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ABSTRACT

Though many improvements have been achieved in Natural Language Processing,

the task of enabling computers to understand events that we experience is still far from

achieved. Events that are stereotypically desirable (positive) or undesirable (negative)

for experiencers are called Affective Events. Acquiring knowledge about affective events

holds promise for obtaining a deeper understanding of narrative texts such as stories and

conversations. In this dissertation, I present research on automatically learning knowledge

about affective events: (1) the affective polarity of events indicates how experiencers are

affected by the events (e.g., “I broke my leg” is typically undesirable), and (2) the human

needs associated with affective events provide a general explanation for why an event is

positive or negative (e.g., “I broke my leg” is negative because it violates the human need

to be physically healthy).

My research designed two graph-based semi-supervised models to identify the affec-

tive polarity of events. The first Event Context Graph model identifies affective events by

using discourse context and event collocation information. The second Semantic Consis-

tency Graph model recognizes the affective polarity of events by optimizing the seman-

tic consistency among events. Experimental results show that the Semantic Consistency

Graph model outperformed previous methods and learned over 110,000 affective events

with >90% precision for positive events and >80% precision for negative events.

My research also studied a new task of categorizing affective events into human need

categories: Physiological, Health, Leisure, Social, Financial, Cognition, and Freedom Needs,

which were developed to explain why events are affective. To automatically recognize

human needs of affective events, I designed a co-training model that learns from unlabeled

data by simultaneously training classifiers based on an event expression view and an

event context view in an iterative learning process. Experimental results demonstrate

that the co-training model achieved good performance, and outperformed each individual

supervised classifier and a self-training model.
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CHAPTER 1

INTRODUCTION

Current Natural Language Processing (NLP) systems can obtain much better perfor-

mance than before in various tasks such as syntax analysis (e.g., part-of-speech tagging,

parsing) and semantic analysis (e.g., named entity recognition, semantic role labeling),

etc. However, the goal to let computers fully understand human language is still far

from being accomplished. One major obstacle is that current NLP systems do not possess

world knowledge like humans. For example, to understand a conversation or a story, we

usually need to have world knowledge about events that impact people. As an illustra-

tion, if a friend said that “I got married, but I’m not happy”, people would probably ask

“why?” because they have the world knowledge that if someone experienced the event

“got married”, the person would typically feel happy. However, that friend was not. This

contradiction makes people wonder about the reason behind it. As can be seen, acquiring

world knowledge of events is a critical step to achieve such understanding.

Most of the events that we experience are mundane daily routines (e.g., “wake up”,

“go to school/work” ). However, some events will impact us in positive or negative ways.

For example, we will be pleased when experiencing events like “having a campfire” or

“having a birthday party”. On the other side, we will often be impacted negatively when

experiencing events such as “dog passed away” or “broke a leg”. This dissertation will

refer to events that are stereotypically positive or negative for experiencers as Affective

Events. This dissertation presents approaches to learn two types of knowledge about

affective events. The first type of knowledge is the affective polarity of events, which

indicates whether an event is desirable (positive), undesirable (negative), or neutral. The

second type of knowledge is the reason for events being affective, which explains why an

event is affective (i.e., positive or negative).

Acquired knowledge of affective events can potentially benefit many NLP applications.
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It will not only be useful to obtain better fine-grained sentiment/opinion analysis, but

more importantly it will help achieve deeper understanding of narratives and conversa-

tions. For example, based on the recent study on sarcasm detection (Riloff et al., 2013),

many sarcastic tweets are formed with a positive sentiment toward a negative situation.

The learned knowledge of affective events can potentially improve the performance of

sarcasm detection by recognizing negative situations. The acquired knowledge can also

potentially help to produce plot unit representations (Goyal et al., 2010, 2013), which are

knowledge structures to represent narrative stories (Lehnert, 1981), by recognizing affec-

tive states arising from positive or negative events. Affective knowledge can further be

used to predict an experiencer’s plans and goals (Schank and Abelson, 1977). To illustrate,

given an event description “John broke his leg”, we can understand that John is affected

negatively and the reason is that he has a health problem. Then, we can further reasonably

infer that John may have a goal to search for medical help. In addition, the knowledge can

possibly benefit dialogue response generation (Li et al., 2016). With this knowledge, the

dialogue agent can provide rational corresponding responses in a dialogue by correctly

estimating a speaker’s affective state given only event descriptions. For instance, knowing

a speaker has experienced a very bad event, the dialogue agent should offer consolation.

Conversely, the dialogue agent should offer congratulations if a speaker experienced some

exciting and happy events. As a further example of a potential application, a mental health

therapy system can benefit from understanding why someone is in a negative affective

state. For example, if the triggering event for depression is ”I broke my leg”, then the

reason is related to the person’s health. However, if the triggering event is ”I broke up

with my girlfriend”, then the reason is based on the person’s social relations.

However, acquiring knowledge of affective events is challenging due to the following

reasons. First, though learning the affective polarity of events is closely related to senti-

ment analysis, most existing sentiment analysis tools and resources fail to recognize many

affective events that are implicitly affective. As demonstrated in our work (Ding and Riloff,

2016), many affective events are not recognized by one of the best sentiment classifiers

(Mohammad et al., 2013), because they appear to be objective, factual expressions, and

contain no explicit sentiment indicators. For example, affective events such as “I had a

campfire” and “I dropped my phone into a toilet” are factual descriptions that cannot
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be recognized by most existing sentiment analysis tools because these expressions do not

explicitly express any sentiment.

Second, to the best of my knowledge, there is no prior research on the task of recog-

nizing the reasons for events being affective. Answering the question of why an event

is positive or negative sounds both trivial and difficult at the same time. For example,

everyone knows the event “mom hugged me” is positive and “I woke up at 3am” is

negative. They also understand what the events are about. However, if asked to explicate

the reasons, there could be an infinite set of different answers. For example, the answers

for why “I woke up at 3am” is negative could be “I’m sleepy”, “I don’t like waking up”,

or “I need to rest”, etc. To give a general explanation using a small set of psychological

categories, the research in this dissertation proposed to use the concept of “human needs”

to explain why an event is positive (or negative), and to categorize affective events into

one of the human need categories. This research also aims to design methods to achieve

good performance on categorizing affective events with a small set of manually annotated

data.

The rest of this chapter will first briefly introduce the two types of knowledge of af-

fective events, and then present the dissertation claims and research contributions. The

navigation of this dissertation will be presented at the end of this chapter.

1.1 Affective Knowledge of Events
As researchers are achieving better performance and understanding on various NLP

tasks, they are increasingly recognizing the importance of world knowledge to natural

language understanding. For example, it has been shown that world knowledge plays

a critical role in answering elementary science questions (Li and Clark, 2015). Various

knowledge bases have been created such as WordNet (Miller and Fellbaum, 1998), Con-

ceptNet (Liu and Singh, 2004), and DBpedia (Lehmann et al., 2015), etc. These knowledge

bases have proven to be useful in varied NLP tasks such as Question Answering (Li

and Clark, 2015), Entity Linking (Mendes et al., 2011), and generating Abstract Meaning

Representations (AMR) (Flanigan et al., 2016), etc. The research in this dissertation aims

to learn world knowledge of affective events, which has not received much attention in

previous research. This section will first present the concept of affective events, and then
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briefly introduce two types of knowledge of affective events.

1.1.1 Affective Events

The term “event” in this dissertation refers to both dynamic events (e.g., “I ran a

marathon”) and static states (e.g., “I am a student”), which we experience in our daily lives

(e.g., “I woke up”, “I went to school”, and “we had a party”). Some events are beneficial

and impact people positively such as “I got a new job”, while others are detrimental and

impact people negatively like “I broke up with my girlfriend”. In this research, affective

events are defined to be events that are stereotypically desirable (positive) or undesirable

(negative) for experiencers, and they usually correspond to desirable or undesirable world

states. For example, the event “have a party” is stereotypically desirable because it de-

scribes a recreation situation in which most experiencers would have a positive world

state (e.g., having fun or feeling happy). When people experience events like “got a

job”, “broke a record”, and “went to Disneyland”, they are usually impacted positively

and have positive world states. However, it is possible that someone may have negative

feelings when the person experiences the event “have a party” in real life. That said, it is

a stereotypical and reasonable assumption that most experiencers would have a positive

state unless contrary information is specifically given. Conversely, if someone experienced

events such as “broke legs”, “was hit by a car”, and “failed the math exam”, the person

will usually be affected negatively.

1.1.2 Affective Polarity of Events

The first type of event knowledge that this research aims to learn is the knowledge of

how an event affects experiencers. Based on how people are affected, three categories (i.e.,

positive, negative, and neutral) are proposed to categorize events, which are referred to as

the affective polarity of events. The definitions and examples for each affective polarity

class are shown below.

• Positive events are those that most people would consider to be desirable, enjoyable,

pleasant, or beneficial, etc. People are generally pleased if the events happen to them.

Examples: “I danced with my friend”, “my confidence rose”, “I attended a show”.
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• Negative events are those that most people would consider to be undesirable, un-

pleasant, or detrimental, etc. People are generally displeased if the events happen to

them.

Examples: “my dog passed away”, “girl laughs at me”, “I was hit by a car”.

• Neutral (not affective) events are those that most people would not consider to be

desirable or undesirable.

Examples: “I read a sentence”, “I opened the door”, “I packed up my bag”.

In this dissertation, the affective polarity of an event denotes the prior polarity of the

event, which is independent of context, unless other information is given. As mentioned

earlier, learning the knowledge of affective polarity (i.e., the prior polarity) can benefit

many other NLP tasks such as fine-grained sentiment analysis, sarcasm detection, and

story understanding.

1.1.3 Human Needs Implied by Affective Events

When we comprehend events, we not only know their affective polarities but also

understand the reason why they impact us positively or negatively. For instance, when we

comprehend the events “John’s house is on fire” and “John broke his leg” we do not only

recognize that John is negatively affected but also the reasons why John is affected in that

way. For the first event, John is affected negatively because John’s property was damaged.

However, the second event is negative for John because John has a health problem. The

explanation for why an event is affective (positive or negative) can potentially help NLP

systems to achieve better understanding of events. Therefore, the second type of event

knowledge that this research aims to learn is the knowledge of the reason for events being

affective, i.e., why an event is positive or negative.

This research hypothesizes that the polarity of affective events can often be attributed

to a relatively small set of Human Need categories. This is motivated by theories in

psychology that explain people’s motivations, desires, and overall well-being in terms

of categories associated with basic human needs, such as Maslow’s Hierarchy of Needs

(Maslow et al., 1970) and Fundamental Human Needs (Max-Neef et al., 1991). Drawing

upon these works, this dissertation proposes that the affective polarity of events often

arises from 7 categories of human needs: Physiological Needs, Health Needs, Leisure Needs,
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Social Needs, Financial Needs, Cognition Needs, and Freedom Needs. For example, “John broke

his leg” has a negative polarity because it negatively impacts John’s Health. “John broke

up with his girlfriend” is negative because it indicates a Social relation problem.

In this research, human needs are proposed to explain the reasons for events being

affective because it is observed that whether an event is positive or negative for an experi-

encer is often highly correlated with whether the experiencer’s human needs are satisfied

or not. As an illustration, the event “John broke his leg” is negative because John’s need

to be physically healthy (Health Needs) is not satisfied. Conversely, the event “John went

to Disneyland” is positive because John’s need to have fun (Leisure Needs) is satisfied. In

daily life, especially in written or spoken language, people usually treat this information

as common sense knowledge, which they don’t explicitly write out or speak, but they all

understand. For example, it’s obvious that the event “John went bankrupt” is negative

and people usually do not need to ask why it’s negative. However, asking why this event

is negative can reveal that John’s need to be financially stable is not satisfied. Therefore,

it is important to understand the reason for events being affective because it can provide

deeper understanding of events by knowing whether experiencers’ human needs are satis-

fied or not. As illustrated earlier, understanding the reasons for events being affective can

potentially benefit many NLP applications such as story understanding and mental health

therapy systems.

1.2 Semi-Supervised Methods for Acquiring Affective
Knowledge of Events

When children start to acquire knowledge about the world, we usually do not explicitly

teach them everything about the world. Instead, we only show them a very small amount

of world knowledge such as “this is an apple”, “that is a banana”, “you can not eat the

toy car”, and “this event is bad for you”, etc. Then, they will learn additional knowledge

by exploring the unknown world. In machine learning, a class of learning techniques that

makes use of a small amount of labeled data (which is the knowledge being taught) and

a large amount of unlabeled data (the unknown world) is called semi-supervised learning.

In linguistics, researchers have found that children acquire language using bootstrapping

mechanisms (Höhle, 2009), which is a kind of semi-supervised learning technique in ma-
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chine learning. Inspired by this, this research aims to design semi-supervised machine

learning methods1 to acquire knowledge about affective events.

The practical motivation to use semi-supervised methods rather than supervised meth-

ods is that obtaining a large amount of manual annotations is expensive in terms of time

and money. In addition, supervised models usually cannot be easily adapted to new

tasks. For example, we may spend a lot of time and money to obtain a large amount

of manual annotations in English when we want to learn the knowledge of events in

English. However, supervised models trained on this data cannot be easily applied to

learn knowledge of events in other languages (e.g., Arabic and Chinese). In contrast,

semi-supervised learning has the advantage that models can be easily adapted to new

tasks because they only require a small amount of manually acquired training data. In this

research, two types of semi-supervised approaches were developed to learn knowledge

of events. First, two graph-based semi-supervised methods were designed to identify

affective polarity. Second, a co-training method was proposed to recognize the reasons

(i.e., human need categories) to explain why events are affective.

1.2.1 Semi-Supervised Graph-based Models for Identifying
Affective Polarity

One goal of this research is to identify affective polarity of events by designing semi-

supervised methods. One intuition is to first use some events and contexts, for which

polarities can be confidently recognized using existing sentiment analysis tools as initial

supervision. Then, we can predict the polarity of other events based on the relations

between the initial events and other events, and their contexts. Based on this intuition,

this research designed two semi-supervised graph-based models to identify event polarity.

The following paragraphs will briefly introduce these two models.

The first model is called the Event Context Graph (ECG) model, which identifies affective

events using discourse contexts and event collocation statistics. For this research, events

were extracted from a personal blogs corpus, which consists of blog stories about people’s

daily life and were extracted from a large set of Web blog posts. In the corpus, bloggers

1Please note that some of the methods designed in this research work are actually weakly supervised
methods, which are also called semi-supervised methods in this dissertation.
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often express their sentiments or emotions toward exciting events such as a vacation or

graduation, or unpleasant events such as an injury or job loss. The explicit sentiments

sometimes are expressed directly about an affective event mentioned in the same sentence.

For example, “I’m so happy that I’m graduating”. In many other cases, explicit sentiments

are expressed in nearby sentences (discourse contexts). In the following example,

“Last weekend was really fun! We had a campfire at the beach.”

the explicit sentiment is expressed in the first sentence, and the event is described in the

following sentence. Based on this observation, this research explores the idea of harvesting

affective events from a large collection of personal story blogs by identifying events that

frequently occur in positive or negative discourse contexts. In addition, it is also observed

that highly correlated events (that frequently co-occur in the same document) may have

similar affective polarity. For instance, we would expect the events “girl was hurt” and

“girl cried” to frequently co-occur in blog posts discussing accidents involving children.

Based on these two intuitions, this dissertation describes a semi-supervised learning algo-

rithm to extract affective events by propagating affective evidence from event contexts con-

taining explicit sentiments to events, and then from some events to other highly correlated

events. Specifically, the ECG model obtains noisy supervision by automatically identifying

sentence contexts with strong polarity values with an existing sentiment analysis classifier.

Then, the model extracts affective events by iteratively spreading polarity evidence from

sentence contexts to events using a Label Propagation algorithm (Zhu and Ghahramani,

2002).

Though the ECG model learns some affective events with good precision, it is difficult

to extend the algorithm to a much larger data set because of the large number of sen-

tence nodes in the model. In addition, the previous algorithm does not exploit semantic

relations among events. Therefore, this dissertation also introduces a Semantic Consistency

Graph (SCG) model to induce a large set of affective events more efficiently by relying

on semantic consistency and only using noisy evidence from existing sentiment analysis

tools and resources as supervision. This method is motivated by three intuitions, which

are formulated as three types of semantic consistencies. The first type of semantic con-

sistency is that semantically similar events will usually have similar affective polarities.
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For example, given the two similar events “have party” and “have celebration”, they have

similar meanings and they are both positive. The second type of semantic consistency

is that semantically opposite events will usually have opposite affective polarities. For

instance, the events “I won” and “I did not win” have opposite semantic meanings, and

their affective polarities are also opposite (i.e., “I won” is positive and “I did not win”

is negative). The third type of semantic consistency is that the affective polarity of an

event often originates from its components. For example, if “birthday party” is positive,

this model hypothesizes that most events mentioning “birthday party” will be positive

too. Based on these intuitions, the learning method seeks to achieve a state where the

affective polarities of events are consistent with their semantic relations. Specifically, a

graph was first built using events and their individual components as nodes, then a weakly

supervised, graph-based propagation algorithm was designed to assign affective polarities

by maximizing the semantic consistency (i.e., minimizing the semantic inconsistency) in

the graph. One advantage of the SCG model is that it only uses noisy evidence obtained

from existing sentiment analysis tools and resources as supervision, which makes it easily

scalable to large data sets without any manual annotation effort.

To summarize, the first ECG model builds a graph using discourse contexts and collo-

cation statistics, and then propagates polarity evidence from event contexts with automat-

ically assigned polarities to other unlabeled events. The second SCG model builds a graph

using semantic relations among events and their components, and assigns initial polarities

(which are noisy) using existing sentiment resources. Then, it infers the true polarities of

events by optimizing the semantic consistency in the graph. The key differences between

these two models are that (1) the graphs in the two models represent different types of

event information, and (2) the polarity information is estimated differently, i.e., the po-

larities are propagated based on affective contexts and collocations in the ECG model,

while the polarities are inferred by optimizing semantic consistency with respect to event

representations in the SCG model.

1.2.2 A Co-Training Model for Recognizing Human Needs

The models in the previous section aim to identify affective polarity of events, i.e.,

whether an event is positive, negative, or neutral. This section will briefly introduce
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another semi-supervised method to recognize the reasons for events being affective, i.e.,

why an event is positive or negative. This dissertation formalizes this problem as a task to

categorize affective events into a small set of human need categories: Physiological Needs,

Health Needs, Leisure Needs, Social Needs, Financial Needs, Cognition Needs, and Freedom Needs.

The goal is to assign the most appropriate human need category label to each affective

event based on the stereotypical (default) meaning of the event, which is independent of

any specific context.

Observing that the human need category of an event can not only be recognized using

the event expression itself but also the collection of contexts surrounding the event, this

dissertation proposed a semi-supervised co-training approach to tackle this problem. First,

the most obvious approach is to train a supervised classifier using the words in event

expressions as features for recognizing the human need categories. For instance, we can

train a logistic regression classifier using the bag-of-words features from event expressions

(e.g., bag-of-word features {I, was, hit, by, a, car} for the event “I was hit by a car”). In this

dissertation, the classifier trained using features from event expressions is called an Event

Expression Classifier. In addition, events were originally extracted from a large collection

of personal story blogs that contain many instances of the events in different sentences.

Therefore, the contexts surrounding instances of an event can also provide strong clues

about the human need category associated with the event. As an illustration, given an

event “I broke my leg”, there are many sentences in the blog data set mentioning this event

such as “I broke my leg when I was hit by a big guy in my last year of football” and “While

studying in LA I had a motorcycle accident, and I broke my leg”. This example shows that

the contexts of event mentions are also strong indicators for recognizing an event’s human

need category. Based on this idea, this dissertation built an Event Context Classifier using

features from the contexts surrounding event mentions.

Since event expression classifiers and event context classifiers represent two different

views of an event, one hypothesis is that these two views can potentially be comple-

mentary to each other, and unlabeled events confidently selected by one classifier can be

valuable training instances to benefit the another classifier in an iterative learning process.

Based on this idea, this dissertation designed a co-training model for human needs cate-

gorization by taking advantage of both an event expression classifier and an event context
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classifier to achieve better performance using only a small amount of labeled events and a

large amount of unlabeled events.

1.3 Dissertation Claims and Research Contributions
The primary claims and contributions of this dissertation are as follows:

Claim #1. Many affective events in personal stories can be identified and assigned prior
polarities using graph-based semi-supervised learning.

Knowledge of affective events plays an important role for understanding narrative

stories and conversations. However, there are no existing resources of affective events.

In this research, two graph-based semi-supervised models were designed to identify af-

fective events and assign polarities to them. Experimental results demonstrate that the

two models can identify many affective events and assign polarities to them with good

precision, and achieving better performance than methods based on previous techniques

and resources.

The first Event Context Graph (ECG) model builds a graph using discourse and colloca-

tion information, and spreads the polarity evidence from seeding sentence nodes to other

unlabeled nodes. It has been demonstrated that the discourse contexts and collocation

statistics can increasingly improve the performance of identifying affective polarities of

events. The second Semantic Consistency Graph (SCG) model creates a graph using three

types of semantic relations: semantic similarity, semantic opposition, and event compo-

nent relations. Affective polarities of events are estimated by optimizing the semantic

consistency in the graph. Experimental results show that the three types of semantic

relations can increasingly improve the accuracy of recognizing affective polarity. Further

analysis shows that the SCG model performs better than the ECG model, and learns over

110,000 affective events with >90% precision for positive events and >80% precision for

negative events. This demonstrates that many affective events can be identified and as-

signed polarities using graph-based semi-supervised learning.

Claim #2. Affective events can be automatically categorized into a small set of human
need categories by co-training models with views based on event expressions and event
contexts.

Analyzing the reasons for events being affective has not been explored in prior re-

search. A contribution of this research is formalizing this problem as a multiclass clas-
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sification task that assigns a human need category to each affective event. This research

demonstrated that most affective events can be categorized into a small set of 7 human

need categories through a manual annotation study in which human annotators achieved

good annotation agreements on this task.

To automatically recognize human need categories, two supervised classifiers were

built: an event expression classifier that uses features from event expressions alone, and

an event context classifier that uses surrounding context features of event mentions. Ex-

perimental results demonstrate that both of these classifiers can achieve relatively good

performance using only a small amount of labeled data. This suggests that both the event

expression view and the event context view can be sufficient to decide the human need

category of an event. Based on the idea that these two views can be complementary to

each other, a semi-supervised co-training model was developed to effectively combine the

two classifiers and exploit unlabeled data. Experimental results show that the co-training

model achieved better performance than each individual classifier, which indicates that the

two individual classifiers can benefit each other. This research demonstrates that affective

events can be categorized into the 7 human need categories by co-training models with an

event expression view and an event context view.

1.4 Guide of This Dissertation
The rest of this dissertation is organized as follows:

Chapter 2 reviews the concept of affect, and presents related work on sentiment and

emotion analysis, and prior work on affective event analysis. This chapter also presents

related work on human needs and goals, and several semi-supervised learning algorithms

used in this dissertation.

Chapter 3 presents the story corpus used in this research, and introduces the event

frames used to represent events. This chapter also describes methods for extracting event

frames from the story corpus.

Chapter 4 describes the details of the Event Context Graph model designed to acquire

affective events. This chapter first describes the method for constructing an event context

graph using event discourse contexts and event collocations, and the label propagation

algorithm used to learn affective events. At the end, this chapter evaluates the event
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context graph model and compares it with methods based on previous resources.

Chapter 5 describes the details of the Semantic Consistency Graph model. Different

from the Event Context Graph model, this model estimates affective polarity by optimizing

the consistency of semantic relations in a graph instead of propagating the polarity from

context nodes to event nodes. This chapter first describes the method used to build the

graph with three types of semantic relations. Then, this chapter presents an iterative

learning algorithm for identifying affective polarity. Finally, this chapter evaluates the

semantic consistency graph model and compares it with previous methods.

Chapter 6 first introduces definitions of the 7 human need categories, and presents

a manual annotation study for obtaining gold human need category labels for affective

events. Then, this chapter describes details of an event expression classifier, an event

context classifier, and a co-training framework used to categorize affective events. At the

end, this chapter presents experiments for evaluating the proposed methods using gold

annotations.

Chapter 7 summarizes the research work in this dissertation, and discusses potential

research directions for future work.
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RELATED WORK

The goal of this research is to learn affective polarity and human needs knowledge

about affective events. To give a review of related research, this chapter first introduces

knowledge bases that have been created in prior research. Next, this chapter reviews

definitions of the concept of “affect”, and presents related research on sentiment analysis,

implicit sentiment analysis, and sentiment lexicon induction. Then, it describes prior

research on affective event analysis, which is most closely related to the work in this

dissertation. In addition, this chapter presents two theories on human needs in prior

psychology research, and overviews prior research on “goal” analysis, which is related

to the human need analysis studied in this dissertation. At the end, this chapter describes

semi-supervised learning algorithms related to the research in this dissertation.

2.1 Knowledge Bases in NLP
Acquiring knowledge is an important step for natural language understanding, and

various knowledge bases have been created. In the earlier days, researchers constructed

knowledge bases manually. For example, WordNet (Miller and Fellbaum, 1998) is a man-

ually created database of English words. Each word in WordNet is associated with senses

and connected with other words through different semantic relations (e.g., synonym, hy-

pernym, and hyponym). ConceptNet (Liu and Singh, 2004) is a knowledge base containing

concepts and commonsense knowledge that was crowdsourced or created by experts.

Recently, researchers developed a new version (ConceptNet 5) (Speer and Havasi, 2013) by

automatically incorporating other available knowledge bases such as DBPedia (Lehmann

et al., 2015) and Wikipedia. Cyc (Lenat and Guha, 1993) is another manually created

knowledge base that contains basic concepts and rules about how the world works.

Building a knowledge base manually is time consuming and expensive. In recent

work, researchers have designed automatic methods to acquire facts and commonsense
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knowledge from the Web such as Freebase (Bollacker et al., 2008), WebChild (Tandon

et al., 2014), Open IE (Fader et al., 2011; Mausam et al., 2012), NELL (Mitchell et al.,

2015), YAGO (Rebele et al., 2016), and Probase (Wu et al., 2012). These knowledge bases

usually contain entities, semantic concepts, and relations among entities and concepts. For

example, “cat” and “animal” are two concepts, and the relation between them is “isA”

(i.e., “cat isA animal”). Most of these automatically built knowledge bases are much larger

than those that were manually created. For instance, YAGO contains 17 million entities

(Rebele et al., 2016), while ConceptNet 2.0, which is manually built, contains 300 thousand

concepts (Liu and Singh, 2004). In addition, these knowledge bases have been successfully

used in NLP applications such as Question Answering (Li and Clark, 2015), Entity Linking

(Mendes et al., 2011), and producing Abstract Meaning Representations (AMR) (Flanigan

et al., 2016).

Besides these knowledge bases of facts, entities, semantic concepts, and semantic re-

lations, there have been many research works focusing on acquiring sentiment lexicons,

which will be discussed in Section 2.2.4. This dissertation aims to acquire affective polarity

and human needs knowledge about affective events, and create a new type of knowledge

resource for the NLP community.

2.2 Affect and Sentiment Analysis
2.2.1 The Concept of Affect

This section reviews definitions of “affect” in both computer science and other disci-

plines. Some researchers use “affect” as an umbrella term that covers several concepts.

For example, Fleckenstein (1991) suggested to use “affect” as an umbrella term to include

emotions, feelings, moods, preferences, beliefs, attitudes, motivations, and evaluations.

Scherer (2000) proposed to categorize affective states into five classes: emotions, moods,

interpersonal stances, attitudes, and personality traits. In addition, following the tradition

in affective computing (Picard, 1995), Jurafsky and Martin (2016) used “affective” to mean

emotion, sentiment, personality, mood, and attitude.

