
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sentential event recognizer uses a self-trained classifier, trained on a set of relevant docu-

ments, irrelevant documents and a set of seeds. The localized text extraction component is

a pattern-based extraction system that learns extraction patterns using a semantic affinity

metric computed from relevant and irrelevant documents. This combination in the pipeline

requires less supervision, since both components require only document-level relevance

annotations, and some seed extraction patterns for the classifier.

The sentential event recognizer used for event sentence identification in the terrorism

domain was an SVM thresholded at 0.5, and in the disease outbreaks domain was an SVM

thresholded at 0.3. These classifiers and their corresponding thresholds were selected based

on the evaluation of the sentential event recognizers described earlier in Section 6.2. The

classifiers were tasked with identifying event sentences in the text documents provided to

them. The localized text extraction component then used extraction patterns for identifying

event roles within the classified event sentences. The performance of this IE model was

measured based on its accuracy of the event role fillers extracted.

The patterns learned by the localized text extraction component were obtained by first

generating an exhaustive set of all possible extraction patterns from the training data

using the AutoSlog system. All patterns that appeared three times or less in the relevant

and irrelevant documents were discarded. Additionally, a lower probability threshold θl

of 0.5 was applied to discard those patterns whose probability of appearing in relevant

documents was 0.5 or lower. The remaining patterns were then ranked using the semantic

affinity metric, which uses relevant and irrelevant documents along with a manually created

mapping between semantic classes and event roles. A separate ranking of these patterns was

generated for each event role using the semantic affinity metric. The top-ranked patterns

from these ranked lists were then applied to the event sentences identified by the sentential

component. Like before, parameter N — the top-ranked patterns selected for each event

role — was determined using the tuning data set in each domain. The top N ranked

patterns for each event role were then selected based on our parameter tuning.

The selected model was then evaluated on the official test data for comparison with the

baseline systems and other IE models. The evaluation of the PiperSelf/SemAff model on

the official test data is presented in the highlighted rows of Table 6.15. The rows labeled

“PiperSS-All” present the results of applying the semantic affinity patterns to all sentences

in the test set. The rows labeled “PiperSS-Rel” enumerate the results of the case where

the patterns are applied only to event sentences (from the self-trained sentential event

recognizer). These results are the true results of our pipelined approach. Finally, the
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Table 6.15: PiperSelf/SemAff evaluation on the test data

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

PiperSS-All .28 .45 .34 .36 .51 .42 .37 .58 .45 .41 .42 .42 .36 .64 .46
PiperSS-Rel .40 .42 .41 .47 .39 .43 .45 .52 .48 .52 .36 .42 .48 .55 .51
PiperSS-Sel .40 .44 .42 .47 .40 .43 .45 .53 .48 .52 .39 .45 .45 .57 .50
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
PiperAR-Sel .26 .38 .31 .46 .45 .45 .54 .45 .49 .48 .50 .49 .48 .55 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

PiperSS-All .32 .59 .41 .34 .53 .41
PiperSS-Rel .33 .58 .42 .35 .53 .42
PiperSS-Sel .33 .58 .42 .35 .53 .42
PiperAR-Rel .43 .51 .47 .33 .43 .38
PiperAR-Sel .40 .52 .45 .30 .45 .36
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20

“PiperSS-Sel” rows present results of our enhanced version of the pipelined model, which

separates primary patterns from secondary patterns, then applies primary patterns to all

sentences and secondary patterns only to the event sentences. Patterns with a probability

greater than 0.8 are considered primary patterns, and those with a probability of 0.8 or

less are considered secondary patterns. This enhancement to the pipelined model allows

certain patterns representing extremely strong local evidence to override the event sentence

information. For comparison, the evaluation results of the PiperAnskey/LexAff model and

the baseline models are presented in the rows below the highlighted rows.

We observe that the PiperSelf/SemAff model has greater IE coverage. Compared to

the PiperAnskey/LexAff model, it achieves a higher recall on almost all event roles except

PerpOrg and Victim. Additionally, we see that two event roles — PerpInd in the

terrorist events data set, and Victim in the disease outbreak data — show an improvement

in performance as a result of the greater recall. Comparing PiperSS-All with PiperSS-Rel,

we observe that precision improves in every case. However, in the disease outbreaks data

set the precision improvement is quite small (1% on each event role), indicating that the

self-trained SVM is eliminating relatively fewer nonevent sentences in this domain. By

selectively applying patterns in the PiperSS-Sel method, we see small improvements in recall

over PiperSS-Rel with no precision loss on almost all event roles in the terrorist events data

set (except Weapon). The PiperSS-Sel model appears to have no change in performance

over PiperSS-Rel on the disease outbreaks data. Overall, however, a comparison of the
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F-scores shows that the PiperSS-Sel model is preferred over the other two PiperSelf/SemAff

models. Compared with the baseline IE models, the PiperSelf/SemAff model closely matches

the performance of the best baselines in the disease outbreaks IE task, while it surpasses

the baselines for the PerpInd, PerpOrg and Weapon event roles (by 2%, 2% and 6%,

respectively) for the terrorism IE task. This result is notable, because PiperSelf/SemAff is

fully automated and uses less supervision as compared to the best baselines.

6.5.3 PiperMIL/SemAff

In addition to the self-trained SVM classifier for event sentence identification, a multiple

instance learning approach was also explored for the sentential event recognizer. In this

configuration of the Piper model, the SVM for sentence classification, trained using a

multiple instance learning strategy (MIL), is paired with the semantic affinity patterns

(SemAff) for identifying event role fillers in event sentences. Like the self-trained SVM, the

MIL approach also aims to use lower amounts of supervision in the form of relevant and

irrelevant documents.

The sentential event recognizer used for event sentence identification in the terrorism

domain was an SVM thresholded at −0.92, and the one in the disease outbreaks domain

was an SVM thresholded at −0.91. The classifiers and their corresponding thresholds

were selected based on the evaluation of the sentential event recognizers described earlier

in Section 6.2. Similarly, the top N semantic affinity patterns were chosen based on the

parameter tuning approach described in the previous sections. With the two components

trained and tuned, the PiperMIL/SemAff model for IE was then evaluated on the test sets.

The highlighted rows in Table 6.16 contain the evaluation of this IE model. As in the

previous Piper model evaluations, the rows labeled “PiperMS-All” present the results of

applying the semantic affinity patterns to all sentences in the test set. The rows labeled

“PiperMS-Rel” enumerate the results of the case where the patterns are applied only to

event sentences (from the MIL sentential event recognizer). Finally, the “PiperMS-Sel”

rows present results of our enhanced version of the pipelined model, which separates pri-

mary patterns from secondary patterns, then applies primary patterns to all sentences and

secondary patterns only to the event sentences. Patterns with a probability greater than 0.8

are considered primary patterns, and those with a probability of 0.8 or less are considered

secondary patterns. For comparison, the evaluation results of the PiperAnskey/LexAff model,

the PiperSelf/SemAff model and the baseline models are presented in the rows below the

highlighted rows.

Since PiperMIL/SemAff uses similar amounts of supervision as the PiperSelf/SemAff , and
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Table 6.16: PiperMIL/SemAff evaluation on the test data

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

PiperMS-All .28 .45 .34 .36 .51 .42 .37 .58 .45 .41 .42 .42 .36 .64 .46
PiperMS-Rel .44 .38 .41 .45 .34 .39 .44 .46 .45 .55 .37 .44 .51 .53 .52
PiperMS-Sel .44 .41 .42 .47 .40 .43 .44 .51 .47 .55 .39 .45 .48 .55 .51
PiperSS-Rel .40 .42 .41 .47 .39 .43 .45 .52 .48 .52 .36 .42 .48 .55 .51
PiperSS-Sel .40 .44 .42 .47 .40 .43 .45 .53 .48 .52 .39 .45 .45 .57 .50
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
PiperAR-Sel .26 .38 .31 .46 .45 .45 .54 .45 .49 .48 .50 .49 .48 .55 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

PiperMS-All .32 .59 .41 .34 .53 .41
PiperMS-Rel .37 .50 .43 .40 .45 .43
PiperMS-Sel .35 .54 .43 .37 .52 .43
PiperSS-Rel .33 .58 .42 .35 .53 .42
PiperSS-Sel .33 .58 .42 .35 .53 .42
PiperAR-Rel .43 .51 .47 .33 .43 .38
PiperAR-Sel .40 .52 .45 .30 .45 .36
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20

also has the same pattern learning component (SemAff), its IE results are also quite similar.

Overall, we see that PiperMIL/SemAff has a slightly higher precision on all event roles except

PerpOrg and Target indicating that it is slightly better at filtering out unwanted nonevent

sentences. A comparison between PiperMS-Rel and PiperMS-Sel shows that the use of

primary and secondary patterns with this sentential event recognizer results in strong recall

gains on almost all event roles. This indicates that the PiperMS-Sel model is preferred

over the other two PiperMIL/SemAff models. A comparison across all the Piper models

shows that the supervised model PiperAnskey/LexAff performs effective IE on most event

roles except PerpInd in the terrorist events IE task, and Victim in the disease outbreaks

IE task. The weakly supervised models for Piper outperform the baselines on these event

roles. Additionally, we observe that the weakly supervised model PiperMIL/SemAff is fully

automated and uses less supervision compared to the best (AutoSlog-TS) baseline, and yet

matches its overall performance.

6.6 Unified Probabilistic Model Evaluation

The evaluation of the pipelined approach for IE showed that recognizing event descrip-

tions in text allows the use of weaker contextual evidence for recognizing event role fillers.

The weaker contextual evidence is represented as extraction patterns, which are learned
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primarily on the basis of the semantics of their extractions. We find that for many event

roles, this strategy outperforms existing approaches that rely only on the local context

surrounding the candidate phrases. Our pipelined strategy is fully automated, and closely

matches the overall performance of the AutoSlog-TS system, a pattern-based IE system

benefitting from the oversight of a human expert.

This section presents an evaluation of Glacier, a unified probabilistic model for IE

that aims to achieve even better IE performance. The model uses a probabilistic sentential

event recognizer, and a probabilistic plausible role-filler recognizer, both of which compute

probabilities using several types of contextual clues seen in a given text. The two probabil-

ities are combined into a single joint probability, based on which the extraction decisions

are finally made. An evaluation of this model is presented here.

The implementation of the two components relies on machine learning classifiers, from

which probabilities can be obtained. The sentential component, which was evaluated

separately in Section 6.2, can be implemented as a Näıve Bayes classifier or as an SVM

classifier with normalized decision scores. The plausible role-filler recognizer is implemented

as Näıve Bayes classifier. These implementations of the two components lead to two primary

configurations of Glacier: (a) GlacierNB/NB, a model unifying probabilities from a Näıve

Bayes sentential event recognizer and a Näıve Bayes plausible role-filler recognizer, and (b)

GlacierSVM/NB, a model unifying probabilities from a normalized SVM sentential event

recognizer and a Näıve Bayes plausible role-filler recognizer.

To perform this evaluation, the unified models were applied to a set of test documents,

and a probability was generated for each noun phrase in the documents. This probability

represents the confidence of the model in its assessment of an event role filler. We applied

a threshold to this probability to determine whether to extract the phrase as a role filler

of an event. To enable the extraction of fillers for several different event roles, a model

was trained for each event role. The event roles extracted from the test documents were

then compared against the answer strings listed in the answer key templates. Head noun

scoring was used to determine if an extraction matched an answer string. Based on this,

the precision, recall and F-score of the model were computed.

6.6.1 GlacierNB/NB

The GlacierNB/NB model uses Näıve Bayes classifiers for its probability estimates. The

sentential event recognizer is a Näıve Bayes classifier that analyzes the features appearing

in a sentence, and computes a probability of the sentence being an event sentence, based on

these features. Similarly, the plausible role-filler recognizer is also a Näıve Bayes classifier,



131

which uses the various features associated with a noun phrase to compute a probability of

it being an event role filler. The primary variations in this model occur from the way it is

trained.

The first model evaluated here consists of a sentential event recognizer and plausible

role-filler recognizer both trained using approximate annotations from answer key templates.

For the terrorist events, the two components were trained on approximate annotations

applied to 1,300 training documents. For disease outbreaks, since the number of documents

with answer key templates is much smaller, these models were trained using approximate

annotations on 125 training documents. The Weka Toolkit [122] implementation of the

Näıve Bayes with default configuration settings was used for both components of the

model. An evaluation of this configuration on the two IE test sets is presented in the

highlighted rows of Table 6.17. Cutoffs of 0.5, 0.7 and 0.9 are applied to the joint probability

computed to make extraction decisions about noun phrases. The rows labeled “GlacierNN

0.5” present the results for the 0.5 cutoff. Similarly, rows labeled “GlacierNN 0.7” and

“GlacierNN 0.9” present results for the 0.7 and 0.9 cutoffs, respectively.

One of the striking observations within these results is the high recall obtained for each

of the event roles. The table shows that the 0.9 cutoff clearly has better results across the

board for all event roles as a result of the high recall. On the terrorist events data set,

three event roles (PerpInd, Victim and Weapon) have F-scores over the best baseline

Table 6.17: GlacierNB/NB evaluation on the test data

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

GlacierNN 0.5 .27 .68 .39 .24 .56 .34 .28 .76 .41 .30 .76 .44 .36 .59 .45
GlacierNN 0.7 .32 .64 .43 .26 .53 .35 .32 .76 .45 .39 .66 .49 .39 .57 .46
GlacierNN 0.9 .39 .59 .47 .33 .51 .40 .39 .72 .51 .52 .54 .53 .47 .55 .51
PiperMS-Sel .44 .41 .42 .47 .40 .43 .44 .51 .47 .55 .39 .45 .48 .55 .51
PiperSS-Sel .40 .44 .42 .47 .40 .43 .45 .53 .48 .52 .39 .45 .45 .57 .50
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

GlacierNN 0.5 .28 .75 .41 .22 .61 .33
GlacierNN 0.7 .31 .70 .43 .24 .57 .34
GlacierNN 0.9 .34 .59 .44 .32 .53 .40
PiperMS-Sel .35 .54 .43 .37 .52 .43
PiperSS-Sel .33 .58 .42 .35 .53 .42
PiperAR-Rel .43 .51 .47 .33 .43 .38
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20
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(by 7%, 2% and 10%, respectively) as a result of the high recall. The remaining two event

roles, PerpOrg and Target, trail the best baseline by 1% and 5% respectively. The disease

outbreaks domain does not see sharp performance gains like the terrorist events domain.

The overall F-scores in this domain are slightly lower to those obtained by the Piper model

and the baseline IE systems. This behavior of the GlacierNB/NB model on this domain is

probably because of the small quantity of training data available in this domain.

The previous experiments showed that an effective IE system can be constructed even

with smaller quantities of training data. Additionally, we note that all of these training

data were in the form of approximate annotations with answer key templates. Since these

approximate annotations were noisy, we conducted another experiment to see if a small

amount of human annotated data could give us an improvement over the small amount of

approximate annotations. Recall that we have human annotations for event sentences on a

subset of 100 documents (TST3) in the MUC-4 terrorist events test data (of 200 documents:

TST3+TST4). In the disease outbreaks domain, human annotations for event sentences

are available for the entire 120 document test set. These human annotations were used in

this experimental study.

Since all of the available human annotations are on the test data, a five-fold cross-

validation was done across the test set. In the disease outbreaks domain, five splits or folds

of the 120 document data set were created, with each fold containing 96 training documents

and 24 test documents. In the terrorist events domain, the 100 annotated documents (TST3)

were split into five folds, with each fold containing 80 documents for training. For testing

each fold, however, the 20 test documents from the fold were combined with the remaining

100 documents (TST4), and the combined set of 120 documents was used for testing. The

results were computed as average performance scores across the five folds in each domain.

To evaluate each fold, a Näıve Bayes sentential event recognizer was trained on the

human annotations in the training data, and a plausible role-filler recognizer was a Näıve

Bayes trained on approximate annotations from answer keys. The unified model composed

of these two components was applied to the test documents in the fold, and the IE precision,

recall and F-score were computed using the answer key templates associated with the test

documents. An average of these scores was then computed across the five folds. Since the

test documents in the five folds cover the entire official test sets, the performance numbers

from this five-fold cross validation experiment are directly comparable to the previously

obtained results.

The highlighted rows in Table 6.18 present the results of this experiment. From the
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Table 6.18: GlacierNB/NB five-fold cross validation using human annotations

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

GlacierNN-Hum .41 .54 .47 .38 .18 .25 .39 .26 .31 .38 .28 .32 .96 .38 .54
GlacierNN 0.9 .39 .59 .47 .33 .51 .40 .39 .72 .51 .52 .54 .53 .47 .55 .51
PiperMS-Sel .44 .41 .42 .47 .40 .43 .44 .51 .47 .55 .39 .45 .48 .55 .51
PiperSS-Sel .40 .44 .42 .47 .40 .43 .45 .53 .48 .52 .39 .45 .45 .57 .50
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

GlacierNN-Hum .41 .61 .49 .38 .52 .44
GlacierNN 0.9 .34 .59 .44 .32 .53 .40
PiperMS-Sel .35 .54 .43 .37 .52 .43
PiperSS-Sel .33 .58 .42 .35 .53 .42
PiperAR-Rel .43 .51 .47 .33 .43 .38
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20

performance numbers we find that, for terrorist events, 80 human-annotated documents are

not as effective as 1300 documents with approximate annotations. In the disease outbreaks

task, on the other hand, we see good IE performance on both event roles, which suggests

that human annotations (even in small quantities) are useful for accurately identifying event

sentences in this domain. Overall, this helps raise the precision on both the disease outbreaks

event roles, while maintaining a good recall. Compared to the GlacierNB/NB model trained

with approximate annotations, this model achieves 5% and 4% higher F-scores on Disease

and Victim event roles respectively. The higher F-scores are because of higher IE precision

resulting from a more accurate sentential event recognizer. Furthermore, these F-scores

on the disease outbreaks IE task are the highest compared to the baselines and the other

Piper and Glacier models.

6.6.2 GlacierSVM/NB

It has been observed that Näıve Bayes classifiers tend to overestimate the probability

of one class over the remaining classes [33, 127, 68]. As a result of this, the generated

probability values many times do not reflect the true underlying distribution of the classes.

This issue particularly affects the sentential event recognizer in our model, more so than

it does the plausible role-filler recognizer. Thus, here we incorporate an alternate strategy

for obtaining sentential probabilities, with the use of an SVM classifier. The probabilities

generated are not true probabilities, but an approximation based on the normalization of the
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scores generated by an SVM. An evaluation of this model (GlacierSVM/NB) is presented

here.

The IE model evaluated here consists of a sentential event recognizer based on the

normalized SVM scores, and a plausible role-filler recognizer based on a Näıve Bayes

classifier. Both classifiers are trained using approximate annotations from answer key

templates. For the terrorist events, the two components were trained on approximate

annotations in 1,300 MUC-4 training documents. For disease outbreaks, since the number

of documents with answer key templates is much smaller, these models were trained on

approximate annotations in 125 ProMed documents. An evaluation of this configuration

on the two IE test sets is presented in the highlighted rows of Table 6.19. Unlike the

GlacierNB/NB model, which achieves good performance with a 0.9 cutoff on the joint

probability, this model does better with the more natural cutoff of 0.5. Additionally,

experiments showed that a 0.4 cutoff also works well. IE results corresponding to cutoffs of

0.4, 0.5 and 0.6 applied to the joint probability are shown in the table. The rows labeled

“GlacierSN 0.4” present the results for the 0.4 cutoff. Similarly, rows labeled “GlacierSN

0.5” and “GlacierSN 0.6” present results for the 0.5 and 0.6 cutoffs, respectively. The 0.9

cutoff does not work well at all in this model, indicating that the probabilities are more

Table 6.19: GlacierSVM/NB evaluation on the test data

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

GlacierSN 0.4 .51 .58 .54 .34 .45 .38 .42 .72 .53 .55 .58 .56 .57 .53 .55
GlacierSN 0.5 .66 .47 .55 .41 .26 .32 .50 .62 .55 .62 .36 .45 .64 .43 .52
GlacierSN 0.6 .73 .21 .32 .39 .11 .17 .58 .39 .47 .64 .20 .30 .67 .36 .47
GlacierNN-Hum .41 .54 .47 .38 .18 .25 .39 .26 .31 .38 .28 .32 .96 .38 .54
GlacierNN 0.9 .39 .59 .47 .33 .51 .40 .39 .72 .51 .52 .54 .53 .47 .55 .51
PiperMS-Sel .44 .41 .42 .47 .40 .43 .44 .51 .47 .55 .39 .45 .48 .55 .51
PiperSS-Sel .40 .44 .42 .47 .40 .43 .45 .53 .48 .52 .39 .45 .45 .57 .50
PiperAR-Rel .26 .38 .31 .46 .45 .46 .54 .45 .49 .49 .49 .49 .48 .53 .51
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

GlacierSN 0.4 .32 .70 .44 .29 .55 .38
GlacierSN 0.5 .39 .55 .46 .35 .39 .37
GlacierSN 0.6 .42 .41 .41 .45 .30 .36
GlacierNN-Hum .41 .61 .49 .38 .52 .44
GlacierNN 0.9 .34 .59 .44 .32 .53 .40
PiperMS-Sel .35 .54 .43 .37 .52 .43
PiperSS-Sel .33 .58 .42 .35 .53 .42
PiperAR-Rel .43 .51 .47 .33 .43 .38
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20
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evenly distributed across the 0.0 to 0.1 range with the use of an SVM.

Observe that the probabilities obtained from the SVM greatly improve the perfor-

mance of the model. The overall F-score in the terrorism domain surpasses that of the

GlacierNB/NB model. The F-scores of all the individual event roles are higher (except

PerpOrg, which is 3% lower) than those obtained with GlacierNB/NB. Compared with

the best Piper model, we see gains of 12%, 5%, 11% and 5% on the PerpInd, Target,

Victim and Weapon F-scores, respectively. Only the PerpOrg event role has a 5% lower

F-score. Compared with the best (AutoSlog-TS) baseline, we see F-score gains of 14%,

5% and 14% on PerpInd, Victim and Weapon event roles, respectively. The F-scores

on PerpOrg and Target event roles are both 3% lower than AutoSlog-TS. Thus, for the

terrorist events task we see performance gains with this model over the baselines and the

other IE models. For the disease outbreaks task, the Disease event role does well with this

model, but the performance on the Victim role is 4% lower than AutoSlog-TS. Again, the

limited quantity of training data in this domain is the likely cause for this.

6.7 Statistical Significance

This research has shown several variations of a pipelined and a unified probabilistic

model for IE. The experiments presented in the previous section have shown that these

models perform as well as or better than the baseline systems on the test sets. In this

section, we run some statistical significance tests to determine which of the Piper and

Glacier models are statistically significantly better than the baseline systems.

For conducting the statistical significance tests we use a bootstrap resampling method

described by Koehn [58] for Machine Translation. We adapt his methodology to our task

of event-based IE. In this method, a large number of sample data sets are randomly drawn

(with replacement) from a test data set. To determine if an IE model is statistically

significantly better than another IE model, the two models are applied to each of the

randomly sampled data sets and the difference in their performance is measured. If the first

IE model is found to have a better performance than the second IE model on over 95% of

the random samples, then the first IE model is considered to be better than the second IE

model with 95% statistical significance.

Using this methodology, we compare each of the Piper and Glacier models with each

of the three baseline IE systems. In each case, the statistical significance is measured over

the aggregate F-score of the models on all event roles. Table 6.20 summarizes the results of

these tests for terrorist events. The random sampling of the test data is performed over the

terrorist events test data. The Piper and Glacier models listed in the rows are compared
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Table 6.20: Statistical significance tests for overall performance on terrorist events

AutoSlog-TS NB-Ex Sem-Ex

GlacierSN 0.4 95% 99% 99%
GlacierNN 0.9 - 95% 99%
PiperMS-Sel - - 99%
PiperSS-Sel - - 99%
PiperAR-Rel - - 99%

against the baseline IE systems listed in the columns. If the model listed in the row is not

found to be statistically significantly better than the baseline listed in the column, then the

corresponding cell in this table is empty. Otherwise, the cell contains the confidence level

of the statistical significance.