Some other researchers, especially people in psychology and cognition, defined the

term “affect” differently. Tomkins (1962, 1963) defined “affect” to be a biological portion

of emotion. In a later research, (Nathanson, 1994, 58) gave a further explanation about
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Tomkins’ definition and described “affects” as “groups of hard-wired, preprogrammed,

genetically transmitted mechanisms that exist in each of us”. Tomkins’ definition and

Nathanson’s explanation both suggest that “affect” corresponds to a biological mechanism

that is built in us. When there is a stimulus, this mechanism will be triggered and a series

of biological events will happen, and when we are aware of this, we would often use the

word “feeling” to indicate that we are affected. In recent works, researchers in psychology

tend to have similar definitions about “affect”, and try to give definitions for several

“affect”-related concepts. For example, Shouse (2005) distinguished feeling, emotion, and

affect as three concepts. He explained that feeling was “a sensation that has been checked

against previous experiences and labeled”; emotion was “the projection or display of a

feeling”, which could be “either genuine or feigned”; and affect was “a non-conscious

experience of intensity”, which was also “a moment of unformed and unstructured po-

tential”. Recently, Munezero et al. (2014) provided more subtle differences between five

closely related concepts. They explicated that feelings were “person-centered, conscious

phenomena”; emotions were “preconscious social expressions of feelings and affect influ-

enced by culture”; affect was “a predecessor to feelings and emotions”; sentiments were

“partly social constructs of emotions that develop over time and are enduring”; opin-

ions were “personal interpretations of information that may or may not be emotionally

charged”, which means that opinions may not be aligned with sentiments in some cases.

These definitions suggest that affect happens before feeling; when people become aware

of the affect, then it becomes people’s feelings or emotions. Following the definitions in

the prior research (Munezero et al., 2014; Shouse, 2005), the research in this dissertation

treats “affect” as “a non-conscious experience of intensity” and “a predecessor to feelings

and emotions”, and focuses on studying affective events that are stereotypically desirable

or undesirable for experiencers based on world knowledge.

The affective polarity of events, which is independent of context, is prior knowledge

based on the most stereotypical understanding of events. For example, the event “we had a

party” is stereotypically desirable because it describes a recreation situation in which most

experiencers would typically have fun and feel happy. As mentioned in Chapter 1, events

that are stereotypically desirable (positive) or undesirable (negative) for experiencers are

called Affective Events. In my research, affective events usually correspond to desirable
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or undesirable word states, which is the most typical understanding without considering

specific contexts. When someone experiences a positive (or negative) event, the person

will typically have a positive (or negative) world state, but this is not absolutely certain

because in the real world a person’s world state can also depend on other factors. For

example, the typical understanding of the event “I got laid off” is that the speaker lost

his/her job and felt bad, so the event is negative and the speaker typically had a negative

world state. However, this is the most stereotypical understanding; in the real world, the

speaker may have a positive world state in some specific cases. For example, the speaker

may hate the job because the payment is not good and the work is boring, and the speaker

has already found a new high-paying job at the time of being laid off. In this case, the

speaker may have a positive world state even though the typical understanding of the

event is negative.

2.2.2 Sentiment Analysis

Learning affective polarity of events is generally related to sentiment analysis, which is

a popular research topic in NLP and many other fields (e.g., Machine Learning and Data

Mining). This section gives a broad view of prior research on sentiment analysis.

Given different contexts, the term “sentiment analysis” may refer to different things.

For example, in a survey (Pang and Lee, 2008), “sentiment analysis” is broadly defined as

“the computational treatment of opinion, sentiment, and subjectivity in text”. “Sentiment

analysis” and “opinion mining” are used interchangeably, and both denote the same field

of study (Pang and Lee, 2008). In a recent book (Liu, 2012), “sentiment analysis” is also

called “opinion mining” and is defined as “the field of study that analyzes people’s opin-

ions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as

products, services, organizations, individuals, issues, events, topics, and their attributes”.

Others may refer to “sentiment analysis” as a specific task. For instance, a natural language

processing textbook (Jurafsky and Martin, 2016) describes “sentiment analysis” as a text

categorization task that aims to extract “the positive or negative orientation that a writer

expresses toward some object”. Most of the prior research on sentiment analysis has

focused on recognizing sentiments or opinions expressed in text. However, this field

is being expanded increasingly. For example, many new research problems have been
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proposed such as research on studying implicit sentiment including opinion implicatures

(Deng and Wiebe, 2014; Deng et al., 2014), connotation of words (Kang et al., 2014), and

affective events (Ding and Riloff, 2016, 2018b). Sections 2.2.3 and 2.3 will give more details

about these recent research works on implicit sentiment analysis.

Subjectivity analysis is also closely related to sentiment analysis. Subjectivity analysis

mainly focuses on determining whether a given text is subjective or objective (Wiebe et al.,

2001; Wilson et al., 2005; Esuli and Sebastiani, 2006; Pang and Lee, 2008). In prior research

(Wiebe et al., 2001), subjectivity in natural language was defined to refer to “aspects of

language used to express opinions and evaluations” (Banfield, 1982), and subjective sen-

tences “present private states of characters - states of an experiencer holding an attitude,

optionally toward an object” (Wiebe, 1994), while the primary intention of an objective

sentence is to “objectively present material that is factual to the reporter” (Bruce and

Wiebe, 1999). For example, the sentence “At several different levels, it’s a fascinating tale.”

is subjective, while the sentence “Bell Industries Inc. increased its quarterly to 10 cents

from seven cents a share” is objective. As explained in another prior research (Esuli and

Sebastiani, 2006), objective text is usually factual, describes “a situation or event without

expressing a positive or a negative opinion”. This explanation suggests that objective

language expressions are not associated with positive or negative sentiments/opinions,

but this does not mean that all subjective texts are positive or negative even though they are

often associated with positive/negative sentiments. As shown in prior research (Wilson

et al., 2005), subjective expressions can also be neutral. For example, the sentence “John

says the hospital feels no different than a hospital in the states” is subjective but does not

express any positive or negative sentiments.

Research in sentiment analysis has often focused on studying overall sentiment ex-

pressed in diferent levels of text (e.g., document-level or sentence-level). The document-

level task aims to analyze overall sentiment expressed in a whole document. For exam-

ple, Pang et al. (2002) applied three machine learning methods (Naive Bayes, Maximum

Entropy, Support Vector Machines) to determine whether an author expressed an overall

positive or negative sentiment in a review. Turney (2002) designed unsupervised meth-

ods to classify product reviews as recommend or not recommend. The sentence-level task

aims to recognize sentiment expressed in a single sentence or phrase. For instance, Yu
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and Hatzivassiloglou (2003) studied both supervised Naive Bayes classifiers and unsuper-

vised methods to distinguish subjective sentences from objective sentences and determine

whether the opinions expressed in subjective sentences are positive or negative. Wilson

et al. (2005) studied contextual polarities of phrases that depend on contexts where the

phrases are mentioned. In their work, Wilson et al. (2005) built classifiers to first classify

a phrase as polar (i.e., positive or negative) or neutral, then determine contextual polarity

values of polar phrases. Recently, there have been many research works using deep learn-

ing techniques for analyzing the sentiment of sentences such as recursive neural networks

(Socher et al., 2013), and convolutional neural networks (Kim, 2014).

Opinion mining is another concept that is closely related to sentiment analysis. In

research focused on extracting evaluations or judgments towards products from reviews

(Dave et al., 2003; Pang et al., 2002), opinion mining and sentiment analysis have been used

interchangeably and can refer to the same task. For example, in reviews, consumers may

express a positive/negative sentiment or opinion towards a specific product. However, in

some other cases, an “opinion” does not necessarily mean a sentiment. Opinions can be

beliefs, views, and thoughts without expressing any sentiments. For example, given the

sentence “I believe there are two cats in the room”, we know that the speaker expressed

an opinion but not a positive or negative sentiment. In opinion analysis, there has been

research focusing on identifying or extracting opinion holders (or sources) and targets. An

opinion holder or source is an entity that expresses an opinion, and an opinion target is

an entity or proposition at which the opinion is directed (Wiegand et al., 2016). To recog-

nize opinion holders and targets, various methods and features have been proposed such

as Conditional Random Fields and lexico-syntactic patterns (Choi et al., 2005), syntactic

structures (Kessler and Nicolov, 2009), and semantic roles (Kim and Hovy, 2006; Johansson

and Moschitti, 2013). Recently, Wiegand et al. (2016) also studied the problem of extracting

opinion holders and targets on opinion compounds.

In addition, some researchers have studied other aspects of opinions. For example,

researchers have studied the views that an opinion expression evokes (Wiegand and Rup-

penhofer, 2015; Wiegand et al., 2016). Wiegand and Ruppenhofer (2015) proposed to study

three different views for verbal predicates (i.e., the agent view, the patient view, and the

speaker view). Later, Wiegand et al. (2016) merged the agent view and the patient view into
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one single actor view. The actor views are “expressions conveying sentiment of the entities

participating in the event denoted by the opinion word”. For example, in the sentence

“All representatives praisedactor the final agreement”, the sentiment conveyed by the word

“praised” is the actor’s view, while the speaker views are “expressions conveying sentiment

of the speaker of the utterance”. For example, in the sentence “Sarah excelledspeaker in

virtually every subject”, the sentiment conveyed by the word “excelled” is the speaker’s

view. Some other researchers have tried to generate abstractive summaries for opinionated

texts (e.g., reviews for products, arguments for a controversial social issue) (Hu and Liu,

2004; Lerman et al., 2009; Wang and Ling, 2016).

Besides the research works discussed above, many other tasks on sentiment analysis

have also been proposed. Some research focused on analyzing sentiments or opinions

toward various aspects of products (Hu and Liu, 2004; Jiang et al., 2011). For example,

Titov and McDonald (2008) studied sentiment expressed toward food, environment, and

service aspects of restaurants. Instead of classifying sentiment into two categories (i.e.,

positive and negative), researchers have also studied fine-grained sentiment categories.

For instance, Nakov et al. (2016) categorized sentiment expressed in tweets into five cat-

egories, i.e., highly-positive, positive, neutral, negative, and highly-negative. These fine-

grained sentiment categories can provide a general understanding about the strength of

sentiments. Recently, more research has been proposed to study the degrees of positiv-

ity or negativity (i.e., sentiment intensity) associated with words or phrases (Kiritchenko

et al., 2016; Kiritchenko and Mohammad, 2017). Kiritchenko and Mohammad (2016) also

analyzed the effect of different modifiers (e.g., negators, modals, and degree adverbs) on

the sentiment of words being modified. Some researchers designed methods to recognize

stance in tweets and analyzed the interactions between stance and sentiment (Sobhani

et al., 2016; Mohammad et al., 2016, 2017).

Besides the research on sentiment, researchers have also studied the task of detecting

emotions in text. Most of the research on detecting emotions tries to classify a given text

into a distinct set of emotion categories such as Anger, Joy, Sadness, and Fear, which were

proposed in prior research (Ekman, 1992). For example, researchers have built emotion

classifiers to classify Web blogs and tweets into emotion categories (Yang et al., 2007;

Roberts et al., 2012). Researchers have also tried to associate words and phrases asso-
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ciated with emotion categories via crowdsourcing (Mohammad and Turney, 2010, 2013).

Qadir and Riloff (2014) designed automatic methods to learn emotion indicators such as

hashtags, hashtag patterns, and phrases from tweets. Recently, researchers have began to

study emotion intensity (i.e., the strength of emotion) associated with a given text. For

example, Mohammad (2018) manually created an affect intensity lexicon with real-valued

scores of intensity for four basic emotions using the best-worst scaling annotation method.

Researchers have also proposed a task of detecting intensity of emotion in tweets and

provided annotated data with intensity values (Mohammad and Bravo-Marquez, 2017;

Mohammad and Kiritchenko, 2018b). Additionally, there are some research works study-

ing emotions evoked by art (Mohammad and Kiritchenko, 2018a), and emotionality of

metaphorical expressions (Mohammad et al., 2016).

In addition, sentiment analysis has been widely used in various applications (Pang and

Lee, 2008; Liu, 2015). For example, some researchers used sentiment analysis to forecast

revenues of movies (Sadikov et al., 2009; Asur and Huberman, 2010; Joshi et al., 2010), and

to predict one-day-ahead stock index by analyzing sentiments in tweets (Si et al., 2013).

In addition, researchers have proposed methods to predict political election results by

analyzing public opinions (O’Connor et al., 2010; Bermingham and Smeaton, 2011; Chung

and Mustafaraj, 2011; Sang and Bos, 2012).

The research presented in this dissertation aims to identify affective events from per-

sonal stories and understand the reasons for events being affective. The first part of my

research, i.e., the task of recognizing affective events, is closely related to prior research on

sentiment analysis, but has difference emphases. First, this dissertation focuses on events.

For the purpose of my research, each event is represented with a predicate and three

event arguments (i.e., agent, theme, and prepositional phrase), which are heuristically

extracted using dependency relation rules. Second, most prior sentiment analysis tasks

have focused on predicting the sentiment in subjective language expressions. Though

evaluation data sets used in prior research may contain objective expressions, often these

objective expressions have been annotated as neutral. However, many affective events

studied in this dissertation are factual, objective expressions. Many methods have been

proposed for sentiment analysis including supervised methods (Jurafsky and Martin, 2016;

Mohammad et al., 2013; Pang et al., 2002; Socher et al., 2013) and unsupervised methods
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(Turney, 2002; Yu and Hatzivassiloglou, 2003). The models designed in this dissertation for

recognizing affective events are related to semi-supervised graph-based methods that have

been previously used for sentiment lexicon induction (Feng et al., 2013; Rao and Ravichan-

dran, 2009; Velikovich et al., 2010). A key difference is that the novel graph structures used

in this dissertation were designed based on event collocations, discourse information, and

semantic relations. In addition, I also designed a new iterative learning method for the

Semantic Consistency Graph model to recognize affective polarity of events.

2.2.3 Implicit Sentiment Analysis

Most research mentioned in the previous sections focused on explicit sentiment, which

is usually directly expressed in documents or sentences, although some sentiment lexicons

may also contain some words or phrases that do not explicitly express sentiment but are

highly associated with positive or negative sentiment based on their lexical semantics (e.g.,

“celebration”, “catastrophe”). There is a growing interest in recognizing sentiment that

is indirectly or implicitly expressed. The term “implicit sentiment” was used in previous

research (Deng and Wiebe, 2014; Deng et al., 2014) to mean sentiment that is not explicitly

expressed. Deng and Wiebe (2014) found that opinion toward entities or events may not

be explicitly expressed, and proposed to use opinion implicature rules to infer opinions

toward different entities. For example, in the sentence “The bill would lower health care

costs, which would be a tremendous positive change across the entire health-care system.”;

though the writer only explicitly expressed a positive opinion toward the idea of lowering

health care costs, we can infer that the writer is negative toward the “health care costs”

based on that she/he is positive toward the event “lowering”, which is bad for the “health

care costs”. Some researchers have focused on studying implicit sentiment conveyed by in-

dividual words or phrases. For example, Zhang and Liu (2011) noticed that some objective

nouns and noun phrases do not indicate sentiment in general domains. However, in some

specific domains, these nouns or phrases would imply sentiment. For example, “valley”

implies negative sentiments in the sentence “Within a month, a valley has formed in the

middle of the mattress” (Zhang and Liu, 2011). Feng et al. (2013) and Kang et al. (2014) also

found that some objective words often indicated connotative and nuanced sentiment. For

example, the words “intelligence” and “Ph.D.” usually have positive connotations while
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“cancer” and “war” often have negative connotations. Though the denotative or surface

meanings of these words are objective, they often implicitly express the sentiment of the

writer. For example, in the description “corruption is a cancer to our society”, the writer

implicitly expressed a negative sentiment toward corruption through the word “cancer”.

They proposed graph-based methods to automatically learn connotations of words and

word senses. In addition, Rashkin et al. (2016) claimed that writers can subtly imply

several types of connotations (e.g., writer’s perspective, entities’ perspectives, effect on

entities, entity values, and entities’ mental states) through the choice of a predicate, and

designed connotation frames to represent and organize these various types of connotations.

For example, given a predicate “violate”, if someone writes a sentence “#Agent violates

#Theme”, then we can use connotation frames to infer that the writer has negative per-

spective toward #Agent but a positive perspective toward #Theme, #Agent has a negative

perspective toward #Theme, and #Theme has a negative perspective toward #Agent. The

predicate has a negative effect on #Theme, and #Theme is in a negative state. In addition to

the research on implicit sentiment analysis, there have been many research efforts studying

the affect of events, which will be discussed in Section 2.3.

The research in this dissertation is closely related to implicit sentiment analysis be-

cause many affective events are often objective and factual expressions (e.g., “we went to

Disneyland”, “my phone stopped working” ), but impact people positively or negatively.

2.2.4 Sentiment Lexicons

Most of the research mentioned in the previous sections aims to recognize sentiment

in context. However, researchers have found that knowing the prior polarity (Wilson et al.,

2005) of words or phrases, which is independent of context, can improve sentiment analy-

sis. The prior polarity of a word or phrase denotes the polarity determined by the meaning of

the word or phrase without considering the context. Various research has been conducted

to construct resources by associating prior polarity to words or phrases. The resulting

resources are often called sentiment lexicons. It has been shown that sentiment lexicons are

useful for many tasks. For example, Mohammad et al. (2013) built a state-of-the-art tweet

sentiment analysis system by using sentiment lexicons as key features.

Because of their usefulness, many sentiment lexicons have been created manually or
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automatically. For example, General Inquirer (Stone et al., 1968) is a manually built lexicon

containing both positive and negative words. LIWC (Pennebaker et al., 2007) is also a

manually created lexicon containing words associated with sentiment polarities and “psy-

chologically meaningful” lexical categories. The MPQA Subjectivity Lexicon (Wilson et al.,

2005) includes both words from the General Inquirer and words that were automatically

learned and manually reviewed (Riloff and Wiebe, 2003). SenticNet (Cambria et al., 2014,

2015) is a sentiment lexicon compiled from knowledge bases like DBPedia (Bizer et al.,

2009). SentiWordNet (Baccianella et al., 2010) is an automatically learned lexicon that

contains synsets from WordNet (Miller and Fellbaum, 1998). ConnotationWordNet (Feng

et al., 2013; Kang et al., 2014) is an automatically learned lexicon containing both explicit

sentiment words (e.g., happy, good) and objective words (e.g., promotion, cancer) that con-

vey connotative sentiment. In addition, Hu and Liu (2004) designed an automatic method

to extract a sentiment lexicon from product reviews. Choi and Wiebe (2014) induced a

sense-level lexicon in which each verb sense from WordNet (Miller and Fellbaum, 1998)

was automatically labeled with +/- effect polarity.

Besides these lexicons associated with positive or negative polarity labels, there are

some lexicons that contain words or phrases that are associated with emotion categories.

For example, the NRC Emotion Lexicon (Mohammad and Turney, 2010, 2013) contains

a list of words associated with eight basic emotions. Qadir and Riloff (2014) designed

a weakly supervised method to induce lists of hashtags, hashtag patterns, and phrases

associated with five emotions. Recently, some researchers have also created lexicons of

words and phrases associated with sentiment intensity (i.e., the degree of positivity or

negativity) (Kiritchenko et al., 2016; Kiritchenko and Mohammad, 2017), and real-valued

scores of emotion intensity (i.e., the strength of emotion) (Mohammad, 2018).

Instead of building a lexicon of individual words or phrases, this dissertation focuses

on recognizing affective events, which are represented as frame-like structures with 4

components. Learning the affective polarity of events is challenging because the polarity

value of an event is not simply a combination of the polarities of the words in the event

frame. As demonstrated in this dissertation, using existing sentiment lexicons to predict

the polarities of events is not sufficient, so methods need to be designed to learn the

affective polarity of events are needed.
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2.3 Affective Event Analysis
Events are an important component of narrative stories. Therefore, to comprehend

narrative stories, we need to understand the events in them. There has been some research

focusing on learning the affective polarities and opinions about events. For example,

Goyal et al. (2013) tackled the problem of automatically generating plot units, which are

conceptual knowledge structures for representing narrative stories (Lehnert, 1981). In

their corpus of AESOP fables, they discovered that 36% of +/- affect states originated

from good or bad situations (i.e., positive or negative events). To recognize these good

or bad situations, they designed two semi-supervised methods (Goyal et al., 2010, 2013)

to identify verbs that impart positive or negative polarity on their patients (i.e., Theme

semantic roles of verbs). The first method was based on the co-occurrence between verbs

and evil or kind agents. The second method used the Basilisk bootstrapping algorithm

(Thelen and Riloff, 2002) with conjunction contextual patterns. The resulting verbs, called

Patient Polarity Verbs (PPVs), were then used to recognize good or bad states for their

patients. Rashkin et al. (2016) extended this idea by studying the effect that verbs have

on both their agents and themes. They also analyzed the writer’s perspective and entities’

perspective toward both the agent and theme of a given predicate, and acquired a lexicon

of verbs associated with connotation labels. Their research of the effect that a verb has

on its agent or theme is closely related to the research presented in this dissertation. In

contrast to their research, which analyzes the effect of a verb based on only the given verb,

this dissertation aims to understand how experiencers are affected by an event that consists

of not only a verb but also 3 arguments. For example, in their research, the verb “eat” has

a positive effect on its agent. However, the affective polarity of an event is determined by

the meaning of the whole event representation rather than just the verb (e.g., the event “I

ate poison” is negative for the speaker).

Deng et al. (2013) created a corpus with annotations of events that positively or nega-

tively affect entities. They called these events benefactive (goodfor) or malefactive (bad-

for) events, which were later renamed as +/-effect events (Deng and Wiebe, 2014). They

observed that sometimes opinions may not be expressed directly but can be inferred us-

ing +/-effect events, and investigated how +/-effect events can be used to improve the

recognition of writer’s opinions toward other entities. They designed a Loopy Belief
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Propagation model to propagate opinions among entities using opinion implicature rules

based on +/-effect events. Later, Deng et al. (2014) developed an unsupervised opti-

mization framework (Integer Linear Programming) to incorporate implicature rules as

constraints, and achieved better performance on both opinion detection and +/-effect

event identification tasks. In addition, Deng and Wiebe (2015b) extended the MPQA

corpus (Wiebe et al., 2005) by adding annotations on entities and events. The resulting

MPQA 3.0 can be used to develop and evaluate systems for entity and event-level opin-

ion analysis. Deng and Wiebe (2015a) also proposed probabilistic soft logic models to

improve the performance of entity/event-level opinion analysis by incorporating explicit

sentiments, inference rules, and +/-effect event information. This research mainly focused

on identifying positive/negative opinions toward entities and events in specific contexts.

In contrast, this dissertation aims to acquire general prior knowledge about stereotypically

positive or negative events for the person experiencing the event, which is independent of

contexts. In addition, their research mainly focused on analyzing opinions toward entities

or events in texts, which are usually subjective expressions. However, many of events

studied in this dissertation are factual and objective, which do not express any opinions.

For example, the event “We went to Disneyland” is typically desirable and the event “I

woke up at 3am” is undesirable for experiencers, but the speakers do not express any

opinions in these expressions.

Recent work on “major life event” extraction (Li et al., 2014) collected major life events

from tweets. In their work, a bootstrapping approach was first initialized with replies

representing two types of speech acts: congratulations and condolences. Then, a large

collection of tweets were clustered using topic models and manually filtered and labeled.

A set of classifiers was trained to label tweets with respect to 42 event categories corre-

sponding to different topics. Finally, for each type of event, they extracted event properties

(e.g., names of spouse for wedding events) from the labeled tweets. Since the two types of

speech acts (congratulations and condolences) usually highly correlate with positive and

negative events, many of the extracted events are affective events even though their work

did not aim to recognize the affective polarities of the events.

Besides the research of learning positive (good) or negative (bad) events, researchers

also studied events that can provoke emotions. For example, Tokuhisa et al. (2008) tackled



27

a Japanese emotion classification task using a large collection of emotion-provoking events

that were extracted from the Web using a lexical pattern “someone be #EMOTION #that

#EVENT”. In the pattern, #EMOTION is an emotion word, #that is a connective word

(e.g., “that”), and #EVENT is a subordinate clause, which will be extracted as an emotion

provoking event. For example, given the sentence “I was disappointed that it suddenly

started raining”, the pattern will extract an event “it suddenly started raining” that pro-

vokes the disappointment emotion. In their experiments, Tokuhisa et al. (2008) showed

that the learned events were useful for predicting the emotions of a speaker conversing

with a dialog system. Recently, Vu et al. (2014) extended this idea by designing boot-

strapped learning approachs to learn emotion-provoking events. Their learning method

takes a similar lexical pattern (i.e., “I am #EMOTION that #EVENT”) and several seed

words for six emotions as input, then it iteratively expands patterns and acquires emotion-

provoking events at the same time. They demonstrated that their method can extract

emotion-provoking events better than the method that only uses the pattern (Tokuhisa

et al., 2008). However, in the blog story used in this research, affective events that are

associated with this type of lexical pattern are very rare. As they concluded in their

work, better methods need to be explored to improve the coverage of extracting emotion

provoking events.

Recognizing affective events has been demonstrated to be useful in many NLP ap-

plications. For example, Riloff et al. (2013) observed that recognizing affective events

can help to detect sarcastic tweets. Their work showed that sarcasm often arises from

the juxtaposition of a positive sentiment with a negative situation (event). Therefore,

they developed a semi-supervised bootstrapping algorithm to automatically learn explicit

sentiment expressions and phrases corresponding to negative situations, and showed that

the learned negative situations can help to recognize sarcastic tweets. Recently, Reed et al.

(2017) learned a set of lexico-functional linguistic patterns, which were extracted using the

AutoSlog-TS system (Riloff, 1996), and their corresponding affect polarities. Their research

demonstrated that the learned patterns can be helpful in predicting first-person affective

reactions to daily life events. SemEval-2015 Task 9 (Russo et al., 2015) is a shared task

that aims to determine whether the event mentioned in a given sentence is pleasant or

unpleasant. However, their annotations of event polarity are based on specific instances of
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an event in context.

In addition, there has been some recent work studying affective polarity in figurative

language. For example, Qadir et al. (2015) explored methods to automatically recognize

affective polarity in similes, which are special forms of figurative language that compare

two unlike things. For example, the expression “Jane swims like a dolphin” expresses

a positive sentiment toward Jane’s swimming ability. Though a simile can also describe

an activity or a state (e.g., “he runs like a cheetah”), most of the events studied in this

dissertation are not similes.

2.4 Human Needs and Goals
Besides affective polarity, the research in this dissertation also aims to learn human

needs implied by affective events, i.e., to understand the reason why an affective event is

positive or negative. This section overviews research on related topics.

2.4.1 Human Needs in Psychology

To the best of our knowledge, there is little work on analyzing human needs in NLP.

However, psychological theories have been proposed to explain people’s motivations,

desires, and overall well-being in terms of categories associated with basic human needs,

such as Maslow’s Hierarchy of Needs (Maslow et al., 1970) and Fundamental Human

Needs (Max-Neef et al., 1991). Maslow’s Hierarchy of Needs was developed to under-

stand human behavior and motivations. The hierarchy of needs is often depicted using

a pyramid with the most basic needs at the bottom and higher level needs at the top.

The hierarchy implies that basic needs should be met before higher level needs, though

Maslow acknowledged that different levels of needs could occur at any time. Maslow’s

theory enables us to understand people’s motivation for their actions. Specifically, human

needs in Maslow’s theory are categorized as Physiological Needs, Safety Needs, Belonging and

Love Needs, Esteem Needs, and Self-actualization Needs. In Maslow’s later years, he added an

additional level of Self-transcendence Needs into his theory (Maslow, 1971)

Another human needs theory developed by (Max-Neef et al., 1991) is called Fundamen-

tal Human Needs, which was developed to study community strength and weakness. In

this theory, Max-Neef et al. (1991) proposed the following categories: Subsistence Needs,
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Protection Needs, Affection Needs, Understanding Needs, Participation Needs, Leisure Needs,

Creation Needs, Identity Needs, and Freedom Needs. Their theory claims that in contrast to

Maslow’s theory, there is no hierarchy; human needs are all interrelated and interactive.