From the table we see that the GlacierSVM/NB is better than all three baselines with

at least 95% statistical significance (99% in two cases). GlacierNB/NB is found to perform

better than two of the baseline systems. The Piper models are found to be not significantly

better than the AutoSlog-TS and the Unconditioned Näıve Bayes (NB-Ex) baselines, but

are clearly superior to the Semantic Class Extractor (Sem-Ex) baseline. Table 6.21 shows

a breakdown of the statistical significance tests for each of the event roles in the terrorist

events IE task.

For disease outbreaks, we found that compared to AutoSlog-TS and the Unconditioned

Näıve Bayes baselines, none of the Piper or Glacier models were statistically significantly

better than the baselines. On the other hand, compared to the Semantic Class Extractor

baseline, all of the Piper and Glacier models were found to be statistically significantly

Table 6.21: Statistical significance tests for event roles in terrorist events

PerpInd PerpOrg Target Victim Weapon

Baseline: AutoSlog-TS
GlacierSN 0.4 99% - - - 95%
GlacierNN 0.9 - - - - -
PiperMS-Sel - - - - 90%
PiperSS-Sel - - - - -
PiperAR-Rel - - - - -

Baseline: NB-Ex
GlacierSN 0.4 99% - - 90% 99%
GlacierNN 0.9 95% - - - 99%
PiperMS-Sel - - - - 99%
PiperSS-Sel - - - - 99%
PiperAR-Rel - - - - 99%

Baseline: Sem-Ex
GlacierSN 0.4 99% - 99% 99% -
GlacierNN 0.9 90% - 99% 99% -
PiperMS-Sel - - 95% 99% -
PiperSS-Sel - - 95% 99% -
PiperAR-Rel - - 95% 99% -
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better. The reason for this outcome is most likely the result of the small quantity of training

data available in this domain.

6.8 Learning Curves

In this research, we found that the unified probabilistic model (Glacier) is an effective

model for extracting event role fillers of disease outbreaks events, in spite of the small

training data set used. We would now like to see if we can get away with using smaller

amounts of training data for terrorist events as well. Thus, this next experiment studies

the effect of varying training data sizes on IE performance in the terrorism domain. The

GlacierNB/NB (0.9) and GlacierSVM/NB (0.4) models are trained with randomly selected

subsets of the 1,300 training documents about terrorist events. The changes in performance

for varying quantities of training data are recorded, and are used to generate learning curves

for this data set.

Table 6.22 shows IE results with models trained using smaller quantities of training data.

The columns labeled “Train100,” “Train200” and “Train300” contain the IE performance

scores corresponding to training data set sizes of 100, 200 and 300 documents, respectively.

In the GlacierNB/NB model, observe that the F-score rapidly ramps up from 0.36 to 0.46

as the amount of corresponding training data increases from 100 to 300. This performance

is just 3% short of the 0.49 F-score achieved with 1,300 documents of training data. Thus,

much smaller quantities of training data can be useful in this model for IE. The effect of

the size of the training data set, however, varies across the various event roles in this IE

task. The PerpOrg and Weapon event roles are largely unaffected by the small quantity of

Table 6.22: Glacier evaluation with reduced training

Terrorist Events (MUC-4)

Train100 Train200 Train300
Event Role Pr Rec F Pr Rec F Pr Rec F

GlacierNB/NB

PerpInd 0.61 0.20 0.30 0.39 0.47 0.42 0.36 0.53 0.43
PerpOrg 0.33 0.41 0.37 0.35 0.45 0.40 0.33 0.41 0.37
Target 0.38 0.14 0.20 0.45 0.45 0.45 0.39 0.52 0.44
Victim 0.61 0.20 0.30 0.51 0.33 0.40 0.51 0.39 0.44
Weapon 0.85 0.38 0.52 0.69 0.41 0.52 0.73 0.41 0.53

Aggregate 0.56 0.26 0.36 0.48 0.42 0.45 0.46 0.45 0.46

GlacierSVM/NB

PerpInd 0.42 0.31 0.35 0.37 0.50 0.42 0.37 0.52 0.43
PerpOrg 0.29 0.47 0.36 0.32 0.48 0.39 0.36 0.43 0.39
Target 0.48 0.39 0.43 0.43 0.50 0.47 0.46 0.61 0.52
Victim 0.40 0.31 0.35 0.44 0.43 0.44 0.42 0.45 0.44
Weapon 0.83 0.41 0.55 0.65 0.45 0.53 0.70 0.45 0.55

Aggregate 0.48 0.38 0.42 0.44 0.47 0.46 0.46 0.49 0.48
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training data and even with 100 documents for training on these two event roles, the model

manages to achieve close to its F-score with 1,300 training documents. In the remaining

three event roles, we see a much stronger effect of the size of the training data set. In

all three cases we see increases in F-scores of 13% or more, each accompanied with sharp

increases in recall.

We have a similar story with GlacierSVM/NB. Here too performance rises with more

training data. The overall F-score rises from 0.42 to 0.48 by increasing the training data

set size from 100 to 300 documents. Within the breakdown of the scores per event role,

we observe that the Weapon event role has a relatively constant F-score, but has a sharp

drop in precision from 0.83 to 0.70, for a corresponding increase in recall from 0.41 to 0.45.

Likewise, the PerpOrg event role’s F-score remains relatively constant, but its precision

increases from 0.29 to 0.36 for a corresponding recall drop from 0.47 to 0.43. The F-scores

of both event roles are close to those achieved with the full 1,300 training documents. All of

the remaining event roles are strongly affected by the small training set of 100 documents,

but improve in performance with the 200 and 300 document training sets.

Figure 6.2 and Figure 6.3 present learning curves for the GlacierNB/NB model and the
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Figure 6.2: GlacierNB/NB learning curve
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Figure 6.3: GlacierSVM/NB learning curve

GlacierSVM/NB model, respectively. The graphs plot IE performance (F-score) against

training data set size for terrorist events. In GlacierNB/NB we see that the F-score rapidly

increases to a value of 0.45 with increasing training data up to 200 documents. After this

the F-score remains relatively stable as more training documents are added. Beyond 200

documents, the IE recall continues to increase gradually, but at the cost of IE precision.

Similarly, in GlacierSVM/NB, the graph shows that the F-score rapidly increases to an

F-score of almost 0.50 with increasing training data up to 400 documents. Beyond this the

F-score increases gradually.

Both graphs illustrate that even with smaller quantities of training data for terrorist

events, the Glacier models achieve close to their best performance. From this we could

surmise that the changes in performance with varying quantities of training data are possibly

replicated in other domains too. Thus, we further conjecture that additional training data

could benefit the models for disease outbreak events as well.

6.9 Feature Analysis

Many different types of features are employed in the sentential event recognizers and

the plausible role filler recognizers. In this section we study the contribution of the various
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types of features in the performance of the model component. To measure the effect of a

feature type, the overall IE performance of the model is measured first with the feature

type included in the model and then with the feature type excluded from the model. The

difference in performance across the two configurations can indicate the usefulness of the

feature in that model. Using this strategy we can measure the effect of various feature types

employed in the models.

Since the GlacierSVM/NB and GlacierNB/NB are the best performing models for

terrorist events and disease outbreak events, respectively, we use these as our reference

models for this feature analysis study. Each of these models contains a sentential event

recognizer and a plausible role-filler recognizer, which use contextual features for generating

probability estimates. Recall from Chapter 4 that the plausible role-filler recognizer uses

five types of phrase-level features: lexical heads, semantic classes, lexico-syntactic patterns,

phrase characteristics and named entities. Similarly, the sentential event recognizer contains

all of these phrase-level feature types and three additional sentence-level feature types:

sentence length, bag of words and verb tense. Each of these feature types are analyzed

here. Table 6.23 and Table 6.24 present the results of these analysis experiments, and a

description of these experiments follows in this section. The first row labeled “All Features”

in each of the tables contains the performance scores of the model using all of the features.

The remaining rows in the table contain the model performance for various configurations

of the features used.

Since all of the phrase-level features used in the plausible role-filler recognizer are also

used by the sentential event recognizer, there is significant overlap in the feature sets of

the two components of the IE model. Our first analysis experiment aims to determine if

segregating this feature set by using only the phrase-level features in the plausible role-filler

recognizer and using only the sentence-level features in the sentential event recognizer can

enable the classifiers to make better decisions. The rows labeled “Segregated” in each of the

Table 6.23: Feature analysis of GlacierSVM/NB for terrorist events

PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

All Features .51 .58 .54 .34 .45 .38 .42 .72 .53 .55 .58 .56 .57 .53 .55
Segregated .51 .60 .55 .32 .48 .39 .40 .75 .52 .51 .59 .54 .55 .52 .53
Phrase-head .55 .53 .54 .32 .45 .37 .43 .68 .53 .54 .52 .53 .55 .52 .53
Phrase-sem .70 .41 .51 .70 .23 .35 .83 .39 .53 .68 .33 .44 .74 .30 .43
Phrase-pattern .47 .60 .53 .31 .49 .38 .37 .73 .49 .45 .52 .48 .57 .60 .59
Phrase-char .53 .58 .55 .32 .47 .38 .40 .75 .52 .49 .57 .53 .56 .52 .54
Phrase-ner .51 .60 .55 .33 .48 .39 .40 .74 .52 .49 .56 .52 .55 .52 .53
Sentence-length .50 .60 .55 .33 .48 .39 .40 .75 .52 .50 .59 .54 .55 .52 .53
Sentence-bow .16 .70 .27 .10 .69 .17 .18 .82 .29 .14 .83 .24 .25 .66 .36
Sentence-tense .50 .60 .55 .32 .48 .39 .40 .74 .52 .51 .59 .55 .56 .52 .54
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Table 6.24: Feature analysis of GlacierNB/NB for disease outbreaks

Disease Victim

Model P R F P R F

All Features .34 .59 .44 .32 .53 .40
Segregated .38 .53 .44 .38 .48 .43
Phrasal-head .43 .50 .46 .41 .46 .43
Phrasal-sem .63 .30 .41 .63 .30 .40
Phrasal-pattern .38 .53 .44 .34 .49 .40
Phrasal-char .36 .51 .43 .45 .44 .44
Phrasal-ner .37 .55 .45 .39 .48 .43
Sentence-length .39 .51 .44 .38 .48 .42
Sentence-bow .00 .00 .00 .00 .00 .00
Sentence-tense .39 .53 .45 .38 .47 .42

tables presents the results of having no overlapping features in the two components of the

models. With this modification we see overall performance improvement on PerpInd and

PerpOrg event roles in terrorist events, and on the Victim event role in disease outbreaks.

On the remaining event roles, however, the performance is slightly lower in terrorist events,

and no F-score change in the Disease event role in disease outbreaks. On the whole,

overlapping features do not have a major impact on performance.

The remaining experiments presented in the two tables take the “Segregated” model

and discard a subset of the features from the model and measure the impact on their

performance. The rows labeled “Phrase-*” present the effect of discarding phrase-level

features (used in the plausible role-filler recognizer), and the rows labeled “Sentence-*”

present the effect of discarding the sentence-level features (used by the sentential event

recognizer). In the case of phrase-level features, features of each of the types — lexical heads,

semantic classes, lexico-syntactic patterns, phrase characteristics and named entities — are

discarded in turn, and the measured performance of the model is presented, respectively,

in the rows labeled “Phrase-head,” “Phrase-sem,” “Phrase-pattern,” “Phrase-char” and

“Phrase-ner.” Similarly, discarding each of the sentence-level features — sentence length,

bag of words and verb tense — in turn, generates the IE results presented, respectively, in

the rows labeled “Sentence-length,” “Sentence-bow” and “Sentence-tense.”

Observe that the sentence-level bag of words features have the maximum impact on

performance of the models. In fact, in both event types we find that after removing the bag

of words features, the sentential event recognizer was unable to recognize event sentences.

In the case of terrorist events the SVM assigns a probability of 1.0 to all sentences, while

in the disease outbreak events the Näıve Bayes classifier assigns a probability of 0.0 to all

sentences. Needless to say, this drastically affects overall IE performance.

While, in most of the remaining feature study experiments we see small changes in the

overall performance of the models, we do see a strong impact of some of the features.
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Of particular note is the effect of the phrase-level semantic classes features. In both

event types, removing the semantic classes features results in a sharp drop in recall and

a large improvement in precision. The Victim and Weapon event-roles in terrorist

events are the most affected by the feature type, causing a drop in their F-score of almost

10%. The semantic classes features enable the model to generalize the phrasal contextual

representation, which allows the system to gain recall points. However, the use of these

features negatively impacts precision because it may be overgeneralizing the contextual

representation in some cases.

For terrorist events, the lexico-syntactic patterns features are important for effectively

identifying PerpInd, Target and Victim event roles. On the other hand, these features

have a negative impact on the Weapon event role. Note that the event roles which benefit

from the lexico-syntactic patterns features correspond exactly to those role filler strings

whose lexical semantics are weak indicators of an event role. For example, the victim of

a terrorist event can be any human mentioned in a text, and can be easily confused with

other humans referenced in the text. Thus, the local context (represented by lexico-syntactic

patterns) is necessary to resolve such confusions. The weapon used in the terrorist event,

on the other hand, cannot easily be confused with other objects mentioned in the text.

Thus, in many cases, just the semantics of a potential role filler string can be sufficient

for identifying weapons of terrorist events. All of this suggests that it may be possible to

identify beforehand the event roles that could potentially benefit from the lexico-syntactic

patterns features and those that could benefit from the semantic classes features.

Of the remaining feature types, the phrase-level lexical head features in disease outbreak

event tend to have a negative impact on the precision of Disease and Victim event roles.

We observe that removing this feature results in an overall improvement in the F-score of

the Disease event role.

6.10 Extractions with Weak Local Evidence

This dissertation has demonstrated the usefulness of information in the wider context

exploited by the Piper and Glacier models for event-based IE. However, most of the

empirical evidence presented in support of these models is in terms of overall IE performance.

The recall gains achieved by these models illustrate the increased coverage that can be

attributed to wider contextual information. Some of these gains can very well be a result

of a smarter or better use of local information by these models. To clearly demonstrate the

benefit of sentential event recognition, this section presents further analysis of the Glacier
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model pertaining to its extraction decisions in the face of weak local contexts.

Our goal is to determine how much of the recall increase achieved by our unified model

was in examples with weak local evidence. To keep this analysis more manageable, we focus

on the GlacierSVM/NB model used for extracting terrorist event information. This model

is compared with the pattern-based AutoSlog-TS baseline system, and the classifier-based

Unconditioned Näıve Bayes (NB-Ex) baseline system.

We find that on the test data, GlacierSVM/NB achieves its recall gains by correctly

extracting 144 additional role filler strings compared to the NB-Ex system. Compared to

the AutoSlog-TS system, GlacierSVM/NB is able to find 123 new role filler strings that

had been missed by AutoSlog-TS. Taking a union of the extractions from the two baseline

systems, we find that GlacierSVM/NB still correctly found 79 additional role filler strings

that were missed by both AutoSlog-TS and NB-Ex.

Since, AutoSlog-TS and NB-Ex both rely solely on the local context to determine the

role filler extractions, we can surmise that the 79 new extractions by GlacierSVM/NB

result from its exploitation of weaker local contexts or from a smarter use of stronger local

contexts. To determine the effect of sentential event recognition, we manually analyze

the 79 additional extractions by GlacierSVM/NB, and count the number of examples that

require the use of the sentential event recognizer in order to correctly extract role filler

information. Specifically, we look at the immediate context of the extractions and determine

if an extraction pattern or a local contextual feature can potentially enable the baseline

AutoSlog-TS or NB-Ex systems to correctly spot the event role fillers. Our analysis indicates

that 32 of the 79 additional extractions have no such evidence in the local context, and thus

illustrate the benefits of sentential event recognition. The 32 examples identified in this

analysis are listed in Appendix D. This analysis indicates that at least 41% of the recall

improvement achieved by the unified model can be attributed to its exploitation of weaker

local contexts with the use of sentential event recognition.

6.11 Error Analysis

As we have seen from the performance evaluations in the earlier sections, event-based

IE is a difficult task. Even our best model does not achieve perfect precision or recall over

the test data. As a result of the characteristics of the data, and the features and learning

strategies employed, our models make some errors in correctly identifying event role filler

strings for the events of interest. In contrast to the previous section, which examined the

strengths of our IE models, this section presents an analysis of its errors on the test data.
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In general, we find two types of errors in the use of our IE models. First, they fail to

extract event role fillers that should have been extracted (false negatives). Second, they

erroneously identify incorrect text spans as event role fillers (false positives). Both of these

types of errors negatively impact overall performance of the IE model. In this analysis,

we examine a random sample of sentences over which our models exhibit the two types of

errors, and we present a discussion of the underlying data and model characteristics that

result in these errors. Such an analysis could be used to help direct future research for

further improvement in event-based IE performance.

We perform this analysis on our GlacierSVM/NB model used for extracting terrorist

event information. In our previous experiments we found that, on the test data, the precision

of the model was impacted by the erroneous extraction of 386 incorrect text spans as event

role fillers. Similarly, its recall was impacted by failing to extract 243 text spans as event

role fillers mentioned in the answer keys. We randomly sample 30 errors of each type, and

analyze the individual instances to determine the cause for these failures. In all of these

cases we find that the causes for the errors can be broadly attributed to the two components

of the model or to other related factors. Table 6.25 and Table 6.26 briefly summarize the

results of this analysis. The percentages in each table may add up to more than 100%,

because some of the errors were attributed to multiple reasons.

Among the 30 cases where the model erroneously extracts incorrect text spans as role

fillers (false positives), we find that almost 15 (or 50%) of the cases can be attributed

to weaknesses in the local extraction component (the plausible role-filler recognizer in the

GlacierSVM/NB model). In most of these (10 cases), the semantic class of the candidate

test span strongly favors the extraction in an event context, and there is little other local

contextual evidence to say otherwise. This typically happens in the case of victim and

target event roles, whose semantics are easy to confuse with other nonvictim or nontarget

entities mentioned in text. In about four cases the incorrectly extracted victims are, in

fact, references to people in the text, who are describing or alluding to the relevant event.

Table 6.25: Error analysis of false positives

Reasons for false positives

50% Weaknesses in plausible role-filler recognizer
23% Weaknesses in sentential event recognizer
17% Nuances of MUC-4 extraction task
10% No coreference resolution
10% Parse errors
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Table 6.26: Error analysis of false negatives

Reasons for false negatives

47% Weaknesses in plausible role-filler recognizer
27% Weaknesses in sentential event recognizer
17% Noun phrase extraction
10% Parse errors
3% No coreference resolution

Weaknesses in the sentential event recognition component has an impact on about seven (or

23%) of the erroneous extractions. In all of these cases, a nonevent sentence is incorrectly

assigned a high probability of being an event sentence by the sentential event recognizer.

The remaining errors are attributed to “other” factors related to the given IE task and the

expressiveness of our model. For instance, in about five cases (or 17%) the extracted strings

are deemed incorrect as a result of the finer nuances in the definition of terrorist events,

which our model currently is unable to definitively capture. One such finer detail in the

given terrorist event definition, for example, is the exclusion of violent attacks on military

personnel as terrorist events. In these cases, the extractions by our model negatively impact

our precision. Another cause for failure in three (or 10%) of the cases is due to the need

for coreference resolution. In these three cases the extracted strings, in fact, corefer to

valid answers, but are themselves semantically too general (e.g., “the perpetrators”) to be

considered a correct answer. Of all of the above cases, about three (or 10%) are the result

of parse errors.

In the second part of this error analysis, we look at 30 randomly sampled cases where

the model fails to extract an event role filler mentioned in the answer key (false negatives).

About 14 (or 47%) of these failures result from insufficient evidence in the local context

indicating a role filler. Of these 14, about five are cases where the semantics of the phrases

are not clearly indicative of a role filler. In some of cases, the semantics of the phrases

are misleading or ambiguous (e.g., “guerillas” as victims of terrorist events and “mine” as

the weapon used). Among these are also cases where the model lacks mechanims to make

inferences from the presented information. For example, the model correctly identifies the

“residence of legislative assembly president” as the target of a terrorist event, but is unable

to infer that the “legislative assembly president” is the victim of that event. Some failures

are also the result of shortcomings of the sentential event recognizer. About eight (or 27%)

cases result from the sentential event recognizer incorrectly assigning a low event sentence

probability to sentences describing relevant events. There are also four cases where the role
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fillers to be extracted appear in sentences that are not, in fact, event sentences. For our

model to extract such role fillers would require the expansion of region size to include such

sentences linked through discourse to event sentences. About five (or 17%) role fillers are

missed by the model because of its focus on noun phrases. Our model considers each noun

phrase in a sentence as a candidate for extraction. However, in these five cases, the role

fillers appear as modifiers of the head noun within the noun phrases. Of all of the above

missed extractions, about three (or 10%) are caused due to an incorrect parse from our

shallow parser, and one (or 3%) is due to the lack of a coreference resolver in our model.

As seen from the above error analysis, a majority of the errors from our model can be

overcome by strengthening our localized text extraction component. Other causes for the

errors include the need for more accurate parsing, a coreference resolver, and expanding the

scope of our model beyond just noun phrases.

6.12 Evaluation Summary

This chapter presented an extensive evaluation of several IE models. Before concluding

this chapter, let us briefly recap the highlights of the various IE models that were presented

and see how they compare against one another. The aggregate IE performance scores

of these models is summarized in Table 6.27. Three baseline systems were used in this

comparison. All of these baselines rely solely on the local context in making their extraction

decisions. They also vary in the extent of supervision used to train the system. The first

baseline is AutoSlog-TS, a pattern-based IE system that uses relevant and irrelevant docu-

ments, and some human expert oversight for pattern review. An unconditioned Näıve Bayes

classifier (unconditioned-NB) that uses local contextual evidence to extract noun phrases is

our second baseline. Finally, a semantic class extractor applied to event sentences identified

by a self-trained SVM classifier forms the third baseline. These are compared against

Table 6.27: Summary of evaluation of IE models

Terrorist Events Disease Outbreaks
Event Role Pr Rec F Pr Rec F

AutoSlog-TS 0.45 0.50 0.47 0.35 0.53 0.42
Unconstrained-NB 0.55 0.37 0.44 0.41 0.49 0.44

SemClass Extractor 0.24 0.57 0.34 0.12 0.68 0.20
PiperAnskey/LexAff 0.44 0.47 0.45 0.38 0.47 0.42

PiperSelf/SemAff 0.46 0.47 0.46 0.34 0.56 0.42
PiperMIL/SemAff 0.48 0.45 0.46 0.36 0.53 0.43
GlacierNB/NB 0.42 0.58 0.49 0.33 0.56 0.42

GlacierNB/NB-Hum 0.50 0.32 0.39 0.40 0.57 0.47
GlacierSVM/NB 0.48 0.57 0.52 0.37 0.47 0.42
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variations of the Piper and Glacier models. For the Piper model, we have three variations

— PiperAnskey/LexAff , PiperSelf/SemAff and PiperMIL/SemAff . Similarly, for the Glacier

model we have two variations — GlacierNB/NB and GlacierSVM/NB. Furthermore, results

from the use of a small quantity of additional manual sentence-level annotations for training

GlacierNB/NB are also presented in the row labeled GlacierNB/NB-Hum.

The results show that Glacier models trained on the approximate annotations clearly

surpass the baseline IE models. GlacierSVM/NB achieves an F-score of 0.52, which is

about 5% greater than the pattern-based IE system AutoSlog-TS. On the disease outbreaks

data set, both the Piper model and the Glacier model match the performance of most

baseline systems. The small amount of training data in this domain makes it difficult for

the IE system to achieve higher performance. However, adding additional sentence-level

annotations to this small data set improves the performance of GlacierNB/NB to surpass

that of the baseline systems. Table 6.28 shows the performance of the best models for the

two event types, in comparison with the baseline model performance. Overall, we see that

the unified probabilistic approach performs the best of all the approaches. Section 6.7 shows

that the improvement in performance of the unified model is statistically significant in the

terrorist events domain. These results ultimately serve to demonstrate the usefulness of

event recognition for IE.