They also claimed that fundamental human needs are finite and classifiable, would not

change over time, and are constant through all human cultures (Max-Neef et al., 1991).

In this dissertation, I developed a set of human need categories by selecting and sepa-

rating some categories from these theories. The detailed definitions and examples of these

new categories will be described in Chapter 6.

2.4.2 Goals and Desires for Text Understanding

Recognizing human needs is related to research on understanding goals and desires.

The concept of “goals” was proposed to understand narrative stories by Schank and Abel-

son (1977) who stated that understanding can be achieved when a series of actions can be

reasoned to fulfill goals. To better understand different types of goals in stories, they pro-

posed to categorize goals into following classes: satisfaction goal, enjoyment goal, achievement

goal, preservation goal, crisis goal, instrumental goal, and delta goal (Schank and Abelson, 1977).

Some of these classes overlap with the human needs categories studied in this dissertation.

For example, the satisfaction goal, which is defined as a recurring biological need, is closely

related to the Physiological need category. The achievement goal, which is defined as the

realization of “some valued acquisition or social position”, is related to the Finance need

and Social need studied in this dissertation. Some researchers found that analyzing the

affective states of characters in stories is closely related to the satisfaction and violation of

goals. In her plot unit work, Lehnert (1981) explained that achieving a goal successfully

would result in a positive affect state, and otherwise, a negative affect state. Dyer (1983)

also claimed that if a goal is achieved, then the characters may feel happy, joyous, or glad,

while if a goal is thwarted or suspended, characters may feel unhappy, upset, or sad. In

narrative stories, goals often are explicitly mentioned or could be inferred. In many cases,

the concepts of goals and human needs can be used interchangeably. Comparing to goals,

the subtle difference is that human needs usually are more fundamental. For example,

John may have a goal to buy a hamburger and fries, but the fundamental reason is that

John has the need (Physiological needs) to eat food.
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Recently, some researchers tried to recognize people’s wishes, goals, and desires in text.

For example, Goldberg et al. (2009) analyzed the WISH corpus obtained from the Times

Square Alliance, and proposed a task to classify individual sentences as being wishes or

not. They also designed classifiers using various features (e.g., words, patterns) to detect

wishes. Their experiments demonstrated that wish templates generated from the WISH

corpus can improve wish detection performance on product reviews and political discus-

sion posts. Chaturvedi et al. (2016) proposed a task of identifying if a desire expressed in a

given text was fulfilled. They first created two corpora with desire fulfillment labels, then

designed both unstructured and structured models to detect whether a desire was fulfilled

or not. They also showed that the system, which models the evolution of a story as latent

states, achieved the best performance. Inspired by this work, Rahimtoroghi et al. (2017)

introduced a new data set (DesireDB) that contains labels for identifying desire expressions

and whether a desire was fulfilled. As stated by Rahimtoroghi et al. (2017), narrative

and sentence structures in DesireDB are more complex than the two data sets used in

the prior work (Chaturvedi et al., 2016). To determine whether a desire was fulfilled or

not, Rahimtoroghi et al. (2017) designed supervised models with various features (e.g.,

contextual and word embedding features).

2.5 Semi-Supervised Learning
Semi-supervised learning is a group of machine learning methods that aim to achieve

good performance by taking advantage of a small amount of labeled data and a large

amount of unlabeled data. Semi-supervised learning has gained a lot of research interests

from different research fields such as Machine Learning, Natural Language Processing,

and Data Mining, etc. Various semi-supervised learning algorithms have been proposed

such as graph-based semi-supervised learning (Zhu, 2005), semi-supervised support vec-

tor machines (Bennett and Demiriz, 1999), co-training (Blum and Mitchell, 1998), and

semi-supervised deep neural networks (Kingma et al., 2014). Since the research in this

dissertation aims to design semi-supervised learning methods to learn knowledge of af-

fective events, this section will overview some of the semi-supervised learning algorithms

that are closely related to the methods used in this dissertation.
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2.5.1 Graph-based Semi-Supervised Learning

Graph-based semi-supervised methods have been widely used in various applications,

such as text classification (Talukdar and Crammer, 2009; Orbach and Crammer, 2012), part-

of-speech tagging (Subramanya et al., 2010; Das and Petrov, 2011), and semantic parsing

(Das and Smith, 2011). Some researchers also designed graph-based methods to acquire

sentiment lexicons (Feng et al., 2013; Rao and Ravichandran, 2009; Velikovich et al., 2010).

The first part of my research designed two graph-based semi-supervised learning mod-

els to learn the affective polarity of events. The first Event Context Graph (ECG) model is

motivated by the Label Propagation (LP) algorithm (Zhu and Ghahramani, 2002), which

was proposed to solve classification problems. The LP algorithm iteratively propagates

label information from a small set of labeled instances (seeding information) to other

unlabeled instances through graph edges. The second Semantic Consistency Graph (SCG)

model is inspired by the semi-supervised graph-based methods proposed by Zhou et al.

(2003) and Subramanya and Bilmes (2011). Motivated by these methods, the SCG model

uses noisy labels as initialization, and computes the inconsistency between the values on

two connected nodes as the KL-divergence of the two values instead of the square loss

measure. Comparing to previous methods, the objective function of the SCG model is

more complex, which models not only similarity relations but also opposition relations

between nodes.

2.5.2 Self-Training and Co-Training

The second part of the research in this dissertation designed self-training and co-training

approaches to recognize human needs implied by affective events. Self-training is a semi-

supervised learning method that obtains a better model by exploiting the predictions of a

supervised classifier on unlabeled data. Self-training first trains a model using only labeled

data, then iteratively re-trains the model using both the original training data and its own

predictions on unlabeled data. It has been demonstrated that self-training can successfully

improve the performance of many NLP tasks but often offers a precision/recall trade-off

(i.e., recall is often increased but precision may be sacrificed). For example, self-training

has been used to improve the performance of information extraction (Ding and Riloff,

2015) and syntactic parsing (McClosky et al., 2006).
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Co-training (Blum and Mitchell, 1998) is an another semi-supervised learning frame-

work that trains models by exploiting multiple independent views of the data. It has

been previously used in NLP tasks such as Word Sense Disambiguation (Mihalcea, 2004)

and Coreference Resolution (Phillips and Riloff, 2002). Based on co-training, Kumar and

Daumé III (2011) proposed an effective spectral clustering method that has access to mul-

tiple views of a data point. In addition, sentiment analysis has been improved by us-

ing co-training methods. For instance, Wan (2009) designed a better Chinese sentiment

analysis system by using both Chinese features and English features (i.e., cross-lingual

views). Recently, Xia et al. (2015) improved sentiment analysis performance by co-training

a model with both the original and antonymous views. This dissertation designed a new

co-training method to recognize human needs implied by affective events by exploiting

both the event expression view and the contextual view of an event.

2.6 Chapter Summary
This chapter overviews prior works related to the research in this dissertation. First,

this chapter reviewed knowledge bases that have been manually or automatically acquired

in prior research. Most of these knowledge bases consist of facts, concepts, and semantic

relations, which is different from the knowledge of affective polarity and human needs

about affective events studied in this dissertation. Then, this chapter discussed the defini-

tions of the concept “affect” in prior research and prior works on the analysis of sentiments,

subjectivity, opinions, emotions, and implicit sentiments. It also reviewed sentiment lexi-

cons that are commonly used in sentiment analysis. Most of these prior research focused

on analyzing sentiments or opinions expressed in text, which is subjective. In contrast, this

dissertation aims to understand how experiencers are stereotypically affected by events,

most of which are factual and objective expressions and may not express any sentiments

or opinions. Some of the prior research has studied affective events denoted by individual

verbs. However, the affective polarity of an event is often determined by its verb (i.e.,

predicate) and arguments rather than just the verb. In this dissertation, I represent each

event with a frame-like structure that consists of 4 components: Agent, Predicate, Theme,

and Prepositional Phrase, and analyze the affective polarity of events based on the whole

event representations.
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Second, this chapter briefly introduced two psychological theories, based on which the

human need categories were developed for categorizing affective events. This chapter also

discussed prior research on understanding goals and desires, which are closely related to

the research on categorizing affective events based on their human needs studied in this

dissertation. In contrast to these prior research, this dissertation studied a new research

problem of understanding the reasons for events being affective and claimed that the

majority of affective events extracted from blog posts can be categorized into a small set of

human need categories.

In addition, this chapter reviewed related research on graph-based semi-supervised

learning, self-training, and co-training, which were used in this dissertation.



CHAPTER 3

DATA SET AND EVENT REPRESENTATION

This chapter presents the details of the text corpora used in this dissertation. Since this

dissertation aims to learn knowledge of affective events about daily life, I collected a large

of Web blog posts discussing about daily life stories. The detailed preprocessing steps will

be described in this chapter. Since my research studies events independent of contexts,

events are represented as tuples consisting of Agent, Predicate, Theme, and Prepositional

Phrase, which are extracted using dependency relations. This chapter provides details

about how events are represented and how they are collected from the text corpora. In ad-

dition, this chapter presents a manual annotation effort to study the prevalence of affective

events and create a gold standard data with polarity labels for evaluation.

3.1 Personal Blogs Corpus
The text corpora used in this research are from ICWSM 2009 and 2011 data challenges

provided by Spinn3r.com. The ICWSM 2009 Spinn3r data set (Burton et al., 2009) contains

44 million blog posts that originated between August 1st and October 1st, 2008. The

ICWSM 2011 Spinn3r data set (Burton et al., 2011) consists of over 386 million texts, in-

cluding blog posts (133 million), news articles (15 million), and other social media data (238

million), which originated between January 13th and February 14th, 2011. For the research

in this dissertation, I used all of the ICWSM 2009 data set and the blog post portion of the

ICWSM 2011 data set, which together contain over 177 million raw blog posts.

Since my research aims to study events in daily life stories and not all blog posts

are personal stories, the raw blogs were filtered to identify personal story posts. First,

the text contents were extracted from the original XML or HTML files. Observing that

many of the texts came from Web domains such as craigslist.org and answers.yahoo.com

and are not narrative stories, I only used the texts originating from blogging sites, which

were manually identified. Though both the ICWSM 2009 data set and 2011 data set were
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provided by Spinn3r, they are different because the 2011 data set contains a lot of blog

posts containing pictures and several sentences or just titles describing the pictures (e.g.,

artlimited.net and tumblr.com). Therefore, I manually selected blog sites for each data set

separately. For the ICWSM 2009 blog data, the sites are livejournal.com, wordpress.com,

blogspot.com, spaces.live.com, typepad.com, and travelpod.com. For the ICWSM 2011

blog data, the sites are blogspot.com, myspace.com, livejournal.com, wordpress.com, trav-

elpod.com, and wattpad.com. Second, personal story blog posts were identified using a

personal story classifier (Gordon and Swanson, 2009), which was developed to identify

stories that “are primarily a first person description of events in the life of the author”

(Gordon and Swanson, 2009). Due to classification errors, some of the resulting blogs actu-

ally are not true narrative stories, so I used an additional heuristic rule to remove posts that

contain no first-person mentions, i.e., if a story blog post does not have any first-person

mention (e.g., I, me, we, and us), then it would be removed. Third, near-duplicate story

blogs were also removed using SpotSigs (Theobald et al., 2008) because I noticed that some

stories were re-posted many times by different bloggers. This process resulted in 1,383,425

personal story blogs that were further processed using NLP tools. Specifically, each story

was first tokenized, split into sentences, and annotated with Part-Of-Speech and Named

Entity labels using the Stanford CoreNLP tool (Manning et al., 2014), then was further

parsed using the SyntaxNet (Andor et al., 2016) dependency parser. Specifically, I used

the collapsed dependencies with propagation of conjunct dependencies, i.e., the CCProp-

agatedDependencies setting defined in the prior work (De Marneffe and Manning, 2008).

Because the SyntaxNet parser does not produce collapsed dependencies directly, I used the

Stanford CoreNLP tool to convert outputs of the SyntaxNet into collapsed dependencies.

Please note that in the research presented in Chapter 4, I used Stanford parser to obtain

dependency relations, but later I noticed that the SyntaxNet parser does better than Stan-

ford parser, especially on sentences containing infinitive verb constructions. Therefore, I

used the SyntaxNet parser to obtain dependency relations for the research presented in

Chapters 5 and 6.
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3.2 Event Frame Representation and Extraction
This section presents definitions and extraction methods for two event frame represen-

tations. The basic event frame was first proposed and used in the research presented in

Chapter 4, which represents an event as a triple that contains an Agent, Predicate, and

Theme. Later, I found that some important information of events cannot be represented

using the basic event frame. Therefore, I designed an enhanced event frame to incorporate

Preposition Phrase components. Both of these two event representations were extracted

from the text corpora described in the previous section using dependency relations. The

details of the extraction methods for each type of event frame are described below.

3.2.1 Basic Event Frame

I define basic event frames as triples consisting of 3 components: Agent, Predicate,

and Theme. Each component is represented with a single word (one exception is that the

predicate can also be attached with a negator), which is extracted based on dependency

relations. First, I identify each verb as a potential predicate for an event. Since the negator

modifier of a predicate is critical to determine the meaning of an event. For example, “I

win” is semantically opposite to the event “I didn’t win”. Therefore, the negator modifier

of an predicate is also extracted using the neg dependency relation and attached to the

predicate, if present.

To extract the Agent and Theme component for an event, I used heuristic rules based on

dependency relations rather than semantic role labeling. Specifically, I used two types of

rules for active and voice sentences separately. For active voice verb phrase constructions,

the heads of a verb’s subject (Agent) and its direct object (Theme) are extracted using the

nsubj and dobj dependency relations. Extracted events are normalized by lemmatizing their

subject, direct object, and verb. For example, the sentence (a) in Figure 3.1 would produce

the event 〈they, have, party〉. For passive voice constructions, the heads of a verb’s subject

(Theme) and its agent (Agent) are extracted with the nsubjpass and agent relations. Each

component is also lemmatized. For example, Figure 3.1(b) shows a sentence in the passive

voice, which produces the event 〈man, be killed, by police〉. To make it easily readable, I

keep the verb in its past tense and append “be”, and append “by” to the agent.

In cases when an active voice construction does not have a direct object, or a passive
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(a) They had a big dinner party. ⇒ 〈they, have, party〉
nsubj dobj

(b) The man was killed by police. ⇒ 〈man, be killed, by police〉
nsubjpass agent

Figure 3.1: Dependency Relations for Basic Event Frames

voice construction does not have an agent, one of these elements may be absent. If both

the Agent and Theme components of an event frame are absent, the event will only have

a Predicate, which is too abstract and insufficient for people to understand the event.

Therefore, I restrict that each basic event frame must have a Predicate and at least one

other component (an Agent or Theme).

3.2.2 Enhanced Event Frame

During the research in this dissertation, I first developed the basic event frame, but

later I came to realize that the meanings of some events cannot be adequately represented

using the basic event frame. Therefore, I subsequently designed an enhanced event frame

to incorporate more information into an event representation.

Compared with the basic event frame, the enhanced event frame contains the following

additional information. First, a prepositional phrase in an event is important to understand

the meaning of the event. Given two event descriptions “I got into an argument” and

“I got into the college”, the basic event frame will only extract “I get”, and loses the

semantic information of the two prepositional phrases: “into a argument” and “into the

college”, which are essential to distinguish between dramatically different event types.

Therefore, the enhanced event frame has an additional prepositional phrase component

to capture the meaning of a prepositional phrase. Second, the basic event frame only

extracts single words for Agent and Theme components, which is inadequate to capture

their meanings. Because, for many events, their Agent and Theme components are often

Named Entities and noun compounds that require more than one words to sufficiently

represent the concept (e.g., “oil price”, “White House”). Therefore, in the enhanced event

frame, each of these components is composed with a Minimal Noun Phrase, which can

also be a Named Entity or a noun compound. Specifically, a minimal noun phrase is
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recognized in the order of Named Entities, nominals with noun premodifiers, pronouns,

and single nouns. If a minimal noun phrase is modified by a possessive pronoun, then

the possessive pronoun is also extracted using the poss relation and attached to the phrase.

The possessive pronoun can be used to distinguish whether the event is related to the first

person (i.e., the blogger). Third, I noticed that there are many stative expressions (most

of them are predicate adjective constructions) that can also be useful to identify a person’s

affect state (e.g., “my dad is brave”). Therefore, I also allow the theme to be an adjective to

extract stative events. Fourth, the predicate in the enhanced frame can also be associated

with a particle and a infinitive verb or gerund besides a negator. For example, a predicate

can be “not want to leave”. Finally, using the enhanced event representation, active and

passive event constructions are normalized. For example, “I was killed by him” and “he

killed me” are both represented by the same frame: “〈he, kill, me, -〉”.

Specifically, an enhanced event frame consists of 4 components and is represented as:

〈Agent, Predicate, Theme, PP〉, in which PP denotes the prepositional phrase component.

In the enhanced event frame, each event argument is approximated using dependency

relation rules rather than through semantic role labeling. The details of the extraction

method for each event component are presented below.

A Predicate is extracted for each verb, and can include a negator, a particle, and a infini-

tive verb or gerund, which are separately extracted using neg, prt, and xcomp dependency

relations, if present. For the examples shown below, the Predicate of the first sentence is

“break up”, and the Predicate of the second one is “not want to wait”.

He broke up with me. ⇒ Predicate: break up

prt

We do not want to wait. ⇒ Predicate: not want to wait

neg xcomp

An Agent is represented with a minimal noun phrase and extracted using the nsubj

relation from an active voice sentence, and the agent relation from a passive voice sentence.

Given the following two event descriptions, their Agents are “White House” and “stock

market”, respectively. The ORG denotes ORGANIZATION named entities.
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White House rejected the proposal. ⇒ Agent: White House
ORG ORG

nsubj

He was shocked by the stock market. ⇒ Agent: stock market

agent

nn

A Theme can be a minimal noun phrase, and is extracted using the dobj or nsubjpass

relations from an active or passive voice sentence correspondingly, if present. For example,

the Themes of the following two sentences are “oil price” and “project”.

He predicted the oil price. ⇒ Theme: oil price

dobj

nn

The project was rejected by the government. ⇒ Theme: project

nsubjpass

As mentioned earlier, a Theme can also be used loosely to allow a adjective to fill this

component when it cannot be extracted using dobj or nsubjpass relations. When the pred-

icate of an event is a copula, the Theme is extracted using the cop relation. For example,

in the sentence below “my dad is brave”, the Theme is “brave”. Otherwise, the Theme is

extracted using the acomp relation. For example, the Theme is “beautiful” in the sentence

below “she looks beautiful”.

My dad is brave. ⇒ Theme: brave

cop

She looks very beautiful. ⇒ Theme: beautiful

acomp

A PP component is extracted using the collapsed prep X relation in which X denotes

a preposition word (e.g., “in”, “on”) or phrase (e.g., “inside of”, “along with”). The

preposition word or phrase (X) is extracted with the preposition object (a minimal noun

phrase) using the prep X relation. Only a single PP is extracted for each event to prevent the

representation from becoming overly specific though multiple PPs are common and can be

important. If multiple PPs are attached to a predicate, only the closest one to the predicate

will be extracted. The following shows two concrete examples of how PP components are
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extracted using dependency relations.

We went to Disney Word. ⇒ PP: to Disney Word

prep to

nn

He put the bottle inside of a large paper bag. ⇒ PP: inside of paper bag

prep inside of

nn

As described above, active and passive event constructions are normalized using the

enhanced event representation. In addition, all words in event frames are also lemmatized

for normalization. For some events, both Agent and Theme are missing, in which case,

the meanings of these events are not accurately captured. Therefore, an event frame is

required to must have an Agent or a Theme, but PP is optional. When the verbs are “be”

and “have”, both Agent and Theme are required, which is used to filter event fragments

such as “〈I, be, -, -〉” and “〈we, have, -, -〉”.

The research presented in Chapters 5 and 6, which uses the enhanced event represen-

tation, aims to analyze affective events from the perspective of the first person (i.e., the

blogger). (Please note that the research in Chapter 4 does not analyze events from the first

person perspective.) Therefore, to make sure that extracted events are first person related,

only events that satisfy at least one of the following criteria are collected: (1) The event

has a first-person reference such as a first-person pronoun (e.g., “I went to school”, “the

sellers accepted our offer”). (2) The event mentions a family member (e.g., “mom”). This

assumes that the affective state of the blogger usually parallels that of family members

(e.g., “mom is sick” is undesirable for both mom and the blogger). A list of 92 family terms

were manually compiled and used to identify family member mentions. (3) The event does

not mention any other people. This heuristic assumes that the event pertains to the blogger

(e.g., “the computer died”). An entity is identified as “other people” if it is a second- or

third-person pronoun, a PERSON Named Entity, or nominal person mention based on

WordNet (e.g., “plumber”). Specifically, I obtained normal person words by extracting all

synonyms and hyponyms of the word “person” from WordNet. I did not extract events

that only mention other people because they may be describing someone else’s experience,

not the blogger’s. These rules were manually defined and could probably be improved
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with discourse analysis in future work.

Using the enhanced event frame representation, I collected 19,794,187 unique event

frames from the preprocessed personal blogs corpora described in Section 3.1. Events with

low frequencies mean that the events are not commonly discussed in personal stories. In

addition, I observed that low frequent events tend to be noisy. Because of using automatic

preprocessing tools (e.g., POS and NER tagging, and dependency parsing) that are not

perfect, there are some errors when extracting events from the automatically preprocessed

blogs posts. Therefore, events with frequency less than 5 were filtered. Finally, this resulted

a set of 571,424 unique event frames, which is called AffectEvent data set.

3.3 Gold Standard Polarity Annotations
Recognizing affective events can be useful for many other NLP tasks such as fine-

grained sentiment analysis, sarcasm detection, and narrative story understanding. How-

ever, a key question for research on this topic is: how prevalent are affective events?

To answer this question and to create a test set for evaluation, I conducted a manual

annotation study to label a random set of events extracted from the personal blogs corpus

with affective polarities. This section first presents annotation guidelines for affective

polarity, and then shows details of a manual annotation study on affective events.

3.3.1 Affective Polarity Annotation Guidelines

For the research of learning affective polarity, I initially defined four affective polar-

ity labels: POSITIVE, NEGATIVE, NEUTRAL, and MIXED for categorizing events. The

definitions and examples of each label are described below, and the original annotation

guidelines are presented in Appendix A.

POSITIVE: An event that most people would consider to be desirable, enjoyable,

pleasant, or beneficial. People are generally pleased if the event happens to them.

Examples:

〈I, dance, -, with my friend〉 〈I, have, birthday party, -〉
〈I, be, -, in Disney World〉 〈I, find, job, -〉

NEGATIVE: An event that most people would consider to be undesirable, unpleas-

ant, or detrimental. People are generally displeased if the event happens to them.

Examples:
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〈dog, pass away, -, -〉 〈girl, laugh, -, at me〉
〈car, injure, mom, -〉 〈I, lose, job, -〉

NEUTRAL: An event that most people would not consider to be positive or negative.

Examples:

〈I, sit, -, -〉 〈I, open, door, -〉
〈I, pack up, my bag, -〉 〈I, drive, car, -〉

MIXED: An event that is rarely neutral, but is often considered positive by some

people and negative by others. Both positive and negative understandings are com-

mon, and it is not clear which one is more dominant. For example, 〈I, get, ticket, -〉

can be positive in some contexts (e.g., getting tickets to a concert or sports games)

and negative in some other contexts (e.g., getting tickets for speeding or an expired

parking meter). Both of these situations are common, but the event is rarely neutral.

The first part of the research in this dissertation focuses on recognizing prior polarity of

events, which is a stereotypical understanding and independent of context. Therefore, dur-

ing the annotation stage, human annotators are required to assign a stereotypical polarity

label to each event based on a general understanding of the event, rather than any special

situation. For example, given the event 〈we, go, -, to Disney Word〉, the stereotypical

understanding is that people typically enjoy going to Disney Word and usually have a lot

of fun there. Thus, this event typically affects people positively and should be labeled

as positive, even though there will always be exceptions (e.g., someone may have a bad

experience there because the weather is not good or encounters somebody that the person

dislikes). However, annotators were instructed to label events based on the norm, rather

than exceptions.

3.3.2 Manual Annotation Study

To obtain gold standard annotations with affective polarity labels, three annotation

volunteers (including the author) were instructed to assign one of the Positive, Negative,

Neutral, and Mixed labels to each given event based on the definitions presented in the

previous section. First, I randomly selected 1,500 events from the AffectEvent data set, and

each annotator was required to annotate these events independently. After all annotators

finished their annotations, I measured the pairwise inter-annotator agreement (IAA) scores
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among the three annotators using Cohen’s kappa (κ) on the 1,500 events. Annotators

achieved good annotator agreement scores on this task, which are κ=.76, κ=.70, and κ=.69.

To obtain a single annotator label for each event, I assigned the majority label to each

event as the gold standard polarity. Only one event was labeled as Mixed, so I concluded

that mixed polarity events are rare. Therefore, I abandoned the Mixed category and dis-

carded the 1 Mixed event for the remainder of this research. In addition, there are 9

events that received three different labels from annotators, which did not have majority

labels and were discarded too. Finally, the annotation process resulted in a gold standard

data set of 1,490 events labeled as POSITIVE, NEGATIVE, or NEUTRAL. Of these 1,490

manually annotated events, I randomly selected 1,000 as the test set for evaluation and use

the remaining 490 events as a development set for tuning parameters during my dissertation

research. Some examples of the annotated events are shown in Table 3.1. More examples

can be found in the Appendix B.

The distribution of polarities is shown in Table 3.2, which demonstrates that 38% of

the randomly selected events have a positive or negative affective polarity, with slightly

more positive events. These results suggest that affective events are pervasive, comprising

nearly 4 of every 10 events, illustrating the importance of being able to recognize affective

polarity of events for narrative text understanding.

Table 3.1: Examples of Gold Standard Affective Events

POSITIVE: 〈I, play, music, -〉
〈kid, look up, -, to me 〉 〈cost, be, low, -〉
〈I, go, -, to block party〉 〈someone, save, me, -〉
〈my confidence, rise, -, -〉 〈I, attend, show, -〉
〈I, dance, -, with my friend〉 〈I, kiss, her, -〉
NEGATIVE: 〈girl, laugh, -, at me〉
〈I, get, -, into argument〉 〈I, be, bummed, -〉
〈I, drop, my phone, in toilet〉 〈dog, pass away, -, -〉
〈house phone, not work, -, -〉 〈my face, look, pale, -〉
〈I, wake up, -, at 3 am〉 〈tear, pour, -, from eye〉
NEUTRAL: 〈I, pack up, my bag, -〉
〈I, decide to rent, car, -〉 〈trunk, be, open, -〉
〈tour bus, pull up, -, -〉 〈I, scribble, -, -〉
〈I, read, -, over post〉 〈I, have, staple, -〉
〈I, wake up, -, around 6 〉 〈I, look, -, at sentence〉
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Table 3.2: The Distribution of Affective Events in the Gold Standard Data

POSITIVE NEGATIVE NEUTRAL
295 (20%) 264 (18%) 931 (62%)

Figure 3.2 shows the confusions among three annotators (i.e., Ann1, Ann2, and Ann3).

The category labels are abbreviated as: positive (POS), negative (NEG), neutral (NEU),

and mixed (MIX). #Tot denotes the total number of events in each row or column. The

confusions among three annotators show that human annotators have difficulty in dis-

tinguishing positive or negative events from neutral, but they are good at recognizing

positive events from negative ones.