In addition to empirically demonstrating the usefulness of event recognition in IE, this

chapter also presented analyses of features used by our models and discussed their strengths

and weaknesses through an analysis of their errors. The feature analysis illustrated the need

for semantic class information and local context in the form of lexico-syntactic patterns for

certain types of event roles. Additionally, we found that separating the set of features used

by the two components of our model was beneficial for some of the event roles. The analysis

Table 6.28: Summary of best performing models

Terrorist Events (MUC-4)
PerpInd PerpOrg Target Victim Weapon

Model P R F P R F P R F P R F P R F

GlacierSN 0.4 .51 .58 .54 .34 .45 .38 .42 .72 .53 .55 .58 .56 .57 .53 .55
AutoSlog-TS .33 .49 .40 .52 .33 .41 .54 .59 .56 .48 .54 .51 .38 .45 .41
NB-Ex .36 .34 .35 .35 .46 .40 .53 .49 .51 .50 .50 .50 1.00 .05 .10
Sem-Ex .34 .46 .39 .30 .55 .39 .24 .78 .36 .18 .48 .26 .34 .69 .45

Disease Outbreaks (ProMed)
Disease Victim

Model P R F P R F

GlacierNN-Hum .41 .61 .49 .38 .52 .44
AutoSlog-TS .33 .60 .43 .36 .49 .41
NB-Ex .34 .59 .43 .47 .39 .43
Sem-Ex .12 .70 .20 .12 .65 .20
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of examples where we supercede the baselines demonstrated that our unified probabilistic

model can exploit event sentence information in almost 41% of the cases to overcome weak

local evidence. Finally, an error analysis in Section 6.11 illustrated that improving the

accuracy of the the localized text extraction component can have a large impact in further

improving the overall performance of our IE models.



CHAPTER 7

CONCLUSIONS AND FUTURE

DIRECTIONS

This chapter summarizes the conclusions and contributions of this research, and dis-

cusses possible future directions of this research. Section 7.1 presents the conclusions and

observations presented in this research. Section 7.2 reiterates the scientific contributions

of the dissertation. Finally, Section 7.3 discuses several avenues for future work that arise

from various parts of this research.

7.1 Research Summary

The goal of this research has been to address the weaknesses of current IE systems that

tend to rely on evidence of event role fillers solely in the local context surrounding candidate

phrases in text. These systems look for direct evidence of role fillers, and are unable to deal

with cases where the reader is expected to make inferences based on additional information

present in the global context. To enable the correct extraction of role fillers in all of these

cases we hypothesized that the IE system needs to use information from the wider context,

in addition to information in the local context. This is the basic premise behind this

dissertation.

To incorporate information from the wider sentential context, this dissertation takes an

“event detection” approach. The idea is that if the IE model can identify event sentences,

then this information could be used to strengthen the weaker local contextual clues. For

example, if we can reliably detect that a sentence is describing a disease outbreak event,

then the mention of an animal (e.g., cow) in this sentence can lead the system to reliably

infer that that animal is the victim of that disease outbreak. A combination of such local

clues and event information from the wider context can add up to reliable identification of

event role fillers.

This research describes an approach incorporating two components to capture the two

types of evidence in the local and wider contexts. One component’s sole task is to identify

sentences containing events of interest. This component uses a combination of features in
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the wider context to determine if a sentence is discussing an event of interest. The second

component then relies on local features surrounding a candidate phrase to decide if it should

be extracted as an event role filler. This local component can capitalize on the information

from the event sentence recognizer to make inferences about event role fillers, even in cases

where the local evidence may be inconclusive in isolation.

The dissertation first presents a pipelined model that incorporates these two components

as a cascaded system. In this pipelined approach, the output of the sentential event

recognizer is fed as input to the localized text extraction system. The sentential event

recognizer is implemented as a sentence classifier that uses features associated with each

sentence to assign an event/nonevent label to it. The localized text extraction compo-

nent is a pattern-based extraction module that learns extraction patterns based solely on

the semantics of their extraction. This research shows that a combination of these two

components in a pipeline results in an effective IE system.

The pipelined approach for combining the two components, however, has some draw-

backs. Firstly, it is difficult for the localized text extraction component to extract event

roles from any sentence that gets incorrectly discarded by the sentential event recognizer

as a nonevent sentence. Thus, the accuracy of the sentential component can strongly affect

IE performance, making any gains from its use washed out by losses from its faults. The

main problem is that the two components independently make discrete decisions, and this

all-or-nothing nature of the event sentence recognition prevents the extraction component

from even trying to use strong local evidence. The second issue with this model is its use

of extraction patterns as local contextual evidence. Many other types of clues can be useful

as “weaker” evidence for making inferences about event roles. Additionally, various types

of weaker clues can together be more discerning than a single complex clue. Thus, we need

another model to overcome these drawbacks of the pipelined approach.

To overcome the drawbacks of the pipelined model, a unified probabilistic model for IE is

introduced. This model has the same two components as the pipelined approach, but rather

than making discrete decisions independently, the two components generate probabilities

that are combined into a joint probability upon which its decisions are based. The sentential

event recognizer computes the probability of a sentence being an event sentence, and the

extraction component (called the plausible role-filler recognizer in this model) computes the

probability of event role filler strings. The two probabilities a combined into a single joint

probability of a sentence being an event sentence, and a phrase being an event role filler.

The model then make extraction decisions about noun phrases using this joint probability.
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The probabilities in this model are based on several different types of contextual features

associated with the sentences and with the noun phrases. Machine learning classifiers are

employed for estimating these probabilities.

An evaluation of these two models is performed to empirically demonstrate the usefulness

of event information in the wider context. The models are applied to standard IE data

sets for two types of events — terrorist events and disease outbreaks — and compared

with baseline IE systems that rely solely on the local context for event role extraction.

The evaluation shows that the unified probabilistic model GlacierSVM/NB using an SVM

for the sentential event recognizer and a Näıve Bayes classifier for the plausible role-filler

recognizer achieves the best performance for the terrorist events. For the disease outbreaks

events the GlacierNB/NB using Näıve Bayes classifiers for both components and using

additional sentence-level human annotations achieves the best performance. Additionally,

the research also shows that a fully automated pipelined model using weakly supervised

methods — a self-trained sentence classifier and a semantic affinity pattern learner — can

match the performance of an IE system that requires the oversight of a human expert.

The take-home message from this work is that event-based IE can benefit from an

explicit event recognition model or component. Going beyond the local evidence through

sentential event recognition can enable an IE model to make inferences about event role

fillers, which would not be possible with only the local evidence. Furthermore, the use of

a unified probabilistic model to incorporate sentential event recognition is shown to work

better than a pipelined approach.

7.2 Research Contributions

This research demonstrates that event recognition in the wider context can be beneficial

for IE. We observe that humans can effortlessly identify role players of events in text

documents even when there is a lack of direct evidence in the local context to that effect.

Such inferences are usually based on preconceived notions about the event and its role

players. For an IE system to identify event role players in cases lacking direct evidence, it

must have this ability to make inferences based on a combination of weaker clues. This

research hypothesizes that an automated system can make such leaps of inference by

detecting event descriptions in regions of text, and combining this information with local

contextual clues. By detecting an event description in a region of text, an IE model can

make more confident decisions about event role fillers, even if they appear with weak local

evidence.

This research shows that making joint decisions through a probabilistic model is preferable
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over a segregated pipelined model. In the course of this research, we find that separating

the two components into two independent modules that make discrete decisions about

event sentences and event role extractions has some pitfalls. The event role extraction

component is unable to leverage strong local evidence in cases where the sentential event

recognizer discards sentences with weaker global evidence of an event description. A unified

probabilistic model combining the two components is shown to overcome the shortcomings

of the pipelined approach.

Several machine learning classifier-based approaches (supervised as well as weakly su-

pervised) are shown to be suitable for identifying event sentences in text. This research

investigates several approaches for recognizing event descriptions in text. Several training

strategies are investigated covering various levels of supervision. For example, a self-training

strategy using only relevant and irrelevant document and a set of seed extraction patterns is

developed for classifying sentences as event or nonevent sentences. Other weakly supervised

approaches, such as multiple instance learning, were also investigated. A comparative

evaluation of these is presented in this work. We show that a weakly supervised IE model is

effective on two IE tasks. It matches the performance of an existing pattern-based IE system

that benefits from human expert oversight. Our best-performing unified probabilistic model

is a fully supervised classifier-based model.

7.3 Future Directions

This research answers many questions regarding the effective use of event sentences in

event-based IE. In addition, it also opens up several avenues for interesting research in the

future. Some of these ideas are described here.

7.3.1 Exploring Region Spans

This research has used event recognition at the sentence-level for achieving better IE

performance. Sentence boundaries were used to demarcate “regions” in this work, because

they are well-defined and convenient to use. However, it is possible that larger region sizes

could work better. For example, consider the following sentences:

There was an explosion in Taipei yesterday. Three people have died.

Note that the second sentence has no evidence indicating the type of event. Thus, the

correct extraction of three people as the victim of the incident in Taipei would require us to

peer across sentence boundaries and determine that the previous event sentence alters how

we should perceive the sentence following it.
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This argues for extending event recognition beyond sentence boundaries to achieve better

event role filler extraction. However, this apparently simple modification raises a number

of questions and presents several open challenges that can be explored in future research.

One challenge is in determining the an ideal region size for a task or event type. It would

be interesting to determine if there is an optimal region size for achieving best performance

in a particular domain. Perhaps, the optimal size of the region depends on the specific type

of event or the specific type of document or report under consideration.

An interesting avenue for exploration is a dynamic region span, whose optimal size

can be determined at runtime for given documents, event types or event roles, based on

characteristics of the input text. This exploration can take into account the variations

in the types of event descriptions, such as detailed events stories and fleeting references to

relevant events. Additionally, the research can explore discourse analysis and the strength of

discourse relations across sentences in determining region boundaries. Thus, enhancements

in event recognition can be achieved with several directions of future research in determining

region spans for event descriptions.

7.3.2 Discourse Information for IE

In addition to the several avenues of future directions of this research applied in new

applications, we can also see research opportunities in enhancing our existing IE models.

One such direction explores the use of discourse analysis. Sentential event recognizers

developed in our IE models apply to each sentence independent of the other sentences.

Our sentential components pretend that there is no connection between sentences in a

document. However, there are always implicit discourse links between sentences in a

document. By incorporating such discourse information into event sentence recognition,

we can potentially improve its recognition accuracy. The idea is that if two sentences are

linked through discourse (e.g., one sentence is an “elaboration” of the first), then an event

sentence classification of one sentence can indicate a similar label for the linked sentence.

One way to incorporate discourse is to create a graph of the sentences in a document,

with each node representing a sentence in the document, and each edge representing a

discourse link, such as those identified by a discourse parser. Weights can be assigned to

the edges based on the number and types of links connecting two sentences. Graph-based

methods, such as PageRank or graph Mincuts, is then applied to the graph to identify

event/nonevent sentences using the discourse information.

Additionally, the graph-based methods can be combined with our classification methods

to enable the use of discourse links along with various contextual features for a better
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sentential event recognizer. The probabilities from the classifier can be used to initialize

the node weights in the graph-based algorithm. Alternatively, the discourse links could be

added as features to the sentence classifier to help improve its performance.

7.3.3 Event Role Analysis

An analysis of the various event roles in an event presents another opportunity of

enhancing our existing IE models. One of our findings in this research has been that different

event roles “respond” differently to each new IE technique. For example, in Chapter 6 we

saw that after applying an IE model to the test data some event roles showed improvement,

while others were negatively affected. This difference in behavior across event roles stems

from differences in the semantics of role fillers. The role fillers of the Victim event role in

the terrorist events data are typically humans, and hence are easily confused with other

human entities, who are not role fillers for this particular event role. An event role like

Weapon on the other hand has role fillers that are rather unique weapon words and are not

easily confused with other types of role fillers. Thus the techniques that work well for these

two event roles can vary.

An interesting avenue for future work is to perform an analysis of the various types of

event roles, in an attempt to characterize them and the IE techniques applied to extract

them. Such an analysis can then aim to categorize the types of IE techniques or methods and

then predict which of these work better for specific types of event roles. Such an analysis

can help build an IE system with different techniques for different event roles based on

their characteristics determined from the event role analysis. Additionally, this can give us

a better understanding of the properties of event roles (and their role fillers) that affect our

choice of strategy for role filler extraction.

7.3.4 Exploiting Broad Coverage Corpora

Many pattern-based IE systems rely on domain-specific corpora for learning extraction

patterns for a given IE task. Such domain specific corpora are expensive to create, and are

not readily available for many types of events. The use of broad-coverage text corpora could

make such systems easily portable to new domains and more effective for IE tasks. Event

recognition techniques introduced in this research open up several avenues of research for

existing IE systems to exploit broad-coverage corpora.

Our previous work [81] has shown how documents collected from the Web can be used

to expand the coverage of a pattern-based IE system, without the need for annotating large

corpora. The system used seed patterns to locate relevant segments of text on the Web and
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extraction patterns having a high correlation with these relevant text segments were used to

augment an existing pattern based IE system. The research presented in this dissertation

can benefit such approaches by presenting techniques for event recognition in text.

Using the research presented in this dissertation, event recognition in text can be used to

locate relevant text segments on the Web or in broad-coverage corpora with better coverage

than seed patterns. With the discovered relevant text segments, patterns can then be

learned from these for augmenting the learning processes of existing IE systems.

In fact, these patterns could be added to the localized text extraction component within

the Piper model to improve its own coverage. Not only can new event-specific texts be

useful for other IE systems, they can also benefit the Piper model in our own research as

well. Thus, in addition to its use in a two phase IE system, an event recognition component

can be shown to be beneficial for pattern learning from broad-coverage corpora.

In addition to pattern learning, the event recognition techniques can further be exploited

in constructing new domain-specific corpora as relevant subsets of broad-coverage corpora.

Regions of text in a broad-coverage corpus ranked using strategies presented in this dis-

sertation, can prove useful for expanding existing (limited) domain-specific resources for a

given IE task. Thus, event recognition presents possibilities beyond the two-stage IE models

introduced in this research.

7.3.5 Event Recognition Across Applications

Because event-based IE is centered around events, the event recognition component

introduced in this research is a natural fit for IE research. However, its usefulness can

be imagined in other NLP applications as well, opening up several possibilities for novel

enhancements. For instance, event recognition can play an important role in automatic text

summarization and question answering for event-specific analysis.

Most summarization systems create generic summaries of documents with little regard

to the goals of the reader. Any given document can be summarized in multiple ways and

summaries, by definition, must discard some unimportant information in the process. Which

information to discard is usually decided in a domain-independent manner (except in some

cases, such as query-focused summarization). However, in cases a reader may consider

certain domain-specific or event-specific information to be of interest in the generated

summaries. The event recognition techniques employed in this research can prove valuable

in such cases by weighting event-specific regions higher than the remaining text, and thus

enabling the information in those regions to have a greater chance of appearing in the

summaries.
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In a similar vein, our event recognition strategies can potentially benefit the field of

question answering. Question Answering (QA) systems designed for a specific domain can

use our strategies to focus the search for answers to segments of text relevant to the specific

domain. As an alternative approach, our strategies can be used to generate a subset of the

corpus to be searched by the domain-specific QA system, in effect, resulting in potential

speed and accuracy improvements. Thus, the techniques developed in this research can be

used to benefit NLP applications outside of IE.



APPENDIX A

EVENT SENTENCE ANNOTATION

GUIDELINES

This appendix lists the event sentence annotation guidelines that were provided to the

annotators.

A.1 Task Definition

Most descriptions of events in documents, such as news articles, contain sentences

explicitly describing the event, interspersed with other supplementary information not

directly connected to the event. Our goal is to design a system that can identify sentences

pertaining to specific events of interest in given input text. For example, if our concern is for

disease outbreak events, the system should label those sentences in the text that specifically

describe a disease outbreak.

To enable the training and evaluation of such a system, we require “gold standard”

data with the ground truth annotated by human experts. Human annotators must label

those sentences that describe each event of interest mentioned in the text. This document

provides annotator guidelines for labeling sentences as being relevant to the specific events.

The type of event of interest is defined in advance, based on specific applications or other

external constraints.

For this annotation task, the annotator is provided with the document containing the

text to be annotated along with the type of event to be annotated. The task for the

human annotators is to annotate each sentence in the document with respect to this event-

type. An annotator must assess each sentence in the text, and if the sentence contains the

description of an event of interest, it should be assigned an event sentence label. If the

sentence is not describing an event of interest, it should be labeled as a nonevent sentence.

To establish a precise definition of an event description, the annotators should identify

the following five types of sentences: event incident, event consequence, event precursor,

incidental information or not relevant. Descriptions of these five types of sentences follow

later in these guidelines. A sentence of the type event incident should be labeled as an
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event sentence, while all the remaining four types of sentences should be labeled as nonevent

sentences.

A.2 Recognizing Event Descriptions

The following paragraphs explain the five types of sentences, and the guidelines for

recognizing them:

1. Event Incident

Single incident at a single instant: Most commonly, an event consists of a

single specific incident that occurs at a specific instant in time. For example, a

suicide-bombing event occurs at the time that the explosion takes place. Any sentence

describing the scene or the happenings of that time would clearly be considered a part

of this event. Annotators should identify such sentences as event incident sentences.

Multiple incidents over a time period: Many events, on the other hand, do not

occur at a specific instant in time, but take place over a longer period of time and

comprise of a number of smaller incidents that make up the event as a whole. For

example, a disease outbreak event could consist of a number of incidents or reports of

a disease occurring in a region. A sentence such as

A case of Ebola was detected in Mercer county this morning.

describes one incident, which may be part of a larger disease outbreak event. This

could possibly be followed by a sentence such as:

By the afternoon, several other cases had been discovered in the same region.

which is describing yet another “incident” part of the same disease outbreak. Both

of these sentences are part of the event of interest and should be recognized as event

incidents.

In general, annotators should annotate all related happenings or incidents that occur

within the time-frame of the event as event incidents. In case of a bombing event, for

example, the time-frame would be the instant that the explosion occurs. For a disease

outbreak, on the other hand, the time-frame would start with the first few reports of

a disease in a given region and would extend over a period of time.

Incidents just before and immediately following the event: Often, however, it

is difficult to define exactly when an event begins and when it ends. Further, it can be
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argued that incidents leading up to the event and the immediate consequences of the

event could be considered as part of the event. We, therefore, extend the time-frame

of events to include incidents that occur immediately before the actual event (i.e.,

leading up to the event), and those that occur immediately after the event (i.e.,

direct consequences, and descriptions of the scene following the event). For example,

The security guards at the checkpoint saw the approaching truck laden with

C4 explosives.

describes the scene just before a bombing event. This should be recognized as an

event incident.

Event references: Many times information of interest about a relevant event is not

an “incident” within the event, but is mentioned in regards to the event as a whole,

with possibly some additional information presented that may be unrelated to the

event. For e.g.,

The bombing, which killed three people, has caused great unrest in the region

and caused a minor revolt among the predominantly working-class popula-

tion.

primarily describes the broad consequences of the bombing event and does not specif-

ically describe an incident that is part of the event. However, this sentence does

provide specifics (“killed three people”) of the event, with a reference to the event

as a whole (“this bombing”). Such sentences are to be considered event incidents.

Specifics of the event include entities participating in the event, the time or location

of the event, etc. For instance, a phrase such as “yesterday’s bombing” indicates the

time that the event took place, and the sentence containing this phrase should be

labeled as event incident. However, just references to the event, such as the bombing

or it with no additional information about the specifics of the event, do not constitute

an event incident.

2. Event Consequence

Broader, long-term consequences: News stories frequently describe the broad

consequences or the larger impact of an event. Such consequences are typically

described as incidents or happenings taking place later in time and sometimes at

a different location. For example,
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The bombing brought the peace process in the region to a grinding halt.

describes a larger consequence of a bombing event. Such incidents are recognized as

event consequences.

It is important to note the difference between direct consequences immediately follow-

ing the event and broader long-term consequences occurring later in time, occurring

at a broader scale or at a different location. The former should be considered event

incidents as per the previous guidelines (in 1). The latter occurs later in time, outside

the time-frame defined for event incidents and, as such, should be considered event

consequences.

Importance of causality: It is also important for the annotator to make a judgment

about causality. Event consequences must be causally related to the event of interest.

An incident that would have taken place irrespective of the occurrence of the event of

interest cannot be considered an event consequence.

3. Event Precursor

Just like event consequences described above, we also come across incidents that are

“precursors” to an event. The event of interest is a broader, long-term consequence

of such precursor incidents. Annotators must recognize sentences describing such

incidents as event precursors. For example, a sentence such as:

Members of the terrorist group said that the bombing in Tel Aviv was in

direct retaliation to the Israeli air-strikes in the Gaza Strip.

describes the bombing event as being causally related to air-strikes occurring earlier in

time. Here the bombing event is the event of interest and the air-strikes are, therefore,

considered “precursor” incidents.

Annotators should clearly distinguish event precursors from event incidents that occur

immediately before the relevant event. As specified earlier in the guidelines (in 1),

incidents occurring immediately before the relevant event are considered to be part of

the event, and are labeled as event incidents. Therefore, for an incident to be labeled

an event precursor, the incident should occur outside the time-frame of the specific

event.

Further, causality is an important factor to be considered in recognizing event precur-

sor sentences. The event of interest must be causally related to all event precursors.
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In other words, if the event of interest would have taken place irrespective of the

occurrence of a preceding incident, then the preceding incident cannot be an event

precursor.

4. Incidental Information

One of our observations from analyzing event descriptions was that, frequently to

capture reader interest, writers include intriguing facts, titbits or properties of the

location, persons or objects involved in the event. Sometimes, interesting facts about

the date or time at which the event took place are described in the document. Usually,

these sentences do not pertain specifically to the event or to the consequences of the

event, but are details about the persons, objects, dates or locations playing a part in

the event. For instance, consider

The explosion blew out all the windows of an empty building. The building

was constructed in 1901, and had been scheduled for demolition next month.

The first sentence clearly describes an event incident. The second sentence then

presents some interesting information pertaining to the building mentioned in the

first sentence. The second sentence is a factual statement and does not specifically

describe an incident or happening. Factual sentences, such as these, about entities

mentioned in the event should be recognized as incidental information.

Sometimes, the document contains additional information, not about a specific entity,

but about the event itself. Such additional information is usually factual “meta-

information” about the event, and does not describe an actual incident occurring

as part of the event. In such cases, the sentence should be recognized as incidental

information. For example, suppose the two sentences in the example above were

followed by this sentence:

This bombing is similar to last year’s explosion in the Sarojini Nagar Mar-

ket.

This would be considered incidental information, because it only provides additional

factual “meta-information” about the bombing event described earlier. It is important

to distinguish these cases from the “event references” cases described for the event

incident label. These cases provide no specifics about the event of interest.
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Thus, based on the above guidelines, annotators are instructed to ensure that any

sentence recognized as incidental information meet at least one of the following two

requirements:

(a) it refers to a specific entity in an event incident sentence, or

(b) it provides “meta-information” about a relevant event or incident described in

the event incident sentence.

5. Not Relevant

Any sentence that does not pertain to a relevant event (and hence is not recognized

as any one of the four previous sentence types) should be considered a not relevant

sentence.

With these guidelines for the sentence types, annotators can label sentences that describe

various aspects of an event of interest. Each event incident sentence should be assigned

an event sentence label. Likewise all other sentence types should be labeled as nonevent

sentence.

Additionally, annotators are advised to read the entire story completely, at least once

(preferably twice), before assigning labels to sentences in the story. This requirement will

enable the annotators to gauge the level of detail presented for each event in the story, and

will make it easier to tease apart the differences in the sentence types.