3.4 Chapter Summary
This chapter presents a personal blogs corpus, and describes event frame representa-

tions and methods used for extracting event frames. This chapter also presents a manual

annotation study to obtain gold standard data for evaluation and determine the prevalence

of affective events. The content of this chapter is summarized below.

• This research created a personal blogs corpus that consists of 1,383,425 personal story

blogs that are extracted from the data sets of the ICWSM 2009 and 2011 data chal-

Ann1. \ Ann2 POS NEG NEU MIX #Tot
POS 215 4 97 0 316
NEG 11 203 62 0 276
NEU 32 23 840 1 896
MIX 2 2 7 1 12
#Tot 260 232 1006 2 1500

(a) Annotator 1 and 2

Ann1. \ Ann3 POS NEG NEU MIX #Tot
POS 261 10 45 0 316
NEG 3 247 26 0 276
NEU 47 56 793 0 896
MIX 2 7 2 1 12
#Tot 313 320 866 1 1500

(b) Annotator 1 and 3
Ann2. \ Ann3 POS NEG NEU MIX #Tot

POS 219 14 27 0 260
NEG 2 210 20 0 232
NEU 92 96 818 0 1006
MIX 0 0 1 1 2
#Tot 313 320 866 1 1500

(c) Annotator 2 and 3

Figure 3.2: Polarity Annotation Confusions between Each Pair of Annotators.
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lenges1.

• This research designed two event frame representations: basic event frame and en-

hanced event frame. The basic event frame can only capture the agent, predicate,

and theme of an event, and each component is represented with a single word.

Compared with the basic event frame, the enhanced event frame contains more

information. First, the enhanced event frame contains an additional prepositional

phrase component. Second, the Agent, Theme, and Prepositional Phrase components

in an enhanced event frame are composed with a minimal noun phrase (e.g., Named

Entity or noun compound) rather an a single word. Third, the Theme component can

be a adjective. Fourth, the predicate can be associated with a particle and a infinitive

verb or gerund. Finally, active and passive event constructions are normalized using

the enhanced event frame. The research presented in Section 4 uses the basic event

frame representation. The research in Section 5 and 6 uses the enhanced event frame.

Both basic and enhanced event frames are extracted using dependency relations.

• This chapter also presents a manual annotation study to obtain gold standard data

of events with affective polarity labels, and determine the prevalence of affective

events. With this annotation study, I obtained 1,490 events with Positive, Negative,

and Neutral polarity labels, which are used as gold standard data for evaluation

and are freely available to the research community. In addition, the manual analysis

shows that 38% of events are affective (positive or negative), which suggests that

affective events are pervasive, and illustrates the importance of recognizing affective

events for narrative text understanding.

1The ICWSM 2009 data can be found here: www.icwsm.org/2009/data/, and the ICWSM 2011 data can be
found using this link: www.icwsm.org/data/.



CHAPTER 4

EXTRACTING AFFECTIVE EVENTS FROM

BLOGS WITH EVENT CONTEXT GRAPH

MODEL

In this chapter, I present the details of a semi-supervised Event Context Graph (ECG)

model for identifying events that are typically associated with a positive or negative state

from a large collection of personal blogs. First, I extract event representations from per-

sonal story blogs using the basic event frame representation described in Chapter 3, and

then construct an enormous event context graph that contains nodes representing events

and sentences in the corpus. This model is based on two intuitions: (1) some instances

of affective events will occur in contexts mentioning explicit sentiment indicators (e.g.,

“good”, “bad”, “happy”, or “upset”), and (2) events that frequently co-occur in the same

documents tend to share similar affective polarities. The ECG model links event mentions

with their contexts and connects event pairs that frequently co-occur to allow affective

evidence to propagate from contexts to events and among events. The model explores

three types of edges: event-sentence edges capture local context, sentence-sentence edges

capture discourse proximity context, and event-event edges capture event co-occurrence

in documents. With the event context graph, the model first assigns initial affective po-

larities with a sentiment classifier to “seed sentences” and uses a semi-supervised label

propagation algorithm to extract affective events by spreading affective evidence across

edges of the graph.

In the rest of this chapter, I first present the motivation, present the overview of the

Event Context Graph model, and describe the details of each part of the model including

a sentiment sentence classifier used for identifying seeding sentences, an event context

graph, and a label propagation algorithm. Then, I describe baseline methods using existing

sentiment resources and evaluations on manually labeled data sets. Finally, I summarize
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this chapter.

4.1 Motivation
Supervised learning can be used to recognize affective events, but it usually requires a

large amount of human-labeled data to achieve good performance, which is time consum-

ing and expensive. This chapter presents a semi-supervised Event Context Graph (ECG)

model, which has the advantage that it only needs automatically obtained noisy labels and

can be adapted to other data sets with relatively less effort. The ECG model is motivated by

the following observations and intuitions. First, events are extracted from personal story

blogs in which bloggers often write about events in their daily lives. While many of these

events are mundane, blog posts are often motivated by exciting events such as a vacation

or graduation, or by unpleasant events such as an injury or job loss. I observed that when

bloggers describe events that happened to them, they sometimes explicitly express their

sentiments toward the events in contextual sentences. In some cases, the explicit sentiment

is expressed in the same sentence where an event is mentioned (e.g., “I’m so happy that I’m

graduating”). For some other cases, the explicit sentiment is described in nearby sentences.

For example, in the description “It was so fun yesterday. I went to Disney Word with my

family”, the blogger expressed a positive sentiment in the first sentence, and described

the corresponding event in the second sentence. Based on this observation, I explore the

idea of harvesting affective events from a large collection of blog posts by identifying

events that frequently occur in positive or negative discourse contexts whose polarities

can potentially be recognized using existing sentiment analysis tools. In addition, I noticed

that events that frequently co-occur in the same documents tend to have the same affective

polarity. For example, we can expect that the events “John was hit by a car” and “John was

sent to the hospital” will frequently co-occur in the same blogs. Based on this observation,

if we can determine the polarity of an event based on its discourse contexts, then we can

also spread this polarity evidence to other highly correlated events. For example, if we

know “John was hit by a car” is negative, we can reasonably infer that “John was sent to

the hospital” is also negative. However, a key challenge of this research is to explore the

effectiveness of different types of discourse contexts and collocation metrics in learning

to recognize events that have strong affective polarities. In the following sections, I will
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present the details of the Event Context Graph model.

4.2 Semi-Supervised Learning of Affective Polarity
with Event Context Graph Model

4.2.1 Overview

To learn affective events, I begin by extracting frequent events from a large set of

personal story blog posts. Then, I identify affective events from the frequent events using

semi-supervised learning with an Event Context Graph (ECG) model. An event con-

text graph is first created, which consists of two types of nodes: event nodes and sen-

tence nodes, and three types of edges: event-sentence edges capture local context, sentence-

sentence edges capture discourse proximity context, and event-event edges capture event

co-occurrence in blog posts. To initialize the ECG model, I apply a sentiment sentence

classifier to identify sentences that have strong positive or negative polarity, which become

the seed nodes for semi-supervised learning. Then, I use a label propagation algorithm

to iteratively spread polarity evidence across the edges of the event context graph from

the seed nodes. Consequently, events that frequently occur in affective contexts will be

assigned high values for affective polarity through event-sentence edges. With sentence-

sentence edges, the propagation algorithm can spread affective evidence across local dis-

course regions, and event-event co-occurrence edges will propagate affective evidence from

some events to other frequently collocated events. Finally, each event will be assigned a

affective polarity value, which can be used to extract strongly affective events.

4.2.2 Sentiment Sentence Classifier

Existing sentiment analysis resources are not adequate to recognize many affective

events, but they can identify affective polarities of many sentences that contain explicit

sentiment indicators. My research exploits these resources to automatically obtain noisy

supervision for the semi-supervised Event Context Graph model. Specifically, I created

and applied a sentiment sentence classifier to identify an initial set of sentences that have

strong positive or negative polarities. The identified sentences were used as seeding nodes

for the label propagation algorithm. This section provides details of building a sentiment

sentence classifier.

I created a logistic regression classifier that labels sentences as having positive, negative,
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or neutral polarity. This classifier provides a probability value that is used to assign a

confidence strength to each label. The features for this classifier were designed to be

similar to that used in the NRC-Canada sentiment classifier (Mohammad et al., 2013)

which performed very well in the SemEval 2013 Task 2 (i.e., the Sentiment Analysis Task

in Twitter). Since the blog data used in this research is also a form of social media text, this

feature set was expected to be also well-suited for the blog data. I did not include all of

features designed for the NRC tweet sentiment classifier because some features are specific

to tweets rather than blogs (e.g., elongated words and emoticons). The sentiment classifier

was trained on tweets with gold affective polarity labels, and features were extracted for

each tweet during the training stage. When the classifier was applied to blog posts to

determine the polarity for an input sentence, features were extracted from the sentence.

Specifically, the sentiment classifier was built using following features.

• Word N-grams: For a tokenized text, I first convert words in the text into lower case

and then create features for each unigram, bigram, trigram, and 4-gram. Each n-gram

feature is assigned with a binary presence value, i.e., the feature value is set to 1 if

the n-gram appears in the given text, otherwise 0.

• Word Skip-grams: To obtain these features, I first obtain the trigrams and 4-grams

from a tokenized text (all letters are in lowercase). Then, I extract word ski-gram

features by replacing one word of a trigram or 4-gram with a asterisk *. The values

of these features are binary.

• Character N-grams: For a given text string (in lowercase), I create features for each

contiguous sequence of 3, 4, and 5 characters. Each feature is assigned with a binary

presence value.

• Capitalization: For an input text, this feature counts the total number (n) of words

in which all letters are in uppercase. The feature value is set to n.

• Part-Of-Speech: To obtain this type of features, I first obtain part-of-speech tags for

an input text. Then, I create a feature for each unique part-of-speech tag. The value

for a part-of-speech tag feature is set to the total number of times the tag appears in

the text.
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• Hashtag: I also create a feature to indicate how many hashtags are in a text. The

feature value is set to the total number of any hashtags mentioned in the text.

• Sentiment Lexicons: this type of features were extracted from six sentiment lexicons:

MPQA Subjectivity lexicon (Wilson et al., 2005), Hu & Liu’s lexicon (Hu and Liu,

2004), NRC Emotion lexicon (Mohammad and Turney, 2010), NRC Hashtag lexi-

con (Mohammad et al., 2013), Sentiment140 lexicon (Go et al., 2009), and AFINN

lexicon (Nielsen, 2011). Some lexicons consist of individual words, while others

contain bigrams and word pairs. Therefore, to match a lexicon, I first convert an

input text into a list of terms, which could be individual words, bigrams, or word

pairs depending on the lexicon. Then, for each lexicon, I create the following 7

features using the prior polarity scores (which could be binary or real value scores)

of terms in the lexicon. (1) I create a feature to count the number of terms whose

polarity scores are greater than 0 based on the lexicon. (2) For a given text, I also

create a feature to denote the sum of the polarity scores for all terms in the text,

(3) the sum of positive scores (i.e., score>0) for all terms in the text, (4) the sum of

negative scores, (5) the maximal score for all terms in a given text, (6) the minimal

score for in the text, (7) the polarity score of the last term in the text.

With the above features, I built a logistic regression classifier using the tweet data

with three polarity labels (positive, negative, and neutral) from the SemEval 2014 Task 9

(Sentiment Analysis Task in Twitter), in which 6425 tweets were used for training and 1564

tweets were used for evaluating the performance of the classifier. The classifier’s macro

average performance is 69.4% Precision, 68.2% Recall, and 67.8% F1, which is close to the

performance (which is 69.02% F1) reported for the NRC-Canada system for the SemEval

2013 Message-level Task (Mohammad et al., 2013).

4.2.3 Event Context Graphs

To identify affective events, I construct an Event Context Graph that links events with

their contexts and other co-occurring events. The graph contains two types of nodes: event

nodes and sentence nodes. Each event node denotes a unique event frame extracted from

the blog corpus, and each sentence node represents a sentence from a blog post. Nodes

are connected with three types of edges: event-sentence, sentence-sentence, and event-event
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edges, which are created to investigate different ways of propagating polarity evidence

between events and contexts. Figure 4.1 shows an illustration of an Event Context Graph.

The following describes how these edges are created.

• Event-Sentence Edges: These edges connect events with sentences in which they

appear. With event-sentence edges, the affective polarity of an event can be induced

from its local contexts. For example, if the event 〈I, graduate, -〉 is extracted from

the sentence “I’m so happy that I’m graduating”, the event and sentence will be

linked together. The polarity evidence in the sentence, which originates from the

word “happy”, will be propagated to the event through this connection. Since an

event may appear in multiple contexts, its affective polarity is induced using all of

the contexts in which it occurs. When a sentence node si is linked to an event node ej,

the weight on this edge is computed as w(si, ej) =
1

|T(si)| where the T(si) denotes the

set of events linked to sentence si, i.e., all the unique events that are mentioned in the

sentence si. Intuitively, this assumes that events mentioned in sentence si contribute

equally to the polarity of si.

• Sentence-Sentence Edges: These edges connect adjacent sentences in the same doc-

uments. They allow for label propagation across neighboring sentences to capture

the intuition that sentences in the same discourse region are likely to have the same

polarity. For example, given two adjacent sentences “(1) Last weekend was so fun.

(2) We had a campfire at the beach.”, the edge between these two sentences will

allow for the propagation of the explicit polarity evidence from the first sentence to

the second sentence. I set the weight for an edge linking sentence si and sj to be

w(si, sj) = 0.80, which indicates that I expect the sentiment evidence expressed in

Figure 4.1: Illustration of an Event Context Graph with Three Types of Edges
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nearby contexts will gradually degrade based on the distance to the current sentence

when it is aggregated into the current sentence. With the weight of 0.8, the sentiment

evidence value (suppose the original value is 1.0) of a sentence s will degrade to

0.8 (i.e., 1.0 ∗ 0.8 = 0.8) when it is passed to sentences with distance 1 to sentence s

(i.e., the previous or following sentence), and 0.64 (i.e., 1.0 ∗ 0.8 ∗ 0.8 = 0.64) when it

reaches sentences with distance 2 to sentence s. However, it will degrade to around

0.3 when it is passed to sentences of distance 5 (i.e., 1.0 ∗ 0.85), which indicates that

sentiment evidence from contextual sentences will have little influence when the

context window is ≥ 5. In my experiments, I intuitively chose this value based on

the above analysis, and did not experiment with other values, so exploring methods

to find an optimal weighting could be fruitful in future work.

• Event-Event Edges: These edges link events that frequently co-occur in the same

blog post, and are designed to capture the intuition that if two events frequently

co-occur in same stories, then they are likely to share the same affective polarity. For

example, we would expect the events 〈kid, be hurt, -〉 and 〈kid, cry, -〉 to frequently

co-occur in blog posts by parents discussing accidents involving their children, and

they have the same negative polarity. For this type of edge, I use the probability of

event ej given event ei as the edge weight, so the edges are directed. The weight on

an edge from event ei to ej is computed as:

w(ei, ej) =
p(ei, ej)

p(ei)
,

where p(ei, ej) is the probability that events ei and ej appear in the same document,

and p(ei) is the probability that ei appear in the personal blog corpus.

4.2.4 Variants of the Event Context Graph Model

To investigate the effectiveness of each type of edge, I create three graph variants by

incrementally incorporating event-sentence edges, sentence-sentence edges, and event-event

edges. Each of the three graph architectures is described below.

• Local Context Graph (GLOC): This graph configuration contains only event-sentence

edges. Affective polarity of an event can only be obtained from sentences that men-

tion the event.
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• Discourse Context Graph (GDIS): This graph configuration contains two types of

edges: event-sentence edges as well as sentence-sentence edges. In this variant, affective

polarity evidence can propagate across sentence boundaries as well. Events can

receive polarity evidence not only from its local context but also from the discourse

context.

• Event Co-Occurrence Graph (GEV): This graph configuration contains three types

of edges: event-sentence, sentence-sentence, and event-event edges. Besides local and

discourse context, affective polarity evidence can also be propagated through con-

nections between co-occurring events. This is the full Event Context Graph (ECG)

model.

4.2.5 Semi-Supervised Label Propagation

To learn affective polarities of events, I use the label propagation algorithm from (Zhu

and Ghahramani, 2002). The pseudocode for my implementation is shown in Algorithm

1, which will outputs a real valued polarity score (ψ(v) ∈ [−1,+1]) associated with each

node. The polarity value of -1 denotes a negative polarity, +1 means a positive polarity,

and 0 denotes the node is neutral.

Algorithm 1 Semi-Supervised Label Propagation
Require: G(V, E), Sentiment Classifier SC, seed threshold τ
Ensure: ψ(v) ∈ [−1,+1], ∀v ∈ V

1: Initialize seed nodes using SC with threshold τ
2: while ψ has not converged do
3: Update ψ(v) using Equation 4.1.
4: Re-clamp the seed nodes
5: end while
6: return ψ

An important part of the label propagation algorithm is the initialization procedure

(Step 1). Previous work (Rao and Ravichandran, 2009; Feng et al., 2013) using label propa-

gation for sentiment lexicon induction typically starts with a small set of manually selected

seed words. Instead, I initialize the label propagation algorithm with a set of sentence con-

texts that are determined to be positive or negative. I apply a sentence classifier designed
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for sentiment analysis (described in Section 4.2.2) to all of the sentences in the blogs and

identify sentences that are classified as having positive or negative polarity. The highly

confident positive or negative sentences are then used as seeding information for the Event

Context Graph model.

The sentiment classifier is not perfect (69% precision), and the initial set of labeled

nodes need to be as accurate as possible. Therefore, I only select a sentence node as seeding

node if the classifier’s probability is ≥ τ. The seed nodes correspond to the sentences that

are classified as having positive or negative polarity with probability≥ τ by the sentiment

classifier in the initialization step of Algorithm 1. In the experiments, τ is set to be 0.5. Since

the sentiment classifier was trained on data with three polarity classes, the classification

decision with probability over 0.5 was fairly accurate (which was 77% precision based on

tweet evaluation data). The seed nodes labeled as positive are assigned a value of +1, and

the negative seed nodes are assigned a value of −1. All other sentence nodes, and all of

the event nodes, are initialized with a value of 0.

ψt+1(v) =
∑v′∈N(v) w(v, v′) ∗ ψt(v′)

∑v′∈N(v) w(v, v′)
(4.1)

After initialization, the affective polarity values are iteratively propagated across edges.

I compute the affective polarity ψ(v) of node v as the weighted average of the polarity

values of its neighbor nodes N(v). Formally, I use Equation 4.1 to update the value of

each node. After each iteration, the affective polarity value for each seed node is reset (“re-

clamped”) to +1 or -1, per its original value. This step ensures that the seed nodes always

maintain their original polarity. The label propagation process iterates until the affective

polarity values in the graph converge. The label propagation algorithm is guaranteed to

converged (Zhu and Ghahramani, 2002). In my experiments, I ran label propagation until

it ran for 100 iterations.

4.3 Evaluation
This section presents evaluation details of the Event Context Graph model described in

the above section. For comparison, I designed two baseline systems that took advantage

of local contexts (sentences) and global contexts (documents). This section first describes

the two baseline systems, and then presents the evaluation data, metrics, and experimental
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results.

4.3.1 Baseline Systems

For comparison, I designed two baseline systems that acquire affective events by ap-

plying a sentiment classifier to the context surrounding events. The first system, AvgSent,

is designed to identify affective events that frequently occur with an explicitly expressed

sentiment. For example, the event 〈we, have, campfire〉 is typically a fun experience,

so I expect to find sentences such as “We will have a campfire, so excited!”. For each

event e, the AvgSent system collects all of the sentences containing the event e and applies

the sentiment classifier described in Section 4.2.2 to those sentences. An event’s affective

polarity score ψ(e) is computed as the average polarity over the sentences:

ψ(e) =
1
|S(e)| ∑

s∈S(e)
p(s)

where S(e) is the set of sentences containing event e, and p(s) is the signed polarity score

of sentence s, which is defined as +1 if s is classified as positive, −1 if s is negative, and 0

if s is neutral.

The second system, AvgDoc, is designed to identify affective events that frequently

occur in documents that have overall positive or negative polarities. For example, bloggers

sometimes express sentiment at the beginning of their post (e.g., “So happy today!”), after

which they describe the events that happened to them. While not every event that occurs

in a positive (or negative) document will have positive (or negative) polarity, if an event

consistently occurs in documents with the same polarity, then the event is likely to have

that polarity. For each event e, the AvgDoc system collects all of the documents containing

the event and applies the sentiment classifier to all sentences in those documents. Each

document’s sentiment score is computed as the average sentiment score for the sentences

in that document. An event’s affective polarity score ψ(e) is then computed as the average

polarity over these documents:

ψ(e) =
1

|D(e)| ∑
d∈D(e)

(
1
|d| ∑s∈d

p(s))

where D(e) is the set of documents containing event e, and p(s) is still the signed polarity

score of sentence s.
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4.3.2 Evaluation Data Set and Metrics

For the evaluation presented in this section, I used the blog posts from the ICWSM

2009 Spinn3r data set. After applying the preprocessing steps described in Section 3.1, I

obtained around 1.4 million personal story blog posts, which were automatically processed

using Stanford CoreNLP tools and parsed using the Stanford dependency parser. I used

the basic event frame representation described in Section 3.2 to collect event representa-

tions from the personal blogs. To keep the size of the graphs manageable, events with

frequency less than 50 in this data set were filtered. This produced 40,608 unique basic

event frames.

In these experiments, I evaluated the affective events produced by the AvgSent and

AvgDoc baseline systems as well as the three variants (i.e., GLOC, GDIS, GEV) of the Event

Context Graph with label propagation. After collecting event representations from the

personal blogs, I applied each of the five methods and ranked the events based on the

affective polarity scores produced by that method. Because both positive and negative

values can denote strong affective events, I used the absolute values of the polarity scores

to generate a single ranking of events with both positive and negative polarity.

However, many of the top-ranked events included individual words with a strong

positive or negative sentiment, such as “celebrate” or “disappoint”. Events that include

explicitly positive or negative terms can usually be assigned an affective polarity by sen-

timent analysis tools. Consequently, I applied the sentiment classifier to each event and

separated out the events that the classifier labeled as positive or negative. I removed

these cases for two reasons. First, the sentiment classifier was used to “seed” the label

propagation algorithm, so it seemed unfair to reward that method for finding events that

the classifier itself recognized as having polarity (because the sentences containing these

events are likely to have been seed nodes). Second, the goal of this research was to learn

implicitly affective events. Since manual annotation is expensive, I wanted to focus the

annotation efforts on evaluating the quality of the events hypothesized to have affective

polarity that would have been labeled neutral by current sentiment analysis systems.

Finally, rather than fixing an arbitrary threshold for the polarity scores, I evaluated the

precision of the top-ranked k affective events hypothesized by each method. For each of

the five systems, I collected the 500 top-ranked events (that were not labeled as positive or
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negative by the sentiment classifier). In total, this process produced 1,020 unique events,

which were then assigned gold standard affective polarity labels by human annotators.

I used Amazon’s Mechanical Turk (AMT) service to obtain gold standard annotations

for the affective polarity of events. AMT workers were asked to assign one of four labels

to an event. The definition of each label is shown below.

• Positive: The event is typically desirable or beneficial. For example: 〈I, see, sunset 〉

• Negative: The event is typically undesirable or detrimental. For example: 〈girl, have,

flu〉

• Neutral: The event is not positive or negative, or the event is so general that it could

easily be positive or negative in different contexts. For example: 〈he, open, door〉

• Invalid: The event does not describe a sensible event. This label is primarily for

erroneous event representations resulting from preprocessing or parsing mistakes.

For example: 〈cant, do, 〉

I gave the annotation guidelines and examples to three AMT workers, who then an-

notated the 1,020 events. I measured pairwise inter-annotator agreement (IAA) among

the three workers using Cohen’s kappa (κ). Their IAA scores were κ=.73, κ=.71, and

κ=.68. I assigned the majority label as the gold standard for each event. However, 17

events were assigned three different labels by the judges, and 43 events were annotated as

Invalid events (based on the majority label), so I discarded these 60 cases. Consequently,

the gold standard annotations consisted of 960 labeled events, which had the following

distribution of affective polarities: Negative=565, Positive=198, Neutral=197. As a result

of the discarded cases, there were less than 500 labeled events for some methods. All

five methods had at least 460 labeled events, though, so I evaluated the precision of each

method for its top-ranked 100, 200, 300, 400, and 460 events.

4.3.3 Experimental Results

Table 4.1 shows the accuracy of the top-ranked events produced by each system. The

AvgSent baseline system performed well, achieving 86% accuracy for the top 100 docu-

ments and 80% accuracy for all 460 events. AvgDoc did not perform as well, suggesting
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Table 4.1: Accuracy for the Top-Ranked Affective Events.

Systems Top100 Top200 Top300 Top400 Top460
AvgDoc 75.0 73.5 73.3 71.5 71.5
AvgSent 86.0 83.0 83.6 82.5 80.0

GLOC 88.0 86.0 84.0 81.5 80.9
GDIS 88.0 87.0 84.3 83.0 82.4
GEV 90.0 87.5 84.0 84.5 82.8

that local sentential context is a more reliable indicator of affective polarity than document-

wide context. Label propagation with the Event Context Graphs yielded additional per-

formance gains over the AvgSent baseline. The GLOC graph with only event-sentence edges

improved accuracy from 83% to 86% for the top 200 events, and from 80.0% to 80.9%

over all 460 events. The GDIS graph with added sentence-sentence edges further improved

accuracy over GLOC from 80.9% to 82.4% for all 460 events. Finally, the GEV graph that

incorporated additional event-event edges achieved 90% accuracy for the top 100 events

and slightly higher accuracy (82.8%) overall.

These results show that label propagation with Event Context Graphs is an effective

method for acquiring affective events from a large text corpus. This approach achieved

high precision at identifying affective events, and successfully discovered many affective

events that a sentiment classifier did not recognize as having polarity.

4.4 Analysis
In this section, I analyze the performance of the ECG model. First, I show some ex-

amples of the top-ranked events produced by the GEV system, and analyze events that

were incorrectly recognized as affective. Second, I further investigate the ability of existing

sentiment lexicons to identify affective events from the top-ranked events produced by the

GEV system. Finally, I evaluate the ECG model on another set of randomly sampled events

for comparison with the model to be described in Chapter 5.

4.4.1 Analysis of Learned Affective Events

Table 4.2 shows the top 50 positive events and the top 50 negative events produced by

label propagation with the GEV graph.
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Table 4.2: Top 50 Positive and 50 Negative Affective Events Produced with Label Propa-
gation with GEV , ∅ Denotes Empty Element. Verbs that Usually Occur with a Particle Are
Denoted with ∗ (e.g., screw up, black out, shut down) to Help Readers Interpret the Likely
Intended Phrase.