A.3 Annotating Separate Events

We observe that a single document may contain a single event of interest, or may contain

multiple events of interest. For each sentence that is annotated with event sentence label,

the annotators are further instructed to attach an event number such as event #1, event #2,

etc. indicating the specific event that the sentence belongs to. A set of sentences together

describing a single event should all have the same event number.

Deciding the boundaries between different events within the same document is a po-

tential issue with annotating separate event instances. In most cases, the descriptions of

different events should be quite clear. However, there could be cases such as multiple

bombings in the same city, or the outbreak of the same disease in multiple locations, which

are not as clear-cut. Event numbers for these are left to the judgment of the annotator.

The only guiding policy is to try to infer the intent of the writer in these cases. If the intent

of the writer is to portray the incidents as separate events, then they should be annotated
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as such. Conversely, if the intent of the writer is to portray the incidents as part of a single

event, then they should get the same event number.

We acknowledge that annotating separate event is indeed a difficult task. Thus, to make

the annotation task easier, a list of relevant events may be provided, in advance, along with

each of the documents. In this case, the annotators are instructed to select one or more of

these events from the list for each sentence labeled with the event sentence label.

A.4 Notes on Specific Events

For this annotation task, we will be focusing on two domains: terrorism and disease

outbreaks. The task of the annotator is to annotate regions of text with respect to events in

these two domains. Specific notes about these two domains are provided in this appendix.

A.4.1 Terrorist Events

The data to be annotated in this domain was selected from the MUC-3 and MUC-4

corpus [113, 114]. As a result, the definition of a relevant terrorist event follows that of the

MUC-3 and MUC-4 IE tasks. Quoting from the MUC-3 proceedings:

Relevant incidents are, in general, violent acts perpetrated with political aims

and a motive of intimidation. These are acts of terrorism.

A relevant event can be one of six different types: attack, bombing, kidnapping, arson,

robbery, and forced work stoppage. Additionally, these can be at different stages of execution:

threatened, attempted and accomplished. Thus, in this framework, even threats of aggression

made against an individual or organization are considered terrorist events, and should be

annotated.

A.4.2 Disease Outbreak Events

For disease outbreaks domain, the documents to be annotated were chosen from the

data set created by Sean Igo for use in recent Information Extraction tasks [86, 82]. The

documents were obtained from Promed mail,1 an online reporting system for outbreaks of

emerging infectious diseases. A relevant event in this domain consists of the outbreak of a

specific disease in a region or country. Quoting from the annotation guidelines for the IE

task:

1http://www.promedmail.org
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What is an “outbreak?” A template should be created only for reports of

a specific outbreak. General descriptions of outbreaks (e.g., “a widespread

outbreak of anthrax would cripple society”) are NOT relevant.

Only current/recent outbreaks are of interest, especially those ongoing at the

time the article was written. Any outbreak described as having happened more

than a year before the article is written should be avoided. There is a bit

of leeway — for instance, if an article was written in July and refers to “last

summer,” that is close enough, and similarly 367 days ago is close enough. Use

your judgment on these borderline cases.

Outbreaks do not need to have identifiable victims. Outbreaks do need implicit

or explicit victims, or have a confirmed organism or disease that creates a

potential health hazard. The latter would include terrorist actions, such as

anthrax mailings, even if no one was infected.

Multiple outbreaks of the same disease in the same country, if authorities claim

they are unrelated, should be marked up as separate outbreaks.

Thus, in summary, only recent outbreaks are of interest to us. Further, outbreaks may not

have identifiable victims or diseases. Lastly, if multiple outbreaks of a disease occurring in

a country or region are considered unrelated by authorities, then they constitute separate

outbreak events.

A.5 Addendum

After concluding several training sessions with the annotators, the key points discussed

in the guidelines and during the training session were summarized in a handout for the

annotators. A copy of this handout is presented in Figure A.1.
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Figure A.1: Handout summarizing the annotation guidelines



APPENDIX B

SEMANTIC CLASS MAPPING FOR

SEMANTIC AFFINITY

The semantic affinity measure used in the Piper model for IE requires a manually

created mapping between semantic classes and event roles. This appendix presents the

mapping between semantic classes and event roles (SemClass → EvRole) that was used

for all our experiments involving the semantic affinity metric in the two domains. For

terrorist events, the following mapping was used for the five event roles evaluated in the IE

experiments:

Aerial-Bomb → Weapon Family-Relation → Victim
Cutting-Device → Weapon Nationality → Victim

Exposive → Weapon Civilian → Victim
Gun → Weapon Unspecified-Civilian → Victim

Projectile → Weapon Diplomat → Victim
Stone → Weapon Politician → Victim

Weapon → Weapon Govt-Official → Victim
Unspecified-Weapon → Weapon Law-Enforcement → Victim

Other-Weapon → Weapon Legal-Or-Judicial → Victim
Scientist → Victim

Structure → Target Other-Civilian → Victim
Unspecified-Structure → Target

Building → Target Violent-Criminal → PerpInd
Unspecified-Building → Target

Church → Target Terrorist-Organization → PerpOrg
Civilian-Residence → Target

Commercial-Building → Target
Financial-Institution → Target

Other-Building → Target
Utility-Structure → Target

Site → Target
Transportation-Route → Target

Other-Structure → Target
Vehicle → Target

Media-Organization → Target

For the disease outbreaks events, the following mapping was used:
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Animate → Victim Other-Human → Victim
Unspecified-Animate → Victim Animal → Victim

Human → Victim Unspecified-Animal → Victim
Unspecified-Human → Victim Amphibian → Victim

Family-Relation → Victim Bird → Victim
Nationality → Victim Fish → Victim
Occupation → Victim Mammal → Victim

Civilian → Victim Mollusk → Victim
Unspecified-Civilian → Victim Reptile → Victim

Diplomat → Victim Other-Animal → Victim
Politician → Victim Plant → Victim

Govt-Official → Victim Other-Animate → Victim
Law-Enforcement → Victim Number → Victim
Legal-Or-Judicial → Victim

Media-Worker → Victim Microorganism → Disease
Scientist → Victim Unspecified-Microorganism → Disease

Other-Civilian → Victim Bacterium → Disease
Military → Victim Archaeon → Disease
Criminal → Victim Rickchlam → Disease

Unspecified-Criminal → Victim Neuroamine → Disease
Violent-Criminal → Victim Fungus → Disease

Nonviolent-Criminal → Victim Virus → Disease
Person-Name → Victim Other-Microorganism → Disease

Male-Name → Victim Bioact → Disease
Female-Name → Victim Poison → Disease

Neutral-Name → Victim Acqabn → Disease
Title → Victim Disease → Disease

Job-Title → Victim Unspecified-Disease → Disease
Academic-Title → Victim Specific-Disease → Disease

Other-Title → Victim Other-Disease → Disease

The left side of the mapping (i.e., on the left side of →) lists a semantic class from the

semantic dictionary used by the Sundance system. Likewise, the right side of the mapping

(i.e., on the right side of →) lists an event role for the given event type. Any of the

semantic classes from Sundance not listed in this mapping get automatically mapped to a

special “Other” event role.



APPENDIX C

OVERVIEW OF EXTRACTION

PATTERNS

All of the extraction patterns used in this research are based on the AutoSlog-TS system

[92]. These patterns are lexico-syntactic patterns that rely on a shallow parse of text. This

appendix describes these patterns in more detail.

Information extraction (IE) patterns are lexico-syntactic patterns that represent expres-

sions identifying role relationships in text. For example, a pattern of the form “<subj>

ActVP(damaged)” extracts the subject of active voice instances of the verb “damaged” as

an entity (NP) that caused damage. Similarly, the pattern “<subj> PassVP(damaged)”

extracts the subject of passive voice instances of “damaged” as the object that was dam-

aged. Thus, “<subj> ActVp” and “<subj> PassVp” represent two types of patterns that

represent roles of NPs mentioned in text.

AutoSlog-TS defines seventeen different types of such patterns, which are shown in Table

C.1. An instantiated pattern of each type, and a text snippet matching the pattern are also

shown in the table. In these patterns, PassVP refers to passive voice verb phrases (VPs),

ActVP refers to active voice VPs, InfVP refers to infinitive VPs, and AuxVP refers to VPs

where the main verb is a form of “to be” or “to have.” Subjects (subj), direct objects

(dobj), PP objects (np), and possessives can be extracted by the patterns.

All seventeen patterns are used for terrorist event IE. However, for the disease outbreaks

IE task a slightly different set of pattern types is used. In this domain, the possessive

pattern type (“<possessive> NP”) is not used; and four additional pattern types (shown

at the bottom of Table C.1) are used in the IE systems. The “<ordinal> NP” pattern

type represents patterns containing an ordinal (e.g., first case, third patient, etc.), while the

“<number> NP” pattern type represents patterns containing a numeric modifier (e.g., one

case, three patients, etc.).
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Table C.1: AutoSlog-TS pattern types and sample IE patterns

Pattern Type Example Pattern Example Text

<subj> PassVP <victim> were murdered Two school teachers were brutally
murdered yesterday. . .

<subj> ActVP <perp> killed Armed gunmen killed three inno-
cent bystanders. . .

<subj> ActVP Dobj <weapon> caused damage A bomb caused massive damage
to buildings in the. . .

<subj> ActInfVP <perp> tried to kill An assailant tried to kill the at-
torney on his way to. . .

<subj> PassInfVP <weapon> was aimed to hit The missile was aimed to hit the
home of a prominent. . .

<subj> AuxVP Dobj <victim> was target The chairman was the target of
an attack by unidentified. . .

<subj> AuxVP Adj <perp> were responsible FMLN operatives were responsi-
ble for several attacks. . .

ActVP <dobj> bombed <target> . . . bombed the Embassy yesterday
causing widespread panic.

InfVP <dobj> to attack <target> . . .made arrangements to attack
the convoy just as it. . .

ActInfVP <dobj> planned to bomb <target> . . . insurgents planned to bomb a
military base in Kabul.

PassInfVP <dobj> was designed to kill <victim> The IED was designed to kill
Iraqi soldiers. . .

Subj AuxVP <dobj> weapon was <weapon> The weapon was an AK-47 rifle
with armor-piercing. . .

NP Prep <np> attack against <target> It was the third attack against US
soldiers since. . .

ActVP Prep <np> attacked with <weapon> The militants attacked the village
with explosives. . .

PassVP Prep <np> were killed with <weapon> The men were killed with bullets
from a 9mm revolver. . .

InfVP Prep <np> to attack with <weapon> . . . are making plans to attack the
convoy with explosives.

<possessive> NP <victim>’s murder The judge’s murder has stunned
the people. . .

Additional pattern types, used for Disease Outbreak events
<subj> ActVp Adjp <victim> tested positive The three patients tested positive

for Swine Flu. . .
Subj PassVp Prep <np> disease found in <victim> . . . taken to control the disease

found in the three patients.
<ordinal> NP <ordinal victim> This is the third case of Ebola

observed within the past week. . .
<number> NP <number victims> About 75 H1N1 cases have been

reported reported in Salt Lake. . .



APPENDIX D

LIST OF EXTRACTIONS WITH WEAK

LOCAL EVIDENCE

An analysis of Glacier in Section 6.10 (Chapter 6) showed that in many cases our

model is able to exploit the event sentence information from the wider context to correctly

extract event role fillers even in cases that lack strong local evidence. This appendix lists

these specific cases from the test data that were found in our analysis. In each of the

following sentences, GlacierSVM/NB correctly extracts an event role filler despite the lack

of direct evidence in the local context of the extracted text.

1. THE MNR REPORTED ON 12 JANUARY THAT HEAVILY ARMED MEN IN CIVILIAN CLOTHES HAD
INTERCEPTED A VEHICLE WITH OQUELI AND FLORES ENROUTE FOR LA AURORA AIRPORT
AND THAT THE TWO POLITICAL LEADERS HAD BEEN KIDNAPPED AND WERE REPORTED
MISSING.

PerpInd = “HEAVILY ARMED MEN”

2. THE BODIES OF HECTOR OQUELI, UNDERSECRETARY OF THE NATIONAL REVOLUTIONARY
MOVEMENT [MNR] OF EL SALVADOR, AND GILDA FLORES, A MEMBER OF GUATEMALA’S SO-
CIAL DEMOCRATIC PARTY, WERE FOUND IN CUILAPA, GUATEMALA, NEAR THE BORDER WITH
EL SALVADOR, THE RELATIVES OF ONE OF THE VICTIMS HAVE REPORTED.