Negative Events
〈he, lose, mind〉 〈she, lose, lot〉 〈I, break, nose〉
〈phone, be broken, ∅〉 〈professional, advise, ∅〉 〈life, lose, ∅〉
〈she, lose, balance〉 〈he, lose, balance〉 〈phone, break, ∅〉
〈Im, stick, ∅〉 〈tear, sting, eye〉 〈she, be hit, by car〉
〈I, fall, bike〉 〈he, lose, lot〉 〈she, hit, head〉
〈Im, screw, ∅〉∗ 〈nose, be stuffed,〉 〈he, be hit, by car〉
〈one, answer, phone〉 〈I, lose, balance〉 〈I, lose, phone〉
〈it, leave, taste〉 〈I, be hit, by car〉 〈I, twist, ankle〉
〈I, break, toe〉 〈he, lose, control〉 〈Im, tire, ∅〉
〈he, have, seizure〉 〈neck, start, ∅〉 〈I, sprain, ankle〉
〈I, cut, finger〉 〈he, hit, head〉 〈heart, start, pound〉
〈he, lose, her〉 〈she, stick, head〉 〈she, lose, track〉
〈head, pound, ∅〉 〈she, lose, control〉 〈bone, be broken,〉
〈he, lose, job〉 〈I, seethe, ∅〉 〈I, break, bone〉
〈she, stick, hand〉 〈I, screw, thing〉∗ 〈I, injure, myself〉
〈time, lose, ∅〉 〈she, black, ∅〉∗ 〈I, be stung, by bee〉
〈he, be rushed, ∅〉 〈I, call, vet〉

Positive Events
〈we, sing, birthday〉 〈all, have, weekend〉 〈everyone, have, weekend〉
〈learn, make, money〉 〈learn, use, ∅〉 〈time, be had, by all〉
〈I, learn, deal〉 〈you, have, weekend〉 〈we, make, team〉
〈car, be offered,〉 〈we, find, deal〉 〈it, have, view〉
〈we, have, turnout〉 〈you, have, birthday〉 〈kid, have, time〉
〈we, spend, deal〉 〈it, make, story〉 〈weather, stay, ∅〉
〈time, be had, ∅〉 〈everyone, have, time〉 〈we, have, playing〉
〈we, have, evening〉 〈room, have, view〉 〈we, get, view〉
〈we, get, laugh〉 〈we, relax, bit〉 〈it, take, deal〉
〈we, have, view〉 〈we, have, weekend〉 〈we, get, deal〉
〈we, have, visit〉 〈practice, make, ∅〉 〈we, have, shopping〉
〈we, have, dancing〉 〈we, see, view〉 〈i, see, sunset〉
〈we, have, time〉 〈kid, have, lot〉 〈we, reunite, ∅〉
〈you, go, girl〉 〈i, find, deal〉 〈we, laugh, lot〉
〈we, have, turn〉 〈all, have, time〉 〈god, have, sense〉
〈we, have, weather〉 〈it, entertain, ∅〉 〈we, have, feast〉
〈i, get, present〉 〈we, have, cookout〉
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Negative events include many physical injuries and ailments, car accidents, and lost

or broken phones. Note that 〈I, call, vet〉, 〈she, black, ∅〉, and 〈he, be rushed, ∅〉 often

suggest medical emergencies (i.e., “she blacked out” and “he was rushed to the hospital”).

Since these events were extracted using the basic event frame representation, some event

components were not precisely extracted, which can be solved using the enhanced event

frame representation that is used in Chapters 5 and 6. Positive events include birthdays,

playing, dancing, shopping, and cookouts. There are also more subtle examples of stereo-

typically enjoyable situations, such as 〈we, find, deal〉, 〈we, make, team〉, 〈I, see, sunset〉,

〈we, reunite, ∅〉, and 〈room, have, view〉.

However, not all of these events are truly affective. A common source of errors are

expressions that typically occur with positive/negative adjectives modifying the direct

object. For example, 〈we, have, weather〉 is not a positive or negative event per se, but

originates from sentiments expressed about the weather, such as “we have nice weather”.

These results suggest that people use this expression to comment a good weather more

than a bad weather. Similarly, 〈it, leave, taste〉 isn’t negative per se, but comes from the

common expression “it leaves a bad taste”.

4.4.2 Performance of Sentiment Lexicons

As a reminder, none of the events shown in Table 4.2 were identified as having positive

or negative polarity by the sentiment classifier described in Section 4.2.2. However, I

further explored whether sentiment lexicons can recognize the affective polarity of these

events. I used four well-known sentiment/opinion lexicons: ConnotationWordNet (Kang

et al., 2014), MPQA Subjectivity Lexicon (Wilson et al., 2005), SenticNet3.0 (Cambria et al.,

2014), and SentiWordNet3.0 (Baccianella et al., 2010). For each event, I assigned an affective

polarity based on the polarities of its component words. For an event e, I computed a

polarity score using the following formula:

s(e) =
1
n

n

∑
i=1

lex score(wi)

where n is the total number of words in the event representation, wi is a word with the

index i, and lex score(wi) is the polarity score given by the lexicon. If the word wi is not

in the lexicon, I use a default value of 0, which denotes that the word has no bias toward
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positive or negative polarity. I also look for the presence of negation, and multiply the

score by -1 if negation is found.

Since MPQA provides discrete labels, I used the following numeric scores for each

word: positive=1, negative=-1, and neutral=0. The other three lexicons provide numeric

polarity scores for each word, so I experimented with different thresholds to use the lexi-

cons more aggressively or conservatively. The SenticNet (SNet) and SentiWordNet (SWN)

lexicons have scores ranging from -1 to +1, so I assigned polarity scores as: negative if

s(e) ∈ [−1,−λ), positive if s(e) ∈ (+λ,+1], and neutral otherwise. ConnotationWord-

Net (CWN) has scores ranging from 0 to +1, so I assigned polarity scores as: negative if

s(e) ∈ [0, .5− λ), positive if s(e) ∈ (.5 + λ,+1], and neutral otherwise. I experimented with

λ values ranging from 0 to 0.4 in increments of 0.1 to identify the most effective setting for

each lexicon. Table 4.3 shows the results for λ = 0 and the lambda value producing the

best precision on the positive class for each lexicon. I also tried to select lambda values

based on the precision for both positive and negative, but the results are similar.

Table 4.3 shows the results for each sentiment lexicon as well as label propagation

with our Event Context Graph GEV , in which #Events denotes the number of correctly

recognized events. I present the results for all 460 affective events produced by GEV and

show precision for events labeled as positive, precision for events labeled as negative, and

the accuracy over all events. First, it can be seen that GEV produced many more negative

events than positive events. However, its precision when labeling an event as positive

was over 90%. In contrast, the sentiment lexicons produced low precision for positive

Table 4.3: Evaluation of Polarity Labels Assigned by Label Propagation with GEV and Four
Sentiment Lexicons

POSITIVE NEGATIVE
Precision #Events Precision #Events Accuracy

GEV 90.4 83 81.2 377 82.8
SWN (λ=0) 35.9 195 81.8 231 57.2
SNet (λ=0) 33.5 236 85.8 204 55.7
CWN (λ=0) 31.2 258 95.1 162 53.0
MPQA 64.3 28 90.6 170 47.0
SNet (λ=.2) 57.8 109 78.7 80 36.1
CWN (λ=.3) 44.1 143 92.5 40 28.0
SWN (λ=.3) 46.4 28 90.0 70 27.8
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events, ranging from 31% for the most prolific output (CWN with λ=0) to 64% for the most

conservative output (MPQA). When labeling events as negative, the sentiment lexicons all

achieved ≥ 78% precision. However, even the most prolific lexicon for the negative class,

SWN, identified only 231 negative events, so it failed to recognize many of the 377 negative

events discovered by GEV .

Overall, this analysis reveals that many affective events are not recognized as having

polarity by these sentiment lexicons. Furthermore, the accuracy of polarity labels assigned

to events by sentiment lexicons is extremely low for positive events. These results further

illustrate the need to acquire knowledge of affective events, and show that label propaga-

tion with event context graphs is a promising approach.

4.4.3 Evaluation on Randomly Sampled Events

In the experiments described in previous sections, events were extracted using the basic

event frame representation from only the ICWSM 2009 data, and the experiments only

evaluated the top-ranked affective events that were not identified as having positive or

negative polarity by the sentiment classifier. This section further investigates the perfor-

mance of the Event Context Graph model on a set of randomly selected events.

In this evaluation, I used the personal blogs corpus from both the ICWSM 2009 and

2011 data sets (described in Section 3.1), which consists of nearly 1.4 million story blog

posts, and the gold annotations described in Section 3.3. To capture richer event phrases,

I used the enhanced event representation and extracted 571,424 unique events that have

frequency of at least 5 in the corpus. Then, I applied the Event Context Graph (ECG) model

( GEV ) to learn affective events. The ECG model produces real polarity scores ranging from

[-1, +1], rather than discrete category labels. Therefore, I used the same method as that

used for the sentiment lexicons to convert real polarity scores to discrete polarity classes.

Specifically, I assigned the polarity label of an event as: negative if its polarity score is in

[-1, -λ), positive if the score is in (+λ, +1], and neutral otherwise. The parameter λ can take

any value between +1 and -1. The gold data contains two sets: the test set of 1000 events,

and the development set of 490 events. I tuned a λ parameter on the development data by

choosing values ranging from 0.05 to 0.5 in increments of 0.05, and found the best value to

be λ = 0.15.
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Table 4.4 shows the precision (Pre), recall (Rec), and F1 scores for each polarity class,

and the overall average F1 score (AvgF1). The top portion of Table 4.4 shows the results

on the development set with different λ values. For both positive and negative polarities,

the precision increases with increasing λ values, but the recall decreases. For example,

with λ = 0.45, the model achieved 100% and 83.3% precision on positive and negative

events, but only 5.2% and 5.7% recall, respectively. The precision on positive events is

higher than negative, but the recall is lower. Overall, the ECG model obtained the best

AvgF1 score of 46.6% with λ = 0.15. The bottom portion shows the performance on the

test set with the best λ = 0.15, which was selected on the development set. It can be

seen that the model produced more negative events (67.8% recall) than positive events,

but the precision is not satisfying. As one would expect, the precision of affective events

on randomly sampled events is lower than that for the top-ranked events reported in the

previous section. This demonstrates that more effective methods are needed to improve

the accuracy of identifying affective events more generally.

4.4.4 Discussion of Limitations

This section discusses the limitations of the Event Context (ECG) graph model from the

perspective of performance and efficiency.

Besides evaluating the Event Context Graph model on the top-ranked events, I also

looked at the polarity values of other events, which were produced by the model. I noticed

that the polarity values of many affective events are very close to 0, which means that

the affective event is not recognized. This observation can also be verified by the results

Table 4.4: Performance of ECG Model on Randomly Sampled Events

λ
POSITIVE NEGATIVE NEUTRAL

Pre Rec F1 Pre Rec F1 Pre Rec F1 AvgF1
Development Set

0.05 43.1 28.9 34.6 22.7 88.5 36.2 72.1 20.3 31.6 34.1
0.15 70.0 14.1 23.9 34.5 66.7 45.5 70.5 69.6 70.1 46.5
0.25 88.9 8.2 15.1 54.8 26.4 35.7 66.1 94.8 77.9 42.9
0.35 100 7.2 13.5 66.7 13.8 22.9 64.7 98.4 78.1 38.1
0.45 100 5.2 9.8 83.3 5.7 10.8 63.7 99.7 77.7 32.8

Test Set
0.15 68.6 17.7 28.1 34.9 67.8 46.1 66.9 64.8 65.9 46.7
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presented in Table 4.4 on a randomly sampled events, in which the recall for positive

polarity is 8.2% and 26.4% for negative polarity when setting the threshold λ = 0.25. This

reveals that, for many affective events, the affective polarity evidence is not propagated to

them during the learning process. This can be caused by two potential problems. First, the

seeding information is not adequate. In the ECG model, I first obtained polarity predic-

tions for sentences in the data using a sentiment classifier and then selected sentences with

highly confident polarity predictions as seeding nodes, which is the only supervision for

the ECG model. For the label propagation algorithm, if a node is not a seeding node,

then it is initialized with default value 0. Therefore, in the ECG model, if an event’s

discourse contexts have no seeding nodes, and the contextual sentences of its co-occurring

events have no seeding nodes either, then the polarity evidence will not be propagated

to this event. Second, the edges between events and its contextual sentences, and other

co-occurring events are not adequate. Without sufficient connections between an event

and other resources, it is difficult for polarity evidence to be propagated to this event.

For efficiency, I will first analyze the time complexity of the label propagation algo-

rithm. Let G = (V, E) denote a graph, in which V is the set of graph nodes and E

denotes the set of graph edges. To estimate the time complexity, I first compute the to-

tal number of basic operations performed at each iteration, which can be measured by

counting arithmetic operations in Equation 4.1. For a given node vi and its neighbors

N(vi), the number of operations in the numerator is the sum of |N(vi)|multiplications and

|N(vi)| − 1 additions. There are also |N(vi)| − 1 additions in the denominator. Adding

another 1 division, there are 3|N(vi)| − 1 operations for event vi at each iteration. By

summing up the number of operations for each event, there are a total of Σvi∈V3|N(vi)| − 1

operations at one iteration. Since the number of neighbors of an event is equal to the

number of edges connected to it, summing up the number of neighbors for all events is

equal to counting each edge twice when the edges are undirected. In the ECG model,

some edges are directed. Therefore, the total number of operations can be approximated

as Σvi∈V3|N(vi)| ≤ 2|E|where |E| is the number of edges in the graph. Therefore, the time

complexity of the label propagation is O(|E|). Based on this analysis, we can see that the

model’s efficiency is closely related to the number of edges in the graph.

To investigate how event nodes and sentence context nodes contribute to the complex-
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ity of the model, I analyzed the numbers of the two types of nodes in the Event Context

Graphs. In the experiments described in Section 4.3, there are three graph variants. I

obtained that, in total, the Local Context Graph (GLOC) contained roughly 12 million nodes,

and the Discourse Context Graph (GDIS) and Event Co-Occurrence Graph (GEV) each

contained roughly 25 million nodes. However, there were only 40,608 event nodes in

these graphs, which means that more than 99% of nodes are sentence nodes. The goal

of this research is to extract affective events rather then sentences. However, the learning

algorithm spends the majority of its computation on sentence nodes, which is inefficient.

In addition, representing sentence contexts as nodes makes it difficult to apply the model

on larger data sets because the large number of sentence nodes requires a lot of memory.

Overall, the above analysis demonstrates that more effective methods need to be ex-

plored to improve the performance of identifying affective events.

4.5 Chapter Summary
This chapter first describes the details of the Event Context Graph model, presents eval-

uation experiments, and then gives a further analysis of the model by comparing it with

existing sentiment lexicons and evaluating on randomly sampled events. A discussion

about the model’s efficiency and performance is presented at the end of this chapter. The

content of this chapter is summarized below.

• This chapter presents an Event Context Graph model that was designed to extract

affective events using discourse context and event collocation information. First,

the model builds an Event Context Graph that consists of event nodes and sen-

tence nodes, which are linked with event-sentence, sentence-sentence, and event-event

co-occurrence edges. Then, a sentiment classifier is created to identify sentences with

strong polarity values as seed nodes, and a label propagation algorithm is applied

to iteratively spread polarity evidence from seed nodes to other unlabeled event

and sentence nodes. Finally, affective events are extracted using the polarity scores

learned by the label propagation algorithm.

• This chapter presents evaluations on a set of top-ranked events that were produced

by three variants of the ECG model and two baseline systems, and manually anno-
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tated by Amazon’s Mechanical Turk workers. Experimental results show that the

ECG model can recognize affective events missed by sentiment classifiers, and con-

tinually obtain better performance by increasingly adding local context, discourse

context, and event co-occurrence information into the model.

• This chapter also investigates whether the learned affective events can be recognized

by existing sentiment lexicons. I applied several well-known sentiment lexicons on

the affective events produced by the best ECG model. The results demonstrate that

sentiment lexicons failed to recognized many affective events discovered by the ECG

model. In addition, this chapter evaluated the ECG model on randomly sampled

events and discussed limitations of the model. The analysis shows that more efficient

methods need to be explored to improve performance of identifying affective events.



CHAPTER 5

RECOGNIZING AFFECTIVE EVENTS USING

SEMANTIC CONSISTENCY GRAPH MODEL

The previous chapter presents an Event Context Graph (ECG) model to extract affective

events using event discourse and collocation information. Though the ECG model can

identify many affective events, further analysis shows that more efficient and accurate

methods are needed to identify larger sets of affective events. This chapter introduces a

Semantic Consistency Graph (SCG) model that automatically induces a large collection

of affective events from a personal story corpus with better efficiency and accuracy. In

contrast to the ECG model, the SCG model tries to infer affective polarities of events by

optimizing the semantic consistency in a graph rather than propagating polarity evidence

from event contexts to events.

Briefly, the SCG model first extracts events from the personal story corpus using the

enhanced event frame representation (described in Section 3.2), and then builds a graph

consisting of nodes corresponding to events and their components. In the graph, event

nodes are linked based on three types of semantic relations: (1) semantic similarity, (2)

semantic opposition, and (3) shared components. Next, initial polarity values are assigned to

events using existing sentiment analysis resources (e.g., sentiment lexicons and sentiment

classifiers). Although sentiment resources are not very accurate for many affective events,

they can recognize events that have explicitly affective language (e.g., “I had fun” or “I

yelled in anger”). Consequently, the initialization step serves as noisy supervision. The

learning algorithm is then designed to infer the true polarity values of events by iteratively

refining the polarity values to optimize for the overall semantic consistency in the graph.

Intuitively, the algorithm encourages semantically similar events to have similar polar-

ity, semantically opposing events to have opposite polarity, and events to have polarity

values consistent with their components. I applied this model to a corpus of nearly 1.4
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million personal stories and induced a collection of >110,000 affective events with over

90% precision for positive events, and 80% for negative events. Experiments show that

the SCG model achieved higher recall and precision on a set of randomly sampled events

(described in Section 3.3) than previous affective lexicons and learning models.

In the following sections, I first present the motivation and design details of the SCG

model, and then evaluate the model on a set of manually labeled events and compare it

with previous methods. At the end, I will further analyze the behavior of the model by

investigating the cases that were correctly and incorrectly classified, and also show the

quality and quantity of affective events identified by the model.

5.1 Motivation
The Event Context Graph (ECG) model introduced in Chapter 4 was also designed to

extract affective events from personal story blogs. One disadvantage of the ECG model is

that it cannot be easily extended to a much larger data set because of the large number of

sentence nodes in the Event Context Graph. The goal of the ECG model is to estimate the

polarity of events rather than sentences, but as analyzed in Section 4.4, over 99% of nodes

in the graph are sentence nodes, which adds a heavy computational burden to the model

and makes it inflexible to extract more affective events from larger data sets. In addition,

as shown in Section 4.4, the ECG model also failed to identify many affective events when

evaluated on a set of randomly sampled events. Motivated by these two limitations of the

previous ECG model, I explored new methods to extract more affective events with better

efficiency and accuracy.

The Semantic Consistency Graph (SCG) model presented in this chapter is motivated

by three intuitions that correspond to three types of semantic consistencies. The first

intuition is that semantically similar events usually have similar affective polarities. For

example, the events “I am unemployed” and “I lost my job” are semantically similar and

they have the same negative polarity. The second intuition is that semantically opposite

events often have opposite affective polarities. For instance, events “I won” and “I did

not win” have opposite semantic meanings and their affective polarities are also opposite,

i.e., the first is positive and the latter is negative. The third intuition is that the affective

polarity of an event often originates from its components. For example, the event “I went
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to a birthday party” is positive mainly because its component “birthday party” is positive.

Based on these intuitions, the SCG model builds a graph to incorporate the three types of

semantic relations and seeks to achieve a state where the affective polarities of events are

consistent with their semantic relations. In addition, motivated by the observation that

many affective events can be recognized by existing sentiment analysis resources even

though some estimations are incorrect, I hypothesize that the polarity values obtained

from existing sentiment analysis resources can be used as weak supervision to infer the

true polarity of events.

5.2 Semantic Consistency Graph Model
5.2.1 Overview

The Semantic Consistency Graph (SCG) model is a weakly supervised method that

was designed to automatically learn a large set of affective events. The key idea is to

define a graph of events that are connected using different types of semantic relations,

and to use the initial affective polarities estimated from sentiment analysis resources as

noisy supervision. Using an optimization framework, the model can then learn the correct

polarity values by enforcing semantic consistency across the semantic relations in the

graph.

Figure 5.1 shows an illustration of the semantic relations graph used in the SCG model.

The graph contains nodes corresponding to events (Vi) and components (Ck), which are the

4 composing parts (e.g., Agent, Predicate, Theme, and Prepositional Phrase) of an event

representation. The graph also has three types of edges: event-event similarity edges that

link semantically similar event pairs, event-event opposition edges (blue dotted line) that link

semantically opposing event pairs, and event-component edges that connect an event with its

components individually. The learning model will prefer that semantically similar events

have similar affective polarities, and semantically opposing events have opposing affective

Figure 5.1: Semantic Relations Graph
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polarities. Event-component relations are used by the learner to infer that the polarity of

an event is related to the polarity of its individual components.

Although existing affective resources often fail to recognize many affective events, they

do well at recognizing events that contain explicit emotions or strong positive/negative

terms (e.g., “I had fun” or “the experience was a disaster”). Therefore, I take advantage of

previously developed affective lexicons and models to provide initial polarity values for

each node as noisy supervision for the SCG model.

The basic flow of the Semantic Consistency Graph model has 3 steps. First, the model

builds a graph containing event and component nodes and edges representing semantic

relations. Second, the model obtains initial polarities for events and components using

existing sentiment analysis tools. Finally, an iterative learning algorithm is used to infer

the polarities of events by optimizing the semantic consistency in the graph. The following

sections present the technical details of these steps.

5.2.2 Constructing the Semantic Relations Graph

To recognize affective events, I design a semantic relations graph, which is denoted as

G = (V , E) where V is a set of nodes, which consists of event nodes (vi) and component

nodes (ck). The event nodes correspond to the events extracted from the personal story cor-

pus. The component nodes are created by decomposing each event frame representation

into its parts: a predicate and up to 3 arguments. I do not create components for pronouns

because they usually do not carry any polarity evidence. If a predicate is negated, then

the negation is also attached to all of the event’s arguments. This simple heuristic rule

considers cases where the negation of a predicate changes not only how the predicate

contributes to the overall polarity of an event but also other arguments in the event. For

example, the event 〈I, not get, award, -〉 will yield two component nodes: “not get” and

“not award”. This strategy for handling negation can be overkill because the negation

usually only applies to one part of an event. However, determining the best scope for the

negation is challenging (e.g., “not have beer” is roughly equivalent to “have no beer” and

for the SCG model “no beer” is more useful semantically than “not have”). In future work,

more sophisticated methods need to be explored to handle the negation scope problem.

The event and component nodes in the semantic relations graph are linked with three
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types of edges: event-event similarity edges, event-event opposition edges, and event-component

edges. The following describes the construction of each type of edge in detail.

• Event-Event Similarity Edges: The SCG model assumes that events with similar

semantic meaning will usually have similar affective polarity (e.g., “have party” and

“have celebration”). In this model, I use semantic embeddings of events to assess

the similarities between events. I compute an event embedding as the average of the

GloVe vectors (Pennington et al., 2014) of words contained in the event. Specifically,

I use the 200-dimensional Glove vectors, which were pretrained on 27 billion tweets.

Since the blog corpus used in this research is also a form of social media text, the

word vectors pretrained on tweets are expected to be well-suited for obtain embed-

dings of events extracted from the blog data. For each event node i, I first compute

the similarities between i and all other events using cosine similarity of their event

embeddings, then create an edge between i and each of its five most similar events.

The edge weight Wsim
ij between nodes i and j is set to be the cosine similarity of their

embedding vectors.

• Event-Event Opposition Edges: The model also assumes that events with opposite

meanings typically have opposite polarities (e.g., “we win” and “we did not win”).

To construct opposition edges, I first identify events with a negated predicate, and

refer to non-negated events as “affirmative” events. For each negated event i, I

remove the negator and obtain its affirmative form î, and compute the embedding of

the affirmative form î as the average of the embedding vectors of its words. Then,

I compute the cosine similarities between the affirmative form î and all affirmative

events and select the 10 most similar affirmative events as opposition neighbors of

the event i. The opposition edge weight Wopp
ij between nodes i and j is set to be the

cosine similarity of embedding vectors of the affirmative form î and its opposition

neighbor j.

• Event-Component Edges: Many event expressions refer to the same or just slightly

different activities (e.g., 〈I, have, birthday party, -〉 and 〈I, attend, birthday party,

-〉). Many of these events have the same affective polarity because they share the

same components. Therefore, I hypothesize that learning the affective polarity of
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individual component concepts could help to generalize beyond specific event frame

representations. For example, if “birthday party” has positive polarity, then events

mentioning a birthday party will often have positive polarity too. Of course, many

events include words that have different affective polarities. However, if we link an

event node with nodes for all of its components, then all of this information can be

taken into account during the learning process. To explore this idea, I create edges

between event node i and all of the nodes corresponding to its components. For ex-

ample, the event 〈phone, fall, -, in toilet〉 will be connected with 3 component nodes:

“phone”, “fall”, and “in toilet”. The edge weight between event i and component k

is set to be Wcmp
ik = 1.

5.2.3 Learning by Optimizing Semantic Consistency

After building the semantic relations graph, the SCG model uses an iterative learning

algorithm to infer the polarity of events by optimizing the semantic consistency in the

graph. In this section, I present the details of the iterative learning algorithm. First, I will

show how each node in the graph is initialized with a (noisy) polarity vector using existing

sentiment resources. Then, I will present details of the semantic consistency measures, the

objective function, and the learning algorithm. Finally, I will present a method to improve

the polarity initialization for component nodes.

5.2.3.1 Initialization

In the SCG model, I associate each node with a polarity vector that represents a distri-

bution over 3 polarity values <positive, neutral, negative> for the associated event

or component. This is the polarity vector to be inferred during the learning process,

and the sum of the vector should be one. In addition, I also assign each event node

and component node with a initial polarity vector, which contains polarity values over 3

class and is computed using external sentiment analysis resources. Intuitively, the idea

is to initialize the model with noisy supervision, which the learner uses in combination

with the semantic relations, graph structure, and optimization function to infer the correct

polarity for each node. For polarity initialization, I experimented with a variety of affective

lexicons and classification models and found that a method that combined the MPQA

lexicon (Wilson et al., 2005) with an aggregated contextual classifier performed best. This
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combination method is called “Combo”, and is described in the Evaluation section (Section

5.3).

5.2.3.2 Semantic Consistency Metrics

The SCG model infers polarity values by optimizing the semantic consistency in the

graph (i.e., minimizing the inconsistency in the graph). Specifically, the inconsistency

in the graph is measured as the overall inconsistency across all three types of semantic

relations and between estimated values and their initial polarities. In this model, I use

KL-divergence to measure the inconsistency between polarity vectors. The semantic in-

consistency terms in this model are described in detail below.

• Inconsistency between Estimated and Initial Polarities: In the SCG model, each

node (event and component) is assigned with an initial polarity vector. The model

assumes that most (at least the majority) of initial polarity vectors are accurate, and

encourages the estimated values to be similar to the initial vectors. Therefore, the

learning algorithm tries to minimize the inconsistency between the estimated values

and initial vectors. Specifically, the initial polarity vector for event i is denoted as

v0
i , and the initial vector for component k is denoted as c0

k . Correspondingly, the

estimated polarity vectors for event and component are denoted as vi and ck. Using

KL-divergence, the inconsistency between vi and v0
i is computed as:

D(vi||v0
i ) =

L

∑
l

vi(l) log
vi(l)
v0

i (l)

where L is the set of polarity labels, and vi(l) denotes the score of polarity label l for

event i. Therefore, the inconsistency for all events is computed as ∑n
i=1 D(vi||v0

i )

where n is the number of event nodes. Similarly, the inconsistency between the

estimated polarity vectors for component nodes and their initial polarity vectors is

measured as ∑m
k=1 D(ck||c0

k) where m is the number of component nodes. During the

learning process, the initial polarity values (i.e., v0 and c0) never change and serve as

an anchor to prevent thrashing.

• Inconsistency between Semantically Similar Events: The SCG model assumes that

two connected semantically similar events should have similar polarity vectors. There-

fore, it aims to minimize the inconsistency between the polarity vectors of two sim-
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ilar events. Specifically, for similar event pairs i and j, their inconsistency is mea-

sured as the weighted difference between their polarity vectors: WijD(vi||vj). For

all semantically similar pairs (i, j), the inconsistency is computed as the sum of the

inconsistencies over all pairs, i.e., ∑(i,j) Wsim
ij D(vi||vj).

• Inconsistency between Semantically Opposite Events: The model also assumes

that semantically opposite events should have opposite polarity values, i.e., for op-

posing event pairs i and j, the positive (negative) value in i’s polarity vector should

be similar to the negative (positive) value in j’s vector. To directly compute the in-

consistency between two opposing event pairs, I use the exchange matrix H =
[ 0 0 1

0 1 0
1 0 0

]
to switch the positive and negative values of a polarity vector. The indices of H

represent: 0(positive), 1(neutral), 2(negative). Therefore, the inconsistency for all

opposing event pairs i and j is computed as ∑(i,j) Wopp
ij D(vi||vjH),

• Inconsistency between Events and Their Components: The model assumes that

the polarity of most events originates from their components, and encourages events

and their components to have similar polarity vectors. Therefore, the learning al-

gorithm will also try to minimize the inconsistency between an event and each of

its components. Since KL-divergence is asymmetric, the inconsistency between an

event i and component k needs to be decomposed into two parts: ∑(i,k) Wcmp
ik D(vi||ck)

and ∑(k,i) Wcmp′

ki D(ck||vi) where Wcmp′

ki is the transpose of the event-component edge

weight matrix Wcmp
ik . This maintains the symmetric property of the final objective,

which allows us to directly derive closed form update equations.

5.2.3.3 Weight Normalization

When I create edges between events based on semantic similarity and opposition, for

each event, I require to select a fixed and equal number of most similar (or opposite) as

its neighbors. Even with this restriction, some nodes in the graph are highly connected

but others are not. This is because one event can be selected many times by other events

(which can be much more than the fixed number). For example, given an event i, I first

select, for example, 5 most similar events and connect them to event i. However, later the

event i can be selected as one of the most similar events by other events (say 1000 other

events). Then, event i will totally have a degree of 1005, while some other events may just
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have degrees of 5. One potential issue is that the high degree nodes may have much more

influence than other nodes. To account for this, I normalize the semantic similarity weight

matrix as

W̃ sim = A−
1
2 W sim A−

1
2

where A is a diagonal matrix and Aii = ∑n
j=1 Wsim

ij . Specifically, each entry in the new

weight matrix is computed as:

W̃sim
ij =

Wsim
ij√

Aii
√

Ajj

I similarly normalize the semantic opposition weight matrix W opp to obtain W̃ opp.

For the event-component edges, different events may link to different numbers of com-

ponents, and vice versa. For example, some events may only have 2 components and

they will be connected to the 2 components, while others may have 4 components. In

addition, some components (e.g., “have”) can be connected to a lot of events in which they

appear, and these components will have high degrees in the graph. To account for this, I

also normalize the weights for event-component edges. To normalize the weights W cmp of

edges from events to components, I compute the new weight matrix W̃ cmp by performing

row normalization on the original matrix, i.e.,

W̃cmp
ik =

Wcmp
ik
Di

where Di = ∑k Wik. Similarly, I also compute the normalized weight matrix W̃ cmp′ for

edges from components to events by performing row normalization on the original matrix

W cmp′ , which is the transpose of W cmp.

5.2.3.4 The Objective and Update Functions

The final Semantic Consistency Graph model uses normalized edge weights and in-

corporates all of the previously described inconsistency measures into a single objective

function, which is shown in Equation 5.1.

Jsc = β
n

∑
i=1

D(vi||v0
i ) + ∑

(i,j)
W̃sim

ij D(vi||vj) + ∑
(i,j)

W̃opp
ij D(vi||vjH) + γ ∑

(i,k)
W̃cmp

ik D(vi||ck)

+ γ ∑
(k,i)

W̃cmp′

ki D(ck||vi) + η
m

∑
k=1

D(ck||c0
k) (5.1)
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This objective computes the overall inconsistency in the graph, and the goal is to min-

imize the objective to obtain the best polarity estimates. The n and m are the numbers of

event and components nodes, and (i, j) denotes connected node pairs for each type of rela-

tions. The hyperparameters control the relative importance of each corresponding term. In

the experiments presented in Section 5.3, the full model uses the following values: β = 0.6,

γ = 0.8, η = 0.1, which were selected based on the performance on the development data.

Since KL-divergence is convex, the objective in Equation 5.1 is convex when the param-

eters are non-negative. This guarantees that the model will converge at a global minimum.

I designed an iterative algorithm that alternately updates v and c. Let vt
i and ct

k denote

polarity vectors for event i and component k at iteration t. The learning algorithm first

optimizes the objective over vi given vt
i and ct

i . By computing the derivative for vt+1
i , the

update for vt+1
i is shown in Equation 5.2. The detailed derivation is shown in Appendix C.

vt+1
i ∝ exp

1
Oi

(
β log v0

i + ∑
j

W̃sim
ij log vt

j + ∑
j

W̃opp
ij log vt

j H + γ ∑
k

W̃cmp
ik log ct

k

)
(5.2)

where Oi = β + ∑j W̃sim
ij + ∑j W̃opp

ij + γ ∑k W̃cmp
ik .

Given vt+1
i , the update equation for ct+1

k can be obtained by computing the derivative

for ct+1
k . The update equation is shown in Equation 5.3, and the derivation is described in

Appendix C.

ct+1
k ∝ exp

η log c0
k + γ ∑i W̃cmp′

ki log vt+1
i

η + γ ∑i W̃cmp′
ki

(5.3)

The learning algorithm is shown in Algorithm 2, which iteratively updates the polarity

vectors on event nodes and component nodes until the polarity values on event nodes

converge. In the final experiments presented in Section 5.3, the learning process converged

after 52 iterations. When the learning is finished, each event i is associated with an esti-

mated polarity vector with 3 polarity values, and I infer its polarity label to be the polarity

receiving the highest score, i.e., arg maxl vi(l). As I will discuss in the evaluation section

(Section 5.3), alternately, a threshold can be applied to only assign polarity labels to events

when a high percentage of probability mass is associated with one polarity.

5.2.3.5 Improved Component Initialization

Instead of initializing component nodes directly from sentiment analysis resources, I

hypothesized that we could improve the initial polarity values of components through
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Algorithm 2 Iterative Learning Algorithm

1: Input: W sim, W opp, W cmp, v0, c0

2: Output: v ∈ Rn×|L|

3: while v has not converged do
4: Update vt using Equation 5.2
5: Update ct using Equation 5.3
6: end while
7: return vt

an independent learning process that exploits semantic similarities among components.

To explore this idea, I create a separate component graph that contains only component

nodes with edges that connect each component node to its 5 most similar component

nodes. The similarity between components is estimated as the cosine similarity between

their embedding vectors, and a component embedding is computed as the average of

embeddings for the words in the component. I also used the GloVe vectors and set the

edge weight Uij between component i and j to be the cosine similarity of their embed-

dings. In this component graph, the semantic inconsistency comes from the inconsistency

between a component’s initial value and its estimated value, and between the connected

components. The final inconsistency (Jcmp) is shown in Equation 5.4 where m is the number

of component nodes.

Jcmp = ∑
(i,j)

ŨijD(ci||cj) +
ml

∑
i=0

D(ci||cs
i ) + µ

m

∑
i=0

D(ci||c0
i ) (5.4)

The first term in Equation 5.4 measures the inconsistency between two semantically

similar components. The second term measures inconsistency between the estimates and

initial polarities (cs) computed from MPQA Lexicon. Since not all component words are

contained in MPQA, the ml denotes the components found in MPQA. The third term

measures inconsistency between the estimated values and initial polarities (c0) assigned by

a contextual classifier (NRCAvgS), which is described in Section 5.3. I use both MPQA and

NRCAvgS to initialize this model because the MPQA lexicon has high precision but low cov-

erage, while the classifier has better coverage but lower precision. I hypothesize that using

both of these methods as noisy supervision can potentially achieve better performance.

Since NRCAvgS is not very accurate, it is associated with a penalizing parameter µ to

reduce its importance and influence in the model. Given the objective, I derive the update
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function for variable ck by computing its derivative, and iteratively updating the polarity

values for 100 iterations. In the experiments, I used µ=0.1 based on the performance on

the development set. The inferred polarity vectors are then used as the “initial” polarity

vectors for the component nodes in the full SCG model. This separate learning process for

component nodes slightly improved the overall evaluation results.

5.3 Evaluation
This section presents experiments for evaluating the performance of the Semantic Con-

sistency Graph model. As comparison, this section first investigates the performance of

three types of baseline methods: affective lexicon-based methods, classification models,

and a combination method based on a lexicon and a contextual classification model. Then,

this section demonstrates the value of the three types of semantic relations by incremen-

tally adding them into the model. Experiments were conducted on a set of randomly

sampled events with manual polarity annotations created in Section 3.3. Model parameters

used in experiments were tuned on the development set, and all results are reported on

the test set.

5.3.1 Performance of Affective Lexicons and Learning Models

In this section, I investigate the performance of methods based on previous senti-

ment analysis resources. First, I evaluate the effectiveness of methods based on affective

lexicons, and the performance of two types of classification models: event expression

classifiers and contextual classifiers. Finally, I create a combination method using both

a lexicon and a contextual classification model. The evaluation details for these methods

are presented below.

I evaluated the performance of five existing affective lexicons that are MPQA (Wilson

et al., 2005), SentiWordNet3.0 (SentiWN) (Baccianella et al., 2010), +/-EffectWordNet (+/-

EffectWN) (Choi and Wiebe, 2014), ConnotationWordNet (ConnoWN) (Kang et al., 2014),

and Connotation Frames (Rashkin et al., 2016) for which I evaluated both the effect on

subject (ConnoFrameS) and the effect on object (ConnoFrameO) lexical information. Since

the event structures contain multiple words, I computed the polarity score for an event as

the average over the scores of its words. Most of these lexicons assign polarity scores over
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a range of values to capture the strength of positive or negative polarity. To explore the best

way to use each lexicon, I defined a threshold λ for each lexicon. For lexicons with polarity

values ranging from [-1,+1], I assigned events with a score > λ as positive, <-λ as negative,

and an absolute value |score| ≤ λ as neutral. For lexicons with polarity values ranging

from [0,+1], I assigned events with a score between [0.5-λ, 0.5+λ] as neutral, <0.5-λ as

negative, and >0.5+λ as positive. I found that the following values achieved the best F1

scores on the development data and were therefore used throughout our experiments: λ=0

for MPQA, λ=0.25 for ConnoFrameS, λ=0.3 for ConnoFrameO, λ=0.4 for ConnoWN, λ=0.5

for SentiWN, and λ=0.6 for +/-EffectWN.

The experimental results for lexicons and learning models are presented in Tables 5.1

and 5.2. Table 5.1 shows the F1 scores for the positive (POS), negative (NEG), and neutral

(NEU) polarities, and the macro-averaged F1 score across all three polarities, and Table 5.2

presents precision (Pre) and recall (Rec) scores for each polarity class.

The top portion of Tables 5.1 and 5.2 shows the performance of affective lexicons. These

results show that the MPQA lexicon performs the best, achieving the best macro F1 score

and the highest precision for each polarity class, among these lexicon-based methods.

For learning-based methods, I first evaluated several event expression classifiers by ap-

Table 5.1: F1 Scores for Lexicons, Event Expression Classifiers, and Contextual Models

Method POS NEG NEU AVG
Affective Lexicons

ConnoWN 26.3 9.8 64.1 33.4
ConnoFrameS 32.6 21.0 64.8 39.5
ConnoFrameO 29.8 22.5 70.7 41.0
+/-EffectWN 36.3 36.7 55.3 42.8
SentiWN 33.5 27.3 73.9 44.9
MPQA 57.8 54.9 80.1 64.3

Event Expression Classifiers
LRBOW 25.6 16.1 78.2 40.0
StanfordSA 37.5 12.4 77.7 42.6
LREmbed 50.8 44.9 79.7 58.5
NRC 58.6 55.9 79.6 64.7

Contextual Models
ECG 28.1 46.1 65.9 46.7
NRCAvgS 51.2 52.0 70.7 58.0
Combo 60.7 58.3 79.9 66.3
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Table 5.2: Precision and Recall for Lexicons, Event Expression Classifiers, and Contextual
Models

Method
POS NEG NEU

Pre Rec Pre Rec Pre Rec
Affective Lexicons

ConnoWN 23.9 29.3 35.7 5.6 59.5 69.4
ConnoFrameS 28.1 38.9 54.8 13.0 62.0 67.8
ConnoFrameO 32.2 27.8 55.6 14.1 63.5 79.7
+/-EffectWN 26.2 59.1 47.3 29.9 66.7 47.2
SentiWN 36.0 31.3 50.8 18.6 67.2 82.1
MPQA 64.2 52.5 60.5 50.3 76.3 84.3

Event Expression Classifiers
LRBOW 61.5 16.2 39.1 10.2 66.2 95.5
StanfordSA 65.8 26.3 40.6 7.3 66.1 94.1
LREmbed 63.2 42.4 56.4 37.3 73.1 87.7
NRC 75.4 48.0 53.3 58.8 76.4 83.0

Contextual Models
ECG 68.6 17.7 34.9 67.8 66.9 64.8
NRCAvgS 55.6 47.5 40.8 71.8 77.9 64.8
Combo 67.7 55.1 56.3 60.5 78.4 81.4

plying them directly to the sequence of words in an event structure. I approximately repli-

cated the NRC-Canada sentiment classifier (NRC) (Mohammad et al., 2013), and trained

the classifier using the SemEval 2014 Task 9 tweet data. The details of this re-implementation

are described in Section 4.2.2. I also evaluated the Stanford sentiment analysis (Stan-

fordSA) system (Socher et al., 2013), which is a neural network model. In addition, I

trained two logistic regression classifiers on the development data using the Scikit-learn

toolkit (Pedregosa et al., 2011). One classifier (LRBOW) uses bag of words features for all

words in an event. A second classifier (LREmbed) uses word embedding features, which

is computed as the average of the word embedding vectors over the words in the event

representation. The word embeddings are the 200-dimensional GloVe vectors pretrained

on 27B tweets. The middle of Tables 5.1 and 5.2 shows the performance of the event

expression classifiers. The results show that the NRC classifier achieved the best macro F1

score among these systems, which demonstrates that sentiment analysis classifiers trained

on tweets data can recognize 48% positive events and 58% negative events with 75% and

53% precision, respectively.

In addition, in this research, I hypothesized that the affect expressed in the contexts
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where an event is mentioned can be useful for predicting the affective polarity of the

event. Therefore, I also evaluated two types of contextual models, which exploit the contexts

surrounding an event. For each event, I applied the NRC classifier to every sentence in

which it occurs and produced a distribution of polarity values across the sentences. I call

this method NRCAvgS. I also evaluated the previous Event Context Graph (ECG) model

described in Chapter 4 on this new set of randomly sampled events. I applied it to the

same blog texts data set of nearly 1.4 million blog posts. The ECG model produces polarity

values ranging from [-1, +1], so I tuned a λ parameter on the development data as I did for

the lexicons, and obtained the best value: λ=0.15. Table 5.1 shows that NRCAvgS was the

best performing contextual model.

MPQA was the best lexicon, and NRCAvgS was the best contextual model, and I hy-

pothesized that combining these complementary methods might perform even better. There-

fore, I created a Combo system that linearly combines the predictions of both models. For

an event e, I compute its polarity vector as:

α ∗ PolarityVectorNRCAvgS(e) + (1− α) ∗ PolarityVectorMPQA(e)

where PolarityVectorNRCAvgS(e) denotes the polarity vector of event e, which is computed

using the NRCAvgS system and consists of polarity values over 3 classes (i.e., positive,

negative, and neutral). PolarityVectorMPQA(e) is the polarity vector obtained using MPQA

lexicon. The last row of Table 5.1 shows the results for this Combo method. The pa-

rameter α is set to be 0.7 based on the development set. Results show that this Combo

method achieved the highest F1 score, which demonstrates the effectiveness of combin-

ing sentiment lexicons and contextual models, and that these two types of methods are

complementary to each other.

5.3.2 Performance of the Semantic Consistency Graph Model

In this section, I evaluate the performance of the Semantic Consistency Graph (SCG)

model, and analyze the effectiveness of each type of semantic relation for improving per-

formance.

Table 5.3 shows the results for the SCG model alongside the best system (Combo) that

utilized existing methods, for comparison. I initialized the polarity vectors of the event



82

Table 5.3: Results for Semantic Consistency Graph (SCG) Model

Method
POS NEG NEU Average
F1 F1 F1 Precision Recall F1

Combo 60.7 58.3 79.9 67.5 65.6 66.3
SCG+sim 58.6 62.9 82.3 72.6 65.7 67.9

+opp 59.9 63.8 83.4 75.0 65.8 69.0
+cmp 63.7 66.7 83.7 75.2 68.9 71.4

nodes in the SCG model using the Combo method, which produces a distribution over the

3 polarity values for each event.

The SCG+sim row first shows results for the SCG model using only the semantic

similarity edges, which substantially improves precision (+5%) over the Combo baseline.

The +opp row shows results for adding the semantic opposition edges as well, which

further improves precision to 75% while maintaining the same level of recall. The +cmp

row shows results for the full model, which also includes component nodes connected to

corresponding events. These shared component relations improve recall from 65.8% to

68.9% without any loss of precision. Overall, the full semantic consistency model achieved

both higher recall (65.6%→ 68.9%) and higher precision (67.5%→ 75.2%) compared to the

best results achieved with previous methods. The macro-averaged F1 score improved from

66.3% to 71.4%, which is statistically significant at p < 0.01 based on the paired bootstrap

test (Berg-Kirkpatrick et al., 2012).

5.4 Analysis
In this section, I first analyze the behavior of the Semantic Consistency Graph (SCG)

model using the gold human annotations, and then examine both the quality and quantity

of affective events identified by the SCG model.

5.4.1 Error Analysis

First, I identified all events in the test set whose initial polarity, which was estimated

by the Combo model, was changed by the SCG model. Table 5.4 shows the number of

events whose polarity labels (i.e., positive (POS), negative (NEG), and neutral (NEU)) were

changed. The first column shows the polarity labels that were initially assigned by the

Combo system and then labeled by the SCG model. #Total denotes the total number of



83

Table 5.4: Polarity Changes between Combo and SCG models

Combo→ SCG #Total #Correct Accuracy
POS→ NEU 24 19 79%
NEU→ NEG 18 13 72%
NEG→ NEU 45 32 71%
POS→ NEG 4 2 50%
NEG→ POS 8 3 38%
NEU→ POS 3 1 33%

events whose labels are changed. #Correct denotes the totally correct number of events

whose polarity labels were changed. For example, the first row (i.e., POS→ NEU) shows

that there are a total of 24 events that were initially predicted as positive (POS) by the

Combo method and labeled as neutral (NEU) by the SCG model, among which 19 events

are correctly changed, resulting in an accuracy of 79%. This analysis shows that the most

frequent changes were from positive or negative polarity to neutral, and from neutral to

negative.

Table 5.5 shows the precision and recall differences between Combo and SCG models

for each polarity. The large shifts from positive/negative to neutral correspond to the

precision gains, and the shifts from neutral to negative correspond to the increased recall

for negative polarity.

In addition, I also looked at some concrete examples whose labels were changed by the

SCG model. Table 5.6 shows some correct and incorrect examples of events whose polarity

changed from X to Y. For example, the top portion of Table 5.6 shows examples whose

polarities were changed from positive to neutral. The SCG model seems to have learned

that certain predicates (verbs) are typically neutral, such as “open” and “want”. I also

observe that many of its errors involve negated terms, suggesting that more sophisticated

negation handling may be needed.

Table 5.5: Precision and Recall Breakdowns for Combo and SCG Model

Method
POS NEG NEU

Precision Recall Precision Recall Precision Recall
Combo 67.7 55.1 56.3 60.5 78.4 81.4
SCG 75.7 55.1 70.4 63.3 79.3 88.5
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Table 5.6: Correct and Incorrect Examples

POSITIVE→ NEUTRAL
Correct Examples: 〈 I, open, my email, -〉
〈box, be, open, -〉 〈my friend, start, work, -〉
〈I, want, photo, -〉 〈I, want, bag, -〉
Incorrect Examples: 〈my family, stay, with me, -〉
〈I, win, class, -, -〉 〈band, rock, -, -〉

NEUTRAL→ NEGATIVE
Correct Examples: 〈food, not be, tasty, -〉
〈I, break, heart, -〉 〈friend, disappoint, me〉
〈I, be, bummed, -〉 〈I, start, sniffle, -〉
〈tear, pour, -, from eye〉 〈none, be, -, for me〉
Incorrect Examples:
〈we, see, cave, -〉 〈we, steal, glance, -〉

NEGATIVE→ NEUTRAL
Correct Examples: 〈feeling, go, -, through me〉
〈I, feel, -, about stuff〉 〈I, need, bowl, -〉
〈I, call to work, -, -〉 〈answer, not be, one, -〉
Incorrect Examples: 〈my memory, not serve, me, -〉
〈house phone, not work, -, -〉 〈I, not function, -, at work 〉

5.4.2 Quality and Quantity of the Learned Affective Events

A goal of this research is to produce an affective event collection that can be used

by the NLP community as knowledge of affective events. Toward this end, I created

lexicons of varying sizes by selecting events that were assigned a positive or negative

polarity with value≥ τ in the polarity vector, to effect recall/precision trade-offs. Table 5.7

shows the precision and recall on the test set when assigning polarity labels using different

thresholds, and also the total number of affective events extracted from the corpus for the

corresponding thresholds. The bottom row (max) shows the lexicon produced by assigning

every event the polarity that has the highest value with no additional threshold. The

bottom row shows that the complete lexicon has over 175K affective events with precision

>70%. Setting τ=0.5 still produces 111K events with >80% precision for negative and

>90% for positive events. Increasing the threshold to 0.6 reduces the lexicon to approxi-

mate >69,000 affective events with > 93% precision for both polarities. Examples of the

automatically learned affective events are presented in Appendix D.

In addition, I notice that the SCG model produced more negative than positive events.

This phenomenon is consistent with the results of the initialization method (i.e., the Combo
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Table 5.7: Quality and Size of Affective Event Collections Extracted with Different Thresh-
olds

τ
POSITIVE NEGATIVE #AffectiveEvents

Precision Recall Precision Recall #pos #neg #total
0.7 100 18.7 93.7 16.9 19031 18947 37978
0.6 96.9 31.8 93.4 32.2 30584 38523 69107
0.5 90.1 41.4 80.2 45.8 48594 62998 111592

max 75.7 55.1 70.4 63.3 82398 92743 175141

method), which are obtained by comparing gold polarities in the test set (i.e., the Combo

results in Table 5.5). Therefore, I believe this phenomenon is influenced by the initialization

method.

Overall, this analysis shows that the SCG model can be used to automatically gener-

ate large, high-quality collections of affective events. The learned affective events with

affective polarities are called Affective Event Knowledge Base (AffectEventKB), and are

released and freely available for the research community.

5.5 Chapter Summary
This chapter presents the technical details of the Semantic Consistency Graph (SCG)

model and experiments for evaluating the model. This chapter also provides an analysis

of both the quality and quantity of affective events identified by the SCG model. The main

content of this chapter is summarized below.

• This chapter presents a Semantic Consistency Graph model to identify affective events

from personal blog posts using semantic relations between events. First, the model

creates a Semantic Relations Graph consisting of event nodes and component nodes,

which are connected with event-event similarity edges, event-event opposition edges,

and event-component edges. Each node in the graph is assigned with an initial polarity

value using sentiment analysis resources. Then, the model uses an iterative learning

algorithm to infer correct polarities of events by optimizing the semantic consistency

in the graph.

• This chapter describes experiments for evaluating the SCG model and comparing it

to three types of baseline methods: affective lexicon-based methods, event expres-

sion classifiers, contextual learning models, and a combination method. Experimen-



86

tal results show that the SCG model significantly outperforms these other methods.

Further analysis also demonstrates that the three types of semantic relations all con-

tribute to improving the performance of identifying affective events.

• This chapter analyzes the behavior of the SCG model, and also examines both the

quality and quantity of affective events extracted with different confidence thresh-

olds. The analysis shows that the model gains precision by correctly changing posi-

tive or negative labels to neutral. Overall, the SCG model can identify a large set of

affective events with high precision. Specifically, the model identified over 110,000

affective events with over 90% precision for positive events and over 80% precision

for negative events.



CHAPTER 6

HUMAN NEEDS CATEGORIZATION OF

AFFECTIVE EVENTS USING LABELED

AND UNLABELED DATA

The research described in Chapters 4 and 5 focuses on learning affective polarity of

events. However, when we discuss an event, we not only understand its affective polarity

but also the reason why the event is beneficial or detrimental. For example, when someone

says that “I broke my leg” we not only know that the person was impacted negatively but

also understand that the person has a health problem. Conversely, for the event “I got

a job”, we understand not only that the experiencer would typically feel happy but also

know that the reason is that the person has a financial income.

This chapter aims to understand the reason for events being affective, i.e., to answer

why an event is positive or negative. Events can impact people in many ways, and under-

standing why an event is beneficial (positive) or detrimental (negative) is a fundamen-

tal aspect of language understanding and narrative text comprehension. Additionally,

many applications can potentially benefit from understanding affective events, including

text summarization, conversational dialogue processing, and mental health therapy or

counseling systems. As an illustration, a mental health therapy system can benefit from

understanding why someone is in a negative state. If the triggering event for depression is

“I broke my leg”, then the reason is related to the person’s Health, but if the triggering event

is “I broke up with my girlfriend” then the reason is based on Social relationships.

In this chapter, I hypothesize that the polarity of affective events can often be attributed

to a relatively small set of human need categories. My research is motivated by theories

in psychology that explain people’s motivations, desires, and overall well-being in terms

of categories associated with basic human needs, such as Maslow’s Hierarchy of Needs

(Maslow et al., 1970) and Fundamental Human Needs (Max-Neef et al., 1991). Drawing
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upon these works, I propose that the polarity of affective events often arises from 7 types of

human needs: Physiological, Health, Leisure, Social, Financial, Cognition, and Free-

dom. For example, “I broke my arm” has negative polarity because it negatively impacts

one’s Health, “I got fired” is negative because it negatively impacts one’s Finances, and “I

am confused” is negative because it reflects a problem related to Cognition.

To validate the above hypothesis, I conducted a manual annotation study on the af-

fective events that were previously manually identified as positive or negative. In the

study, annotators were asked to assign a human need category label to each affective

event. The annotation results show that the majority of the affective events can be manu-

ally categorized into the 7 human need categories with good inter-annotator agreements

(Cohen’s κ ≥.65). The resulting affective events with human need category labels are used

as evaluation data for automatic classification methods, and will be further described in

Section 6.1.

To automatically categorize an affective event by the human need categories, I designed

several types of supervised and semi-supervised classification models that learn from both

labeled and unlabeled data. First, I built supervised learning models to exploit lexical and

embedding features for the words in event expressions, as well as models that learn from

the sentence contexts surrounding event mentions. Then, I explored a self-training method

to exploit both labeled and unlabeled data for training. I also designed a co-training model

that takes advantage of a large set of unlabeled events and two different types of classifiers

in an iterative learning process: event expression classifiers only rely on the words in an

event expression, and event context classifiers use features from the contexts surrounding

the instances of event expressions. Experimental results show that the co-training model

substantially improves human need categorization performance compared to classifiers

trained only with labeled data, yielding gains in both precision and recall.

In the rest of this chapter, I first present the definition and examples for each human

need category, and a manual annotation study. Then, I describe the methods for cate-

gorizing affective events, including supervised classifiers, and semi-supervised models.

Finally, I evaluate these classification methods on gold annotations, and summarize the

main content of this chapter.
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6.1 Human Need Categories and Annotations
This section presents definitions and examples of human need categories, and describes

the manual annotation process for obtaining gold human need labels for affective events.

6.1.1 Human Need Categories

When we comprehend a narrative story, we understand not only the affective polarity

of the events in it, but also the reason why the events are affective (positive or negative).