Victim = “GILDA FLORES”

3. SINCE THE MEETING, IT HAS INCREASED ITS DETENTIONS AND ATTACKED THE RESIDENCES
OF LEADERS OF THE SOCIAL CHRISTIAN PEOPLE’S MOVEMENT AND THE UDN [NATIONALIST
DEMOCRATIC UNION], UNIVERSITY, FECMASAN [MSGR OSCAR ARNULFO ROMERO FEDERA-
TION OF COMMITTEES OF MOTHERS AND RELATIVES], AND FENASTRAS.

Target = “UNIVERSITY”

4. TWO DAYS LATER, ON 16 AUGUST, DUE TO DEATH THREATS THE EIGHTH PUBLIC ORDER
JUDGE IN MEDELLIN, WHO WAS INVESTIGATING THE GOVERNOR OF ANTIOQUIA’S MURDER,
RESIGNED.

Victim = “THE EIGHTH PUBLIC ORDER JUDGE”

5. I AM SPEAKING ON BEHALF OF THE SALVADORAN ARMED FORCES THAT IS ON ITS FEET AT
0115 ON 12 NOVEMBER, CONFRONTING A TREACHEROUS ATTACK BY THE FMLN [FARABUNDO
MARTI NATIONAL LIBERATION FRONT] TERRORISTS WHO AT 2000 ON 11 NOVEMBER – DIS-
PLAYING THEIR WARMONGERING STRATEGY AND WITHOUT CARING ABOUT THE SUFFER-
ING OF THE SALVADORAN PEOPLE – CARRIED OUT TREACHEROUS ACTIONS IN WHICH THE
CIVILIAN POPULATION WERE THE ONLY ONES WHO HAVE SUFFERED.

PerpInd = “TERRORISTS”

6. IN HOMAGE TO A TRADE UNION LEADER KILLED 13 DAYS AGO ALONG WITH NINE OTHER
WORKERS IN A DYNAMITE EXPLOSION IN THE CAPITAL CITY ATTRIBUTED TO THE ULTRA-
RIGHTIST DEATH SQUADS.

Victim = “NINE OTHER WORKERS”
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7. THE OFFENSIVE LAUNCHED BY THE FMLN ON 11 NOVEMBER, THE MOST IMPORTANT ONE
SINCE 1981, HAS ALREADY RESULTED IN 139 DEAD AND 313 WOUNDED, INCLUDING SOLDIERS,
REBELS, AND CIVILIANS, GOVERNMENT SOURCES REPORTED TODAY.

Victim = “CIVILIANS”

8. ACCORDING TO REUTER, ATTEMPTS WERE MADE TO STORM PRESIDENT ALFREDO CRIS-
TIANI’S OFFICIAL AND PERSONAL RESIDENCES;

Target = “PERSONAL RESIDENCES”

9. AT 0430 (1030 GMT) TODAY, THE FMLN GUERRILLAS INITIATED HEAVY FIGHTING AROUND THE
SHERATON HOTEL, WHERE OAS SECRETARY GENERAL JOAO BAENA SOARES WAS STAYING.

Victim = “OAS SECRETARY GENERAL JOAO BAENA SOARES”

10. SEVERAL REBELS HAVE SAID THAT FACUNDO GUARDADO (“COMMANDER ESTEBAN”), ONE
OF THE FOUNDERS OF THE FARABUNDO MARTI NATIONAL LIBERATION FRONT AND ONE OF
THE LEADERS OF THE OFFENSIVE THAT BEGAN IN THE CAPITAL ON 11 NOVEMBER, IS SOME-
WHERE NEAR THE HOTEL.

PerpOrg = “THE FARABUNDO MARTI NATIONAL LIBERATION FRONT”

11. AS YOU WILL REMEMBER, THE GOVERNMENT HAS MET WITH MUCH INTERNATIONAL DIS-
REPUTE AND ISOLATION BECAUSE OF THE BRUTAL ASSASSINATION OF JESUIT PRIESTS AND
THE BOMBING OF THE CIVILIAN POPULATION.

PerpOrg = “THE GOVERNMENT”

12. AFTER REGISTERING, BERNARDO JARAMILLO ATTENDED THE FUNERAL OF FELLOW PARTY
MEMBER, VLADIMIR ESCOBAR, A SOACHA MUNICIPAL OFFICIAL WHO WAS SHOT BETWEEN
THE EYES AND KILLED THIS WEEK.

Victim = “VLADIMIR ESCOBAR”

13. THE STATE OF SIEGE, THE ASSASSINATION OF A SOCIAL DEMOCRATIC LEADER HECTOR
OQUELI, THE DOUBTFUL AND INSUFFICIENT INITIAL RESULTS IN THE CASE OF THE JESUIT
PRIESTS, THE ABSENCE OF CONDITIONS FOR THE POLITICAL ACTIVITY OF THE OPPOSI-
TION, THE CONTINUATION OF THE PERSECUTION OF CHURCHES, AND THE LACK OF FREE-
DOM OF SPEECH THROUGH THE DIRECT OR COVERT GAGGING OF THE PRESS SHOW THAT
CRISTIANI’S GOVERNMENT IS CARRYING OUT A POLICY OF CONFRONTATION WITH ALL THE
COUNTRY’S SOCIAL AND POLITICAL FORCES.

PerpOrg = “CRISTIANI’S GOVERNMENT”

14. THE ARMED FORCES PRESS COMMITTEE (COPREFA) REPORTED THAT ON THE MORNING OF
1 JUNE GUERRILLAS, USING MORTARS AND RIFLES, ATTACKED A CEL SUB-STATION IN THE
NATIVIDAD CANTON IN THE WESTERN DEPARTMENT OF SANTA ANA.

Weapon = “RIFLES”

15. THE ARMED FORCES PRESS COMMITTEE (COPREFA) REPORTED THAT ON THE MORNING OF
1 JUNE GUERRILLAS, USING MORTARS AND RIFLES, ATTACKED A CEL SUB-STATION IN THE
NATIVIDAD CANTON IN THE WESTERN DEPARTMENT OF SANTA ANA.

Weapon = “MORTARS”

16. ACCORDING TO MILITARY AUTHORITIES, A LIEUTENANT AND FIVE CIVILIANS WHO WERE
PASSING THROUGH THE AREA AT THE TIME WERE INJURED BY THE EXPLOSION.

Victim = “FIVE CIVILIANS”

17. ACCORDING TO THE MILITARY REPORTS, CORPORAL ALEXANDER MOLINA GRANADOS WAS
KILLED AS HE WAS TRYING TO DEFUSE A MINE PLACED BY THE INSURGENTS ON LA NORIA
BRIDGE, IN SAN MARCOS LEMPA.

Target = “LA NORIA BRIDGE”

18. NEAR THE END OF THE CAST, THE ANNOUNCER ADDS TO THE INITIAL REPORT ON THE EL
TOMATE ATTACK WITH A 3-MINUTE UPDATE THAT ADDS “2 INJURED, 21 HOUSES DESTROYED,
AND 1 BUS BURNED.”

Target = “1 BUS”
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19. NEAR THE END OF THE CAST, THE ANNOUNCER ADDS TO THE INITIAL REPORT ON THE EL
TOMATE ATTACK WITH A 3-MINUTE UPDATE THAT ADDS “2 INJURED, 21 HOUSES DESTROYED,
AND 1 BUS BURNED.”

Target = “21 HOUSES”

20. THESE TERRORIST ATTACKS TOOK PLACE 1 DAY AFTER THE SERIOUS ATTACK LAUNCHED
AT THE 2D ARMY DIVISION HEADQUARTERS IN BUCARAMANGA, WHICH RESULTED IN SEVEN
PEOPLE INJURED AND CONSIDERABLE PROPERTY DAMAGE, AFFECTING NINE HOMES.

Target = “NINE HOMES”

21. GUERRILLAS OF THE FARC AND THE POPULAR LIBERATION ARMY (EPL) ATTACKED FOUR
TOWNS IN NORTHERN COLOMBIA, LEAVING 17 GUERRILLAS AND 2 SOLDIERS DEAD AND 3
BRIDGES PARTIALLY DESTROYED.

PerpOrg = “THE FARC”

22. EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW UP A BRIDGE AS A PUBLIC BUS, IN
WHICH SEVERAL POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Victim = “SEVERAL POLICEMEN”

23. EPL [POPULAR LIBERATION ARMY] GUERRILLAS BLEW UP A BRIDGE AS A PUBLIC BUS, IN
WHICH SEVERAL POLICEMEN WERE TRAVELING, WAS CROSSING IT.

Target = “A PUBLIC BUS”

24. MEMBERS OF THE BOMB SQUAD HAVE DEACTIVATED A POWERFUL BOMB PLANTED AT THE
ANDRES AVELINO CACERES PARK, WHERE PRESIDENT ALAN GARCIA WAS DUE TO PARTICI-
PATE IN THE COMMEMORATION OF THE BATTLE OF TARAPACA.

Victim = “PRESIDENT ALAN GARCIA”

25. THEY ALSO REPORTED THAT THE ANTEL [NATIONAL ADMINISTRATION FOR TELECOMMUNI-
CATIONS] OFFICE, COURT OFFICES, AND COMMUNITY CENTER OF DULCE NOMBRE DE MARIA
WERE DYNAMITED BY THE FMLN EARLY THIS MORNING.

Target = “OFFICE”

26. THEY ALSO REPORTED THAT THE ANTEL [NATIONAL ADMINISTRATION FOR TELECOMMUNI-
CATIONS] OFFICE, COURT OFFICES, AND COMMUNITY CENTER OF DULCE NOMBRE DE MARIA
WERE DYNAMITED BY THE FMLN EARLY THIS MORNING.

Target = “COURT OFFICES”

27. THEY WERE ASSASSINATED ALONG WITH 12 VENEZUELAN CITIZENS WHEN THE VENEZUELAN
ARMY MISTOOK THEM FOR NATIONAL LIBERATION ARMY REBELS IN CANO COLORADA,
ARAUCA DEPARTMENT, ALONG THE VENEZUELAN BORDER.

PerpOrg = “THE VENEZUELAN ARMY”

28. IN ADDITION, 4 TRAINS BELONGING TO THE SALVADORAN NATIONAL RAILROAD, FENADESAL,
WERE BLOWN UP, AND 10 VEHICLES AND 5 BUSES WERE PARTIALLY DAMAGED.

Target = “10 VEHICLES”

29. REGARDING DAMAGE TO THE ELECTRICITY SYSTEM, THE FMLN KNOCKED DOWN 46 TOWERS
AND 136 HIGH-TENSION POWER POLES AND DAMAGED 11 TRANSFORMERS.

Target = “136 HIGH-TENSION POWER POLES”

30. IN THE WAR AGAINST PUBLIC PROPERTY – THE PILLAR OF A WAR ECONOMY – THE MILITARY
SOURCE REPORTED THAT SIX MAYORIAL OFFICES AND SIX NATIONAL ADMINISTRATION FOR
TELECOMMUNICATIONS OFFICES WERE DAMAGED IN VARIOUS TOWNS AND SIX JUNCTION
BOXES WERE SABOTAGED.

Target = “SIX MAYORIAL OFFICES”

31. THE SAME SOURCES REPORTED THAT THOSE INJURED, AN OFFICER AND TWO NONCOM-
MISSIONED OFFICERS, WERE CROSSING THE BRIDGE IN A PRIVATE CAR WHEN A BOMB EX-
PLODED DESTROYING THE BRIDGE.

Target = “A PRIVATE CAR”
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32. THE SAME SOURCES REPORTED THAT THOSE INJURED, AN OFFICER AND TWO NONCOM-
MISSIONED OFFICERS, WERE CROSSING THE BRIDGE IN A PRIVATE CAR WHEN A BOMB EX-
PLODED DESTROYING THE BRIDGE.

Victim = “TWO NONCOMMISSIONED OFFICERS”
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