I hypothesized that affective polarity of events arises from the satisfaction or violation of

basic human needs. Psychologists have developed theories that explain people’s motiva-

tions and personalities, and communities’ strength and weakness in terms of categories

associated with basic human needs, such as Maslow’s Hierarchy of Needs (Maslow et al.,

1970) and Fundamental Human Needs (Max-Neef et al., 1991). In this research, I devel-

oped a set of 7 human need categories by selecting and separating some categories from

these two theories. In addition, I defined 2 other classes for categorizing affective events

that cannot be classified into the 7 human need categories. In the following, I will first

describe how my 7 human need categories relate to the two theories. Then, I will present

the definition and examples for each of the human need categories.

In Maslow’s Hierarchy of Needs (MHN), human needs are categorized into: Physiolog-

ical Needs, Safety Needs, Belonging and Love Needs, Esteem Needs, Cognitive Needs, Aesthetic

Needs, Self-actualization Needs, and Self-transcendence Needs categories. In the Fundamental

Human Needs (FHN) theory (Max-Neef et al., 1991), human needs are classified into:

Subsistence Needs, Protection Needs, Affection Needs, Understanding Needs, Participation Needs,

Leisure Needs, Creation Needs, Identity Needs, and Freedom Needs classes. In this dissertation,

I proposed to categorize affective events into 7 human need categories: Physiological Needs;

Physical Health and Safety Needs; Leisure and Aesthetic Needs; Social, Self-Worth, and Self-Esteem

Needs; Finances, Possessions, and Job Needs; Cognition and Education Needs; and Freedom of

Movement and Accessibility Needs.

Table 6.1 shows the relations between the human need categories that I assigned to

affective events and the categories in Maslow’s Hierarchy of Needs and Fundamental

Human Needs theories. In this dissertation, the Physiological Needs category corresponds

to the Physiological Needs in MHN, and has overlap with the Subsistence Needs in FHN.
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Table 6.1: Relations between the Human Need Categories Assigned to Affective Events for
this Research and Maslow’s Hierarchy of Needs (MHN) and Fundamental Human Needs
(FHN). The * Denotes that the MHN or FHN Categories Have Overlap with My Category
in the Same Row, and the + Denotes that the MHN or FHN Categories Are a Subset of My
Corresponding Category.

Human Need Category for
Affective Events

MHN Category FHN Category

Physiological Physiological Subsistence∗

Physical Health and Safety Safety∗ Protection*
Leisure and Aesthetic Aesthetic+ Leisure+

Social, Self-Worth, and Self-
Esteem

Belonging and Love+, Esteem+ Affection+, Identity+

Finances, Possessions, and
Job
Cognition and Education Cognition Understanding
Freedom of Movement and
Accessibility

Freedom∗

It does not include the mental health needs from the Subsistence category because most

events related to mental health are sentiment or emotion expressions, which are catego-

rized into the Sentiments, Emotions, or Opinions category in my research. In my data, the

mental or emotion expressions are a big class, and I feel that separating them out from

other physiological events is beneficial to understand the distribution of affective events

in the data. The Physical Health and Safety Needs category in this dissertation is a set of

human needs related to the health and safety of a physical body, similar to Safety in MHN

and Protection in FHN. However, it does not include the emotional security needs and the

need for law and order from the Safety Needs in MHN. This category also does not include

the need for autonomy and social security that are included in the Protection Needs in

FHN, because they were primarily ascribed to group dynamics, not individuals.

My Leisure and Aesthetic Needs contain both the Aesthetic Needs in MHN and the Leisure

Needs in FHN. I combined them together because many events related to the Aesthetic

Needs are also associated with the Leisure Needs. For example, “I watch a sunset” indi-

cates the satisfaction of both Aesthetic Needs and Leisure Needs. In addition, I merged the

Belonging and Love Needs and Esteem Needs from MHN, and the Affection and Identity

Needs from FHN into the Social, Self-Worth, and Self-Esteem Needs since these human needs
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are about social relations with others (e.g., family, and friends), social positions, and self-

worth in society. My Cognition and Education Needs category basically corresponds to the

Cognition Needs in MHN and the Understanding Needs in FHN into the Cognition and

Education Needs, and they are all about learning knowledge, skills, or receiving education.

In this dissertation, the Freedom of Movement and Accessibility Needs category is mainly about

physical freedom, and is related to the Freedom Needs in FHN that also contain the needs

for autonomy and spiritual freedom.

In addition, I created a new Finances, Possessions, and Job Needs category for events

related to finance, valuable possessions, and jobs, which does not have a direct correspond-

ing category in the two theories. In my research, I did not use the Self-actualization and

the Self-transcendence Needs in MHN, or the Participation Needs and the Creation Needs

in FHN for categorizing affective events because I found that few affective events related

to these human need categories in my corpus.

In the following paragraphs, I will present the definitions and examples for each human

need category studied in this dissertation.

• Physiological Needs

Physiological needs are the basic needs that must be satisfied to maintain the human

body’s basic functions. For example, we need to eat food, our body needs sleep,

etc. An event in this category is affective often because it implies the satisfaction or

violation of a Physiological need. For example, “I am hungry” is negative because

the need to have food is not satisfied.

Specifically, Physiological needs include (1) the need to be able to breathe beneficial

or pleasant air, and to avoid detrimental or unpleasant air; (2) the need to avoid

hunger, to avoid unpleasant food, and to eat or obtain pleasing food; (3) the need

to avoid thirst, to avoid unpleasant beverages, and to drink or obtain pleasing bev-

erages; (4) the need to sleep, regularly and comfortably; (5) the need to maintain

warmth, to not be too hot or too cold; (6) the need to have or obtain shelter (i.e., a

place to live or stay) and to avoid unpleasant shelters. If an event is affective and

indicates the satisfaction or violation of these needs, then it belongs to this category.

Examples
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◦ “I have not eaten for 2 days” is negative because the need to have food is violated.

◦ “I woke up at 2am” is negative because the speaker violated the need of having

enough sleep or sleeping soundly.

◦ “I ate cake” is positive because the need of having enjoyable food is satisfied.

◦ “I bought a house” is positive because the need of owning a shelter is satisfied.

• Physical Health and Safety Needs

In our daily lives, many events will harm or endanger our physical health and safety.

If we experience these events, we are often affected negatively. Conversely, some

other events will improve our physical health or safety conditions and affect us pos-

itively when we experience them. These events are affective because they satisfy or

violate the needs to be physically healthy and safe. Affective events in this category

could be related to health problems, body injuries, exercise, etc.

Examples

◦ “My head hurts” is negative because the need to be physically healthy is violated.

◦ “I do exercise” is positive because exercise is associated with good health.

◦ “I was kidnapped” is negative because the speaker is concerned about his/her

physical health and safety.

• Leisure and Aesthetic Needs

Another type of need that most people share is the need to have fun, to be relaxed,

to have leisure time. For example, people often feel happy when they experience

positive events like “play games”, but are affected negatively by some other events

because they prevent people from having leisure time. For example, “work on holi-

days” is undesirable because people expect to have fun or leisure time on holidays. In

addition, people need to be able to appreciate and enjoy the beauty of certain things

and will typically feel relaxed, joyful, or peaceful when these needs are satisfied.

Since Leisure needs and Aesthetic needs are closely related, I combine them together

as a single category.
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Specifically, Leisure and Aesthetic needs include: (1) the need to have entertaining

or fun activities, to avoid lack of fun or entertaining activities; (2) the need to have

leisure, to avoid too much work because it detracts from leisure time; (3) the need to

have an enjoyable, pleasant environment; (4) the need to pursue and appreciate the

beauty of nature, art, music, and other aesthetically beautiful things.

Examples

◦ “I play computer games” is positive because it describes a fun activity.

◦ “I work on Christmas Day ” is negative because it is typically unenjoyable and

detracts from leisure time.

◦ “Room is noisy ” is negative because the environment is undesirable.

◦ “I saw a rainbow” is positive because the need to appreciate beauty is satisfied.

• Social, Self-Worth, and Self-Esteem Needs

According to Aristotle, human beings by nature are “social animals”, which means

that people naturally need to have close relationships with family and friends. Events

indicating the satisfaction of having good family or friend relations make people feel

good. Conversely, people would be impacted negatively if these needs are violated.

As a member of society, people also have needs to have and improve self-worth and

self-esteem, and to be respected by others.

I group these Social needs together as a single human need category. Specifically,

these needs include: (1) the need to have family, to have close family relations, to

avoid damaging family relations; (2) the need to have friendships, to avoid damaging

friendships; (3) the need to maintain pleasant social relations, to avoid conflicts and

arguments; (4) the need to maintain socially and culturally acceptable behaviors; (5)

the need to realize and improve one’s self-worth, to be recognized by others; (6) the

need to maintain and improve self-esteem or dignity.

Examples

◦ “My mom visited me” is positive because a family relationship is maintained.

◦ “I have many friends” is positive because the friendship need is satisfied.
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◦ “Nobody talks to me” is negative because social relations with others are not good.

◦ “They mock me” is negative because the speaker’s self-esteem/dignity is hurt.

• Finances, Possessions, and Job Needs

In our daily lives, many affective events involve earning money, having well-paid

jobs, and obtaining useful or valuable possessions. When these events happen to

us, we would usually have positive feelings. However, if we experienced affective

events like losing money, getting fired from a job, or losing some valuable posses-

sions, we would typically be affected negatively. More specifically, this category

includes: (1) the need to obtain and protect financial income; (2) the need to acquire

possessions and maintain good condition of one’s possessions; (3) the need to have

a job and satisfying work because jobs are usually reliable sources to obtain financial

income. Since possessions could be anything valuable, I define that if the possession

in an event is more directly related to another type of need, I prefer to categorize the

event in that human need category. For example, the event “I bought steaks” mainly

satisfies the Physiological needs because the purpose of “steaks” is for eating, so it is

classified into the Physiological need category rather than this category.

Examples

◦ “I got a lot of money” is positive because the need to have financial income is

satisfied.

◦ “I bought a computer” is positive because the need to obtain useful tools is satis-

fied.

◦ “I lost my watch” is negative because the need to protect possessions is violated.

◦ “I got fired” is negative because the need to have a job has been violated.

• Cognition and Education Needs

Cognition and education needs motivate people to learn skills, obtain information,

understand meanings, improve cognitive abilities, etc. When such needs are satisfied

(e.g., “learned new skills”), people would often feel good; otherwise, people are
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affected negatively (e.g., “I did not get the Master degree”). More specifically, this

group of needs include: (1) the need to obtain skills, information, and knowledge, to

receive education, and to improve one’s intelligence; (2) the need to mentally process

information correctly (e.g., remembering, calculation), and to have good cognitive

abilities.

Examples

◦ “I learned to mow the lawn” is positive because the speaker learned a skill.

◦ “I graduated” is positive because the need to receive education is satisfied.

◦ “I overestimated the number” is negative because the speaker did not process

information correctly.

• Freedom of Movement and Accessibility Needs

There are many affective events that describe our movement or accessibility situa-

tions. When we cannot move freely, or access something in a timely manner, then

we are impacted negatively. Specifically, this type of needs include: (1) the need to

move or change locations freely; (2) the need to access things or services in a timely

manner.

Examples

◦ “I have been waiting for 5 hours” is negative because the need to access things in

a timely manner is not satisfied.

◦ “I was stuck in my car” is negative because the need to move freely is violated.

◦ “The bus is late” is negative because the need to take public transport on time is

violated.

• Emotions, Sentiments, and Opinions

There are also many affective events or state expressions in human language that

do not belong to any human need categories, but only directly describe people’s

affective states such as sentiments, emotions, or opinions. I define a separate cat-

egory to group these affective events together, which includes: (1) events that di-
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rectly describe experiencers’ sentiments, emotions, feelings, or physical expressions

of emotions; and (2) events that express an opinion towards an object. I define that

if an event both expresses a sentiment/emotion and is also related to a human need

category above, I prefer to categorize it into the corresponding human need category.

For example, “I love my family” not only expresses a positive emotion, but also

indicates a good social relationship. Based on the definition, it is categorized into

the Social Needs category. As presented in Chapter 1, events studied in this disser-

tation refer to both dynamic events and stative events. Ideally, state expressions

might be separately from dynamic events because most of these sentiment, emotion,

and opinion expressions are states. However, recognizing state expressions itself is

difficult research problem. For example, it is hard to distinguish stative expressions

for expressions such as “he got angered”, “he was angered by the answer”, “he was

worried”, and “he feels worried”.

Examples

◦ “I am happy” is positive because it describes a positive internal emotion state.

◦ “I smiled” is positive because it describes a happy emotion.

◦ “Canadians are good” is positive because it describes a positive opinion.

• None of the Above

There are some affective events that do not belong to any of previous human need

categories or the Emotions category. I categorize all of these affective events in the

None of the Above category, which includes, but is not limited to (1) events or situa-

tions that are too general or abstract to be assigned to any previous categories; or (2)

the reason why the event is positive or negative falls into a different category than

the ones listed above.

Examples

◦ “I had a problem” is negative, but we do not know the specific reason why.

◦ “I made a mistake” is negative but we do not know what the mistake is.
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◦ “I am powerless” is negative because the need to have power is violated. It is

categorized into this class because the human need implied by this event cannot

be classified into any previous human need categories.

◦ “I lost authority” is negative because the need to have authority is not satisfied.

The type of human need cannot be categorized into any previous human need

classes either.

6.1.2 Gold Human Need Annotations and Analysis

I hypothesized that the reason for events being affective can often be explained based

on the satisfaction or violation of human needs. However, two questions remain to be

answered about this hypothesis. First, what percentage of affective events can be classified

into the 7 human need categories? Second, can human annotators consistently agree on

assigning a human need category to an affective event?

To answer these two questions, I conducted a study to add human need annotations

to the 559 affective events that were manually identified as positive or negative from a

random set of events (details about the affective polarity annotations are presented in

Section 3.3). I asked three human annotators to assign the most appropriate category label

to each affective event based on the definitions of human need categories (the annotation

guidelines are presented in Appendix E). I measured their pairwise inter-annotator agree-

ments using Cohen’s kappa, which were κ=.69, κ=.66 and κ=.65. This demonstrates that

human annotators can achieve good agreements (κ ≥.65) on this task. I then assigned the

majority category label to each event as the gold category label. I found that 17 affective

events were assigned three different labels, so I discarded them because annotators did not

agree on these cases. I ended up with a gold standard data set of 542 affective events with

human need category labels. Some examples are shown in Table 6.2.

The distribution of human need categories is shown in Table 6.3, which reveals that the

majority (58%) of the affective events can be categorized into the 7 human need categories.

Twenty-four percent of the affective events are simply sentiment or emotion expressions

(e.g., “I’m happy”, “I hate it” ). If we remove pure sentiment or emotion expressions, then

76% of the remaining affective events can be categorized into the 7 human need categories.

Table 6.3 also shows that 18% of affective events were assigned with a None of the Above
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Table 6.2: Affective Event Examples with Human Needs Category Labels.

Positive Events Human Need
〈 I, take, advantage, of breakfast〉 Physiological
〈 ear, be, better, - 〉 Health
〈 I, watch, Hellboy II, -〉 Leisure
〈 we, get, marry, -〉 Social
〈 I, get, my new laptop, -〉 Finance
〈my memory, be, vivid, -〉 Cognition
〈my heart, feel, happy, -〉 Emotion
〈 we, be, legal, -〉 None
Negative Events Human Need
〈 I, grow, hungry, - 〉 Physiological
〈my face, look, pale, - 〉 Health
〈 -, rain out, game, -〉 Leisure
〈 girl, laugh, -, at me〉 Social
〈 house phone, not work, -, -〉 Finance
〈 I, lose, attention, -〉 Cognition
〈 I, be, scared, -〉 Emotion
〈 it, not work, -, for me〉 None

Table 6.3: Distribution of Human Need Categories (each cell shows the frequency and
percentage).

Physiological Health Leisure Social Finance
19 (4%) 52 (10%) 75 (14%) 108 (20%) 29 (5%)

Cognition Freedom Emotion None
26 (5%) 7 (1%) 128 (24%) 98 (18%)

label. I conducted a further analysis on these affective events, and found three reasons

for why some events were classified to the None category. First, some events describe

very abstract positive or negative events where we know the polarity but not the specific

situations (e.g., “we have trouble”, “it does not work for me”). Second, some meanings of

events are not clear, which could be caused by parsing or extraction errors (e.g., “bit beats

up”, “I fell things”). Third, some events are affective because of other nuanced human

need categories. For example, “I’m powerless” is negative because people have needs to

be strong, to have power and authority. “I’m legal” is positive because people have needs

to be in conformity with or permitted by law. Events related to other human needs can be

pervasive in the data of other domains (e.g., legal related documents), but these nuanced

human needs are rare in the affective events studied in this research. It can be worth
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creating new human need categories when studying events in other domains.

Table 6.3 also shows that the Freedom category (i.e., Freedom of Movement and Accessi-

bility) only contains 7 instances. I concluded that this class is too small to provide sufficient

evaluation data. Therefore, I merged the Freedom category into the None category in the

subsequent study and experiments.

Table 6.4 shows the polarity distribution for each human need category. The number

in the parentheses following each human need category is the total number of affective

events assigned with the category label. Each cell shows the number and percentage of

positive (POS) or negative (NEG) events for each category. Table 6.4 shows that Phys-

iological, Health, and None categories have more negative events than positive events.

83% percentage of the affective events in the Health category are negative. The Leisure

and Social categories have more positive events. Eighty-seven percent of affective events

in Leisure are positive. This demonstrates that the polarity frequencies for each human

need category can vary. This unbalanced distribution reflects the human need categories

observed in the personal story corpus. For example, in the personal blog posts, people

are more likely to discuss positive events related to Leisure rather than negative ones.

However, it is not known whether this generally reflects what people blog about, and this

question can be worth studying in future work.

Figure 6.1 shows the confusion matrix between the two human annotators (A1 and

A2 ) whose agreement is κ=0.66. In the figure, the category names are abbreviated as

Physiological (Phy), Health (Hlth), Leisure (Leis), Social (Socl), Finance (Fnc), Cognition

(Cog), and Emotion (Emo). #Tot denotes the total number of events in each row or column.

Table 6.4: Distribution of Affective Polarities under Different Human Need Categories

Physiological (19) Health (52) Leisure (75)
POS NEG POS NEG POS NEG

7 (37%) 12 (63%) 9 (17%) 43 (83%) 65 (87%) 10 (13%)
Social (108) Finance (29) Cognition (26)

POS NEG POS NEG POS NEG
73 (68%) 35 (32%) 14 (48%) 15 (52%) 12 (46%) 14 (54%)

Freedom (7) Emotion (128) None (98)
POS NEG POS NEG POS NEG

3 (43%) 4 (57%) 66 (52%) 62 (48%) 37 (38%) 61 (62%)
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A1 \ A2 Phy Hlth Leis Socl Fnc Cog Emo None #Tot
Phy 15 3 0 0 0 0 1 1 20
Hlth 2 36 0 5 0 0 2 3 48
Leis 2 1 60 9 4 1 5 6 88
Socl 0 5 1 85 0 0 1 6 98
Fnc 2 0 0 2 22 0 0 2 28
Cog 0 1 1 4 0 20 3 3 32
Emo 0 3 2 9 2 3 90 12 121

None 2 3 4 13 5 2 22 73 124
#Tot 23 52 68 127 33 26 124 106 559

Figure 6.1: Confusions between Two Annotators on Assigning Human Need Labels.

Each row denotes the number of affective events that were annotated with a label (e.g.,

“Phy”) by annotator A1. Each column denotes the number of affective events that were

annotated with a label (e.g., “Hlth” ) by annotator A2. For example, the cell (“Phy”, “Hlth”)

denotes that there are 3 affective events that were labeled “Phy” by A1 but “Hlth” by A2.

The confusion table shows that human annotators often confused Emotion and None. Fur-

ther analysis reveals that annotators have difficulty distinguishing events that explicitly

express sentiments, emotions from events that are highly associated with sentiments or

emotions. For example, “we won” does not explicitly express a sentiment, but it is highly

associated with a positive sentiment. The confusion matrix also shows that annotators

had disagreements on assigning Social and Leisure labels. This is because some activities

are associated with both Social and Leisure needs. For example, annotators may have

different understandings about what human needs are satisfied by the event “we have a

party”. Some may think that this event is mainly related to social relations because having

a party is to be with friends or other people, but others may believe that the main goal of

having a party is to have fun. In future, it is worth studying to allow an affective event to

be associated with multiple human need categories.

6.2 Categorizing Human Needs with Labeled and
Unlabeled Data

Automatically categorizing affective events in text based on human needs is a new task,

so I investigated several types of approaches. I began by exploring supervised machine

learning classifiers by modeling different types of features. Then, I designed two self-

supervised models to exploit a large set of unlabeled events. This section presents the
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details of these methods.

First, I created a supervised classifier to categorize affective events using the words in

event expressions. I will call this type of classifier an Event Expression Classifier. To repre-

sent words in event expressions, I explored lexical features, word embedding features, and

semantic category features. I also explored several types of machine learning algorithms.

The task is to determine the human need category of an affective event based on the

meaning of the event itself (i.e., independent of any specific context), which is the most

common interpretation and default meaning of an event in the absence of context. How-

ever, I hypothesized that collecting the contexts around instances of events can also pro-

vide valuable information for predicting human need categories. Therefore, I also de-

signed an Event Context Classifier to exploit the sentence contexts around event instances.

As shown in the previous section, the gold standard data set is relatively small, so

supervised learning that relies entirely on manually labeled data may not have sufficient

coverage to perform well across the human need categories. However, there are a very

large set of events that were extracted from the same blog corpus, but not manually la-

beled with human need labels. Consequently, I explored two weakly supervised learning

methods to exploit the large set of unlabeled events. First, I tried self-training to iteratively

improve the event expression classifier. Second, I designed a co-training model that takes

advantage of both an event expression classifier and an event context classifier to learn

from the unlabeled events. These two types of classifiers provide complementary views of

an event, so new instances labeled by one classifier can be used as valuable new data to

benefit the other classifier, in an iterative learning cycle.

In the following sections, I will describe each type of approach in detail.

6.2.1 Supervised Classification Models

One straightforward approach for categorizing affective events is to train supervised

classifiers using labeled data. I explored the hypothesis that both event expression features

and context features can be useful for predicting the human need categories of affective

events. Based on this hypothesis, I designed two types of classifiers: Event Expression

Classifiers that train classifiers using features from event expressions, and Event Context

Classifiers that build classifiers using features from sentence contexts surrounding event
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mentions. The details of creating these two types of classifiers are described in this section.

6.2.1.1 Event Expression Classifiers

To represent event expressions as features, I designed three types of features: bag-

of-words features, event embedding features, and lexical semantic features. The bag-of-word

features use the words in an event expression as features for recognizing its human need

category (e.g., {ear, be, better} for the event <ear, be, better, ->). Each bag-of-word feature

is associated with a binary presence value (i.e., 1 or 0). To obtain embedding features of

events, I create an embedding vector for an event by computing the average of embedding

vectors of words in the event representation. I used the 200-dimensional GloVe (Penning-

ton et al., 2014) word embeddings pretrained on 27B tweets. I also designed semantic

features using the lexical categories in the LIWC lexicon (Pennebaker et al., 2007) to capture

a more general meaning for each word. LIWC is a dictionary of words associated with

“psychologically meaningful” lexical categories, some of which are directly relevant to the

task of human need categorization, such as affect, social, money, and insight. I identify

the LIWC category of the head word of each component in an event representation and

use them as Semantic Category features.

To investigate the effectiveness of different classification models, I experimented with

three types of classification algorithms: logistic regression (LR), support vector machines

(SVM), and recurrent neural network classifiers (RNN). For LR and SVM, I train a one-

vs.-rest (ovr) binary classifier for each category, and predict the human need category of

an event as the category with the highest confidence score, if the event is classified into

more than one category. One advantage of the RNN is that it considers the word order in

an event expression, which can be important. In the experiments, I used the Scikit-learn

implementation (Pedregosa et al., 2011) for the LR classifier, and LIBSVM (Chang and

Lin, 2011) with a linear kernel for the SVM classifier. For the RNN, I used the example

LSTM implementation from Keras github (Chollet et al., 2015), which was developed for

sentiment analysis. LSTM networks (Hochreiter and Schmidhuber, 1997) are a specific

implementation of RNN, and were designed to solve the long-term dependency problem

by allowing for information flowing to next state unchanged. In the experiments, I used

the default parameters in these implementations.
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6.2.1.2 Event Context Classifiers

The event representations in this research were originally extracted from a large col-

lection of blog posts, which contain many instances of the events in different sentences.

I hypothesized that the contexts surrounding instances of an event can provide strong

clues for identifying the human need category associated with the event. Therefore, I also

created Event Context Classifiers to exploit the sentence contexts around event mentions.

I designed the following 4 event context classifiers by using different types of sentence

contexts and methods for extracting features from the sentence contexts:

ContextSentBOW : To build this classifier, I use each sentence mentioning an event as a

training instance. Specifically, for each event in the training set, I first collect all sentences

mentioning this event and assign each of these sentences with the event’s human need

category label. For each sentence, I extract bag-of-word features (i.e., unigrams) from

the sentence, and each bag-of-word feature is assign a binary presence value. Then, each

sentence and its label is used to train this type of event context classifier.

ContextSentEmbed : This variation also uses a sentence as a training instance and labels

sentences exactly the same way as the previous model, but rather than using bag-of-word

features, this method represents each sentence as a dense embedding vector, which is com-

puted as the average of the embeddings for each word in the sentence. In the experiments,

I used the 200-dimensional GloVe (Pennington et al., 2014) word embeddings pretrained

on 27B tweets.

ContextAllBOW : In this classifier, instead of treating each sentence as a training instance,

I merge all of the sentence contexts of an event to be a single training instance. Specifically,

for an event, I first collect all of the sentences that mention this event, and aggregate them

into one giant context for the event. Then, I assign the human need category label of the

event as the label for this giant context and use them together as one training instance

for this classifier. To train this classifier, I represent each giant context using bag-of-word

features.

ContextAllEmbed : This variation aggregates the sentences mentioning an event exactly

like the previous model, but in this model, I use embedding features instead of bag-of-

word features. To compute the embedding of an aggregate context for an event, I first

compute an embedding vector for each sentence as the average of the embeddings of its
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words. Then, I compute a single context embedding for the giant context by averaging all

of the sentence embeddings.

In the personal story blog posts, I noticed that some events appear in many sentences,

while others appear in just a few sentences. Since I label each event context instance with

the event’s label, the varying size of sentence contexts for an event can break the category

distribution in the original training data and lead to worse performance. To maintain a

balanced training set of context instances for each event, I randomly sample 10 sentences

for each event to use as its contexts. When there are less than 10 sentence contexts for an

event, I use all of them.

To predict the human need category of an event, I apply event context classifiers to con-

texts that mention the event, and compute the human need category label using the predic-

tion results. With different types of event context classifiers, the human need category label

for an event is computed differently. Specifically, for the ContextAllBOW and ContextAllEmbed

models, each event is only associated with a single giant context instance, so the models

can directly predict the human need category label of an event by using the giant context

associated with the event as input. For the ContextSentBOW and ContextSentEmbed, each event

is associated with multiple sentence contexts. I first apply these two classifiers on the

sentence contexts of an event and obtain a single probability distribution for each event

by computing the average of probability distributions of these sentence contexts. Finally, I

assign each test event with the human need category that has the highest mean probability.

6.2.2 Semi-Supervised Models

Since the gold standard data set is relatively small, supervised classifiers that rely on

manually labeled data may not have sufficient coverage to perform well. However, there

is a large set of unlabeled events extracted from the same blog corpus as the gold data.

Therefore, in this section, I present two types of semi-supervised models, self-training,

and co-training, to exploit the effectiveness of using a large set of unlabeled events.

6.2.2.1 Self-Training the Event Expression Classifier

Obtaining more manual annotations is expensive and time consuming. However, it

is easy to automatically collect labels for unlabeled events using a previously trained

model. These automatically predicted labels can be useful to improve the performance
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of the original model. Based on this idea, I designed a self-training model that tries to

iteratively improve the event expression classifier by exploiting the unlabeled event data.

In this part of the research, I only self-trained the event expression classifier because I

observed the event expression classifier performed better than the event context classifier

in the experiments (evaluation details can be found in Section 6.3).

Specifically, the self-training process works as follows. First, an event expression clas-

sifier is trained using the manually labeled events. Then, the classifier is applied to the

unlabeled events and assigns a human need category to each event with a confidence

value. For each human need category, I select the unlabeled event that has been assigned

to that category with the highest confidence. Therefore, each category will have one

additional labeled event at each iteration. The newly labeled events are added to the

labeled data set, and the classifier is re-trained for the next iteration. After a number of

training iterations, the final self-training classifier is expected to perform better than the

initial event expression classifier.

6.2.2.2 Co-Training with Event Expression and Event
Context Classifiers

The event expression classifiers use the event expressions to assign human need cat-

egory to an event, and the event context classifiers use information from the contexts

mentioning event instances. These two types of classifiers have different views of an

event. I hypothesize that these two views are complementary to each other, and the un-

labeled events that are assigned predicted labels and selected confidently by one classifier

can benefit another classifier. Therefore, I designed a co-training model to exploit these

complementary types of classifiers to iteratively learn from unlabeled data.

Figure 6.2 shows the architecture of the co-training model. To train the co-training

model, an event expression classifier and an event context classifier are independently

trained on the manually labeled training data. Each classifier is then applied to the large

collection of unlabeled events EU . For each human need category, I then select the event

that has been assigned to the category with the highest confidence value as a new instance

to label. Consequently, each category will receive two additional labeled events at each

iteration, one from the event expression classifier and another one from the event context

classifier. In my implementation, the event expression classifier first selects from unlabeled
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Figure 6.2: The Co-Training Model for Human Needs Categorization

events, then the event context classifier does the selection. If an event is selected previously,

it will not be selected again. This ensures that there are 16 new events in total at each

iteration.

Both sets of newly labeled events are then added to the labeled set EL, and each of

the classifiers is re-trained on the expanded set of labeled data. Because the classifiers

have different views of the events, the new instances labeled by one classifier serve as

fresh training instances for the other, unlike self-training with a single classifier where it is

learning entirely from its own predictions.

The detailed co-training algorithm is shown in Algorithm 3. The input to the algorithm

are the sets of labeled events EL and unlabeled events EU . Each event is associated with

both an event expression and the set of sentences in which it occurs in the blogs corpus.

For each iteration, the event expression classifier is first trained using the labeled events

EL with the event expression view. Then, I construct an event context view Xcon for each

event in the labeled set EL. The context sentences are used differently depending on the

type of context model (described in Section 6.2.1.2). An event context classifier is then

trained using the context view Xcon. Both classifiers are then independently applied to

the unlabeled events EU . For each human need category, each classifier selects one event

to label based on its most confident prediction. All of the newly labeled events are then

added to the labeled training set EL, and the process repeats.

The co-training process simultaneously trains two classifiers, so here I explain how the

resulting classifiers are used for predicting human need categories after the co-training
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Algorithm 3 Co-Training Algorithm
1: Input: Labeled EL, unlabeled EU events
2: while Not maximum iteration do
3: Train the event expression classifier on EL
4: Construct context view (Xcon) of EL
5: Train the event context classifier on Xcon
6: Apply the event expression classifier to EU and select new labeled

events (Eexp)
7: Apply the event context classifier to EU and select new labeled

events (Econ)
8: Update labeled events:

EL = EL ∪ Eexp ∪ Econ
9: end while

process has finished. For each event e in the test set, I apply both the event expression

classifier and the event context classifier, which are logistic regression models that produce

a probability distribution over the human need categories. Then, I explore two different

methods to combine the two probability distributions for each test event: (1) sum, I com-

pute the final probability vector p(e) by applying the element-wise summarization oper-

ation to the two predicted probability vectors; (2) product, I compute the final p(e) as the

element-wise product of the two vectors. Then, the final probability vector is normalized

to make sure the sum of probabilities over all classes is 1. Finally, I predict an event’s

human need category as the one with the highest probability.

6.3 Evaluation
In this section, I present experiments to evaluate the methods described in the previous

section. For all of the experiments, I use the gold standard data described in Section 6.1.

Experimental results are reported based on 3-fold cross-validation on the 542 affective

events that are manually labeled with human need categories. In the experiments, I used

classification models with default parameters, and did not tune any of the models. In the

following, I first present the evaluation metrics used in the experiments. Then, I evaluate

and show the performance of a baseline that uses the LIWC lexicon, the event expression

classifiers, the event context classifiers, and two semi-supervised models: self-training

and co-training. Finally, I present an analysis by showing a confusion matrix between
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gold labels and predicted labels by the best performing system, and examples that were

incorrectly classified by the best system.

6.3.1 Evaluation Metrics

In the following experiments, I use two evaluation methods to measure the perfor-

mance of each human need categorization method. The first evaluation method is called

FoldAvg, which computes the final performance score for each method as the average of

the scores on the 3 test sets from the 3 folds. For each fold, I first compute the precision,

recall, and F1 score for each human need category, then obtain the macro-average preci-

sion, recall, and F1 on the test set (i.e., averaging across the human need categories). Since

I use 3-fold cross-validation, there are 3 sets of macro-averaged scores. I compute the final

precision, recall, and F1 for each system as the average across the 3 folds. Since FoldAvg

reports the average precision, recall, and F1 score over 3 folds, the F1 score can be smaller

than both precision and recall in some cases. In the paper (Ding and Riloff, 2018a), the

FoldAvg evaluation metric was used to report the performance of each system.

The second evaluation method is called TestAvg, which directly computes the perfor-

mance score for each system on the test instances across 3 folds. For each system, I first

obtain the predictions on the test set in each fold, and then merge all of the predictions into

one single evaluation set. Then, I compute the precision, recall, and F1 score for each cate-

gory on the test instances. Finally, I compute a system’s performance as the macro-average

precision, recall, and F1 across all of the categories. For the sake of comparision, I present

results for both evaluation metrics below.

6.3.2 LIWC Lexicon Baseline

The LIWC lexicon (Pennebaker et al., 2007) is a dictionary of words associated with

various lexical categories. Besides pronominal and emotion categories, it also contains

cognition and psychology categories of words, which are closely related to the human

needs categorization task. Consequently, the LIWC lexicon can be used for this task as

a valuable baseline to access the performance of existing resources. I first analyzed the

categories in LIWC, and manually built a mapping from LIWC categories to the human

need categories, which is shown in Table 6.5. To predict the human need category of an

event, I designed a rule-based system that first looks up the LIWC category of each word in
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Table 6.5: LIWC Mapping to Human Need Categories.

LIWC Category Human Need Category
Ingest → Physiological
Health, Body, Death → Health
Leisure → Leisure
Social → Social
Money, Work → Finance
Inhib, Insight → Cognition
Affect → Emotion

an event, maps it to a human need category, and then uses the majority category across all

words in the event expression as the final human need category. For the arguments of an

event, in most cases, the Agent is a pronoun and does not contribute much to the meaning

of the event. In many cases, the Prepositional Phrase (PP) is also optional. Therefore, if

there is a tie, I remove a component one by one in the order of Agent, PP, Theme until

it can produce a majority label. I do not remove the Predicate because the Predicate is

an important component to an event in most cases. If none of the words in an event are

contained in LIWC, or their categories cannot be mapped to our categories, then I assign a

None of the Above category label to the event.

6.3.3 Performance of the Event Expression Classifiers

Table 6.6 shows the results for the LIWC lexicon-based method and the event expres-

sion classifiers. The top row of Table 6.6 shows that LIWC achieved 39% with 47.7% pre-

cision based on the FoldAvg metric. The reason is that some categories in LIWC are more

general compared with the definitions of the corresponding human need categories. For

example, the words “abandon” and “damage” belong to the Affect category (correspond-

ing to the Emotion category) in LIWC. However, based on the human need definitions, the

event “my house was damaged” actually belongs to the Finance category.

The LR and SVM rows in Table 6.6 show the performance of the logistic regression

(LR) and support vector machine (SVM) classifiers, respectively. I evaluated classifiers

with bag-of-words features (BOW) and classifiers with event embedding features (Embed),

computed as the average of the embeddings for all words in the event expression. I

also tried adding semantic category features from LIWC to each feature set, denoted as

+SemCat. The FoldAvg and TestAvg results show that the Embed features performed best
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Table 6.6: Performance of LIWC Baseline and Event Expression Classifiers

Method
FoldAvg TestAvg

Precision Recall F1 Precision Recall F1
LIWC 47.7 39.0 38.6 46.6 38.9 42.4
LRBOW 33.6 28.7 27.3 37.8 28.6 32.6
LRBOW+SemCat 55.2 39.6 41.9 52.6 39.6 45.2
LREmbed+SemCat 60.1 49.3 51.9 58.3 49.4 53.5
LREmbed 64.2 51.7 54.8 62.4 51.8 56.6
SVMBOW 52.3 43.1 44.8 51.4 43.0 46.8
SVMBOW+SemCat 51.0 45.9 46.8 49.4 45.8 47.6
SVMEmbed+SemCat 50.4 48.4 48.6 49.9 48.6 49.2
SVMEmbed 51.3 50.7 50.5 51.2 50.8 51.0
RNNWords 45.2 39.6 40.1 41.3 39.6 40.4
RNNEmbedSeq 58.0 53.7 54.4 57.2 53.9 55.5

for both the LR and SVM classifiers. Adding the SemCat features improved upon the

bag-of-word representations, but not the embeddings.

The last two rows of Table 6.6 show the performance of two RNN classifiers, one using

lexical words as input (RNNWords) and one using pretrained word embeddings as input

(RNNEmbedSeq). The RNNEmbedSeq system takes the sequence of word embeddings as input

rather than the average embeddings. As with the other classifiers, the pretrained word

embedding features performed best, achieving FoldAvg F1 score 54.4% and TestAvg F1

55.5%. RNNEmbedSeq achieved comparable F1 score to that of the LREmbed system when

using the FoldAvg evaluation metric. However, the TestAvg F1 score of RNNEmbedSeq is

1.1% lower than that of the logistic regression model, and the precision of the LREmbed is

much higher (6.2% higher based on FoldAvg and 5.2% higher based on TestAvg) than the

neural net model. This demonstrates that the logistic regression models with pretrained

word embedding features perform better than the neural net models. Because neural

net models often seem to benefit from large training sets, the relatively small size of the

training data may not be ideal for an RNN.

Overall, I concluded that the logistic regression classifier with event embedding fea-

tures (LREmbed) achieved the best performance because of its F1 score and higher precision.
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6.3.4 Performance of the Event Context Classifiers

Table 6.7 shows the performance of the event context classifiers described in Section

6.2.1.2. Since logistic regression worked best in the previous experiments, I only evaluated

logistic regression classifiers in the remaining experiments. The results show that using

each context sentence as an individual training instance (ContextSentBOW and ContextSentEmbed)

substantially outperformed the classifiers that merged all the context sentences as a single

training instance (ContextAllBOW and ContextAllEmbed). Overall, the best performing system

ContextSentEmbed achieved an F1 score of 44.3% with 59.1% Precision using the FoldAvg

metric. In addition, I also created a classifier that combined event expression features and

event context features together, but the classifier did not improve performance.

Since the event context classifiers achieved (roughly) similar levels of precision to the

event expression classifiers, and these two types of classifiers represent complementary

views of events, a co-training framework seemed like a logical way to use them together

to gain additional benefits from unlabeled event data.

6.3.5 Performance of Self-Training and Co-Training Models

In this section, I evaluate the semi-supervised self-training and co-training methods

that additionally use unlabeled data. To keep the number of unlabeled events manageable,

I only used the unlabeled events that had frequency ≥ 100, which produced an unlabeled

data set of 23,866 events. All these unlabeled events were extracted from the story blog

corpus, which is described in Section 3.1. Same as the events with gold labels, unla-

beled events are extracted using the enhanced event frame representation whose extraction

method is presented in Section 3.2.

I used the best performing LREmbed model as the event expression classifier in these

models, and the co-training framework includes the best performing event context clas-

Table 6.7: Performance of Event Context Classifiers

Method
FoldAvg TestAvg

Precision Recall F1 Precision Recall F1
ContextAllBOW 20.6 18.0 17.8 22.5 18.0 20.0
ContextAllEmbed 38.2 29.9 29.1 38.0 29.9 33.5
ContextSentBOW 48.2 31.4 32.8 63.2 31.3 41.8
ContextSentEmbed 59.1 41.9 44.3 66.6 42.0 51.5
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sifier (ContextSentEmbed) as well. I also experimented with the sum and product vari-

ants for co-training (described in Section 6.2.2.2), which are denoted as CoTrainsum and

CoTrainprod. In the experiments, I ran both the self-training and co-training methods for

20 iterations. I also conducted experiments to run these two methods for more iterations,

but did not observe much improvement.

Figure 6.3 and Figure 6.4 track the performance of the self-training and co-training

models after each iteration, in terms of FoldAvg F1 score and TestAvg F1 score. The flat

lines in both figures show the performance for the best classifier that uses only labeled data

(LREmbed). Both types of semi-supervised models yield performance gains from iteratively

learning with the unlabeled data, but the co-training models perform substantially better

than the self-training model. Even after just 5 iterations, co-training achieves an F1 score

over 59% using FoldAvg and F1 over 61% using TestAvg, and by 20 iterations, performance

improves to 61% FoldAvg F1 and 62.1% TestAvg F1 score.

Table 6.8 shows the results for these models after 20 iterations, which was an arbitrary

stopping criterion, and after 17 iterations, which happened to produce the best results

for all three systems using both FoldAvg and TestAvg metrics (please note that the self-

training model achieved its best score of 58% at 12, 17, and 20 iterations when using the

TestAvg metric). The first two rows show the results of the best performing event context
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Figure 6.3: Learning Curves of Self-Training and Co-Training Using the FoldAvg Metric
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Figure 6.4: Learning Curves of Self-Training and Co-Training Using the TestAvg Metric

classifier (ContextSentEmbed) and best performing event expression classifier (LREmbed) from

the previous experiments, for the sake of comparison.

Table 6.8 shows that after 20 iterations, the CoTrainprod model performed best. Further-

more, the co-training model improves upon both the precision and recall.

All three systems performed best after 17 iterations, so I show those results as well to

give an idea of additional gains that would be possible if we could find an optimal stop-

ping criterion. The gold annotation data set was small so I did not feel that I had enough

Table 6.8: Performance of Self-Training and Co-Training

Method
FoldAvg TestAvg

Precision Recall F1 Precision Recall F1
Supervised Models

ContextSentEmbed 59.1 41.9 44.3 66.6 42.0 51.5
LREmbed 64.2 51.7 54.8 62.4 51.8 56.6

After 20 Iterations
SelfTrain 63.2 54.2 56.6 62.0 54.4 58.0
CoTrainsum 66.2 58.2 60.3 64.7 58.3 61.3
CoTrainprod 67.1 58.7 61.0 65.7 58.9 62.1

Best Results, After 17 Iterations
SelfTrain 63.5 54.1 56.7 62.3 54.3 58.0
CoTrainsum 68.6 59.0 61.7 67.4 59.2 63.0
CoTrainprod 69.7 59.5 62.4 69.0 59.7 64.0
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data to fine-tune parameters, but there is a potential to further improve performance given

additional tuning data.

Table 6.9 shows a breakdown of the performance across the individual human need

categories for two models: the best event expression classifier and the best co-training

model (CoTrainprod after 17 iterations). The results in this table are reported using the

FoldAvg metric. The table shows that the co-training model outperformed the LREmbed

model on every category. Co-training improved performance the most for the Finance and

Cognition categories, yielding F1 score gains of +12% and +16%.

6.3.6 Analysis

I manually examined the predictions of the best system (i.e., CoTrainProb) to better

understand its behavior. I found that most of the correctly classified Physiological events

were related to food, while the correctly classified Cognition events were primarily about

learning and understanding. The co-training model missed many events for the Health,

Finance, and Cognition classes. For Health, many medical symptoms were not recognized,

such as “my face looks pale” and “I puked”. For Finance, the system missed events related to

possessions (e.g., “engine stopped running” and “my clock is wrong”) and jobs (e.g., “I went to

resign”).

I also took a closer took at which categories were confused with other categories. Figure

6.5 shows the confusion matrix between CoTrainProd and the gold annotations. Each cell

shows the total number of confusions across the test sets of 3 folds. In the figure, Predict

Table 6.9: Breakdown of Results across Human Need Categories. Each Cell Shows
Precision, Recall, and F1.

Category
FoldAvg

LREmbed CoTrainProd

Pre Rec F1 Pre Rec F1
Physiological 82 57 67 81 68 74
Health 65 40 49 68 50 57
Leisure 62 59 60 69 63 66
Social 61 72 66 68 79 73
Finance 61 31 40 67 44 52
Cognition 75 31 42 92 46 58
Emotion 60 75 66 64 74 69
None 47 49 48 48 52 50
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Predict \ Gold Phy Hlth Leis Socl Fnc Cog Emo None #Tot
Phy 13 1 0 0 1 0 0 2 17
Hlth 1 26 1 0 1 1 4 8 42
Leis 1 1 48 4 0 1 4 10 69
Socl 0 6 4 84 2 3 10 11 120
Fnc 1 0 2 0 13 0 1 5 22
Cog 0 0 0 0 0 12 1 2 15
Emo 1 5 12 12 3 1 91 16 141

None 2 13 8 8 9 8 17 51 116
#Tot 19 52 75 108 29 26 128 105 542

Figure 6.5: Confusions between Predictions and Gold Human Need Annotations.

denotes predictions and Gold denotes the gold annotations. The category names are ab-

breviated as Physiological (Phy), Health (Hlth), Leisure (Leis), Social (Socl), Finance (Fnc),

Cognition (Cog), and Emotion (Emo). #Tot denotes the total number of events in each row

or column.

The co-training model had difficulty distinguishing the None category from other classes,

presumably because None does not have its own semantics but is used for affective events

that do not belong to any of the other categories. The system also often confuses Emotion

with Leisure and Social. This happens because many event expressions contain words that

refer to emotions. The annotation guidelines instructed annotators to focus on the event

and assign the Emotion label only when no event is described beyond an emotion (e.g., “I

was thrilled”). Consequently, the gold label of “I love travel” is Leisure and “I’m worried about

my mom” is Social, but both were classified by the system as Emotion. In future work, it

may be advantageous to allow event expressions to be labeled as both an explicit Emotion

and a Human Need category based on the target of the emotion.

6.4 Chapter Summary
This chapter aims to understand the reason for events being affective and presents a

task of categorizing affective events into one of the human need categories. This chapter

first demonstrates through a manual annotation study that most of the affective events in

blogs can be categorized into a small set of human need categories. Then, this chapter

describes a variety of methods for this task including supervised classifiers and semi-

supervised models. This chapter also describes a co-training model in detail. Finally, this

chapter demonstrates their effectiveness with a thorough experimental analysis. The main
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content of this chapter is summarized below.

• This chapter presents a new task of categorizing affective events into human need

categories. The human need associated with an affective event can often be used to

explain why the event is positive or negative. This chapter developed 7 human need

categories by selecting and separating some categories from the two psychology the-

ories (Maslow et al., 1970; Max-Neef et al., 1991), which are: Physiological, Health,

Leisure, Social, Financial, Cognition, and Freedom. This chapter also describes

a manual annotation effort to obtain gold human need annotations for a random

set of affective events, which are then used for evaluating automatic classification

methods. The manual analysis demonstrates that 58% of affective events extracted

from blog posts can be categorized into the 7 human need categories.

• This chapter describes a variety of classification models to access the difficulty of the

new task of categorizing affective events based on their implied human needs. These

methods include supervised event expression classifiers that use features from event

expressions, supervised event context classifiers that are trained on event context

features, and a self-training model that exploits unlabeled data.

• This chapter presents the details of a co-training model, which improves human need

classification performance by taking advantage of the two views provided by an

event expression classifier and an event context classifier, and a large set of unlabeled

events. The co-training model first trains an event expression classifier and an event

context classifier independently on the manually labeled training data, and applies

the two classifiers to unlabeled events. Then, highly confident predictions by each

classifier are selected and added into the training set. The expanded training set is

used to re-train both the event expression classifier and the event context classifier

at the next iteration. Finally, the resulting two classifiers are used together to predict

the human need category of an affective event.

• This chapter also presents thorough experiments for evaluating the performance of

methods designed to categorize affective events. Experimental results show that a

logistic regression classifier with event embedding features outperforms a baseline
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using LIWC lexicon and other supervised classification models. Results also show

that self-training the event expression classifier can slightly improve performance.

The co-training model that uses both event expression view and event context view

significantly improves the classification performance, which demonstrates that the

two views provided by event expression classifiers and event context classifiers are

complementary to each other. In addition, this chapter analyzes the behavior of

the best performing co-training method by showing that it often confuses Emotion

with Leisure and Social, which indicates that it may be advantageous to allow event

expressions to be labeled with multiple labels in future work. Further analysis also

shows that performance on Health, Finance, and Cognition categories still has sub-

stantial room for improvement.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation presents research on learning two types of knowledge about affective

events: (1) affective polarity of events, and (2) human need categories associated with

affective events. Since events are frequently mentioned and discussed in various texts such

as news, narrative stories, conversations, and Web blog posts, acquiring these two types of

knowledge can help achieve better understanding of how an event impacts people and the

reasons why people will feel good or bad after experiencing events. This chapter summa-

rizes the research presented in this dissertation and the contributions, and discusses future

research directions based on this research.

7.1 Research Summary and Contributions
In this section, I summarize the research conducted in this dissertation and present the

contributions. In Chapter 1, I presented two research claims for this dissertation. In this

section, I will revisit the research claims and demonstrate that these claims are supported

by the empirical results.

This dissertation consists of two lines of research on learning knowledge of affective

events. The first part of the research aims to identify affective events and recognize their

affective polarities. The second part tries to recognize the human need category associated

with each affective event. The research claim for the first part of work is discussed below.

Claim #1. Many affective events in personal stories can be identified and assigned prior
polarities using graph-based semi-supervised learning.

Though there have been many resources and systems that were developed to recognize

the sentiment of a given text, in my research, I found that existing sentiment analysis

resources are not sufficient to identify affective events and recognize their polarities. In this

part of research, I designed two graph-based semi-supervised models to identify affective

events and assign prior polarities. The prior polarity of an event is the most typical



119

understanding of how the event impacts people, which is independent of context.

In Chapter 4, I presented a semi-supervised Event Context Graph (ECG) model that

was designed to extract affective events using discourse and event collocation informa-

tion. Instead of using supervision from manual annotations, the ECG model obtains weak

supervision by automatically identifying sentence contexts with strong polarity values

with an existing sentiment analysis classifier. Then, the ECG model uses a label propa-

gation algorithm to iteratively spread polarity evidence from affective sentence nodes to

event nodes through three types of edges: local context edges, discourse proximity context

edges, and event co-occurrence edges. Experimental results presented in Section 4.3 show

that the ECG model can obtain better performance than other systems at recognizing

affective events, and achieved 90% and 84.5% accuracy on the top100 and top400 affective

events, respectively.

In Chapter 5, I described a semi-supervised Semantic Consistency Graph (SCG) model

to identify affective events using semantic relations between event expressions. The SCG

model obtains weak supervision by assigning each event with an initial polarity value

using sentiment resources. Then, the model builds a Semantic Relations Graph with event-

event similarity, event-event opposition, and event-component edges, and uses an iterative

learning algorithm to infer correct polarities of events by optimizing the semantic con-

sistency in the graph. Experimental results presented in Section 5.3 show that all of the

three semantic relations contribute to improving the performance for recognizing affective

events. The SCG model outperformed previous methods and achieved a 71.4% F1 score

on a random set of events. Further analysis also shows that the SCG model can acquire

over 110,000 affective events with >90% precision for positive events and >80% precision

for negative events.

Overall, this part of the research demonstrates that graph-based semi-supervised learn-

ing models can identify affective events and assign polarities with high precision, achiev-

ing better performance than previous resources and systems. In addition, this part of the

research produced a large set of affective events with prior polarities that are automatically

assigned with high precision. The learned affective events with automatically predicted

polarities were released and are freely available for the research community.

Claim #2. Affective events can be automatically categorized into a small set of human
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need categories by co-training models with views based on event expressions and event
contexts.

When we discuss events in our daily lives, we not only understand how an event affects

us but also know why the event impacts us in that way. In this part of my research, I

hypothesized that the reason why an event is positive or negative arises from the satis-

faction or violation of a human need. In Chapter 6, I defined a new task of categorizing

affective events based on their implied human needs and hypothesized that the majority

of affective events can be categorized into a small set of human need categories. In a

manual annotation study, I defined 7 human need categories derived from the previous

research in psychology, and asked human annotators to label a random set of affective

events with these categories. The annotation results demonstrate that 58% of all affective

events (and 76% of affective events that are not pure sentiment or emotion expressions) can

be categorized into these 7 categories, and human annotators achieved good annotation

agreement on this task.

In Chapter 6, I presented a co-training model for recognizing human needs of affective

events by taking advantage of two views based event expressions and event contexts. The

co-training model first trains an event expression classifier and an event context classifier

independently on the manually labeled training events. Then, the two classifiers are ap-

plied to unlabeled events and highly confident predictions by each classifier are selected

and added into the training set. Finally, the two classifiers are re-trained on the expanded

training set at the next iteration. Experimental results presented in Section 6.3 show that

the co-training model outperformed the best event expression classifier and event context

classifier, achieving +7% higher F1 score than the best individual model. Overall, this

part of my research demonstrates that co-training models with views based on event

expressions and event contexts can predict human need categories of affective events more

effectively than the individual classification models.

7.2 Future Directions
In this dissertation, I designed graph-based semi-supervised models to learn affective

polarities of events, and a co-training model to recognize human needs associated with

affective events. Though these methods achieved much better performance than previous



121

methods, there is still room for further improvement on both of these tasks. As I am

wrapping up this dissertation, I am also thinking several future research directions that

are worth exploring, which include jointly learning affective polarity and human needs,

studying affective events in narrative stories and conversations, and building a hierarchi-

cal knowledge base of affective events. In the following sections, I will discuss each of

these potential research directions and the problems that need to be solved in future work.

7.2.1 Jointly Learning Affective Polarity and Human Needs

Experimental results presented in Sections 5.3 and 6.3 show that the SCG model and the

co-training model can achieve better performance than previous methods on recognizing

affective polarity and human needs of affective events. However, the results also indicate

that these methods are not perfect, for example, the SCG model achieved 71.4% F1 score

on recognizing the affective polarity of all events, and the co-training model obtained 64%

TestAvg F1 score on the task of categorizing affective events into human need categories.

These results indicate that more research needs to be explored to improve performance on

both of these tasks.

One potential research direction is to exploit the relationship between the tasks of

recognizing affective polarity of events and categorizing affective into human need cat-

egories. As shown in Table 6.4 in Chapter 6, the positive and negative polarities are

not evenly distributed for many categories such as Physiological, Health, Leisure, and

Social. For example, 83% of affective events associated with Health needs are negative,

and 87% of affective events with Leisure needs are positive. This observation reveals

that we are more likely to know the polarity of an event if we know which human need

category it is related to. Therefore, understanding the human need category for an event

can potentially help predict its polarity. In addition, I also found that the human need

category distributions under different polarities are different. For example, as shown in

Table 6.3, 10% of affective events are annotated with Health category label. However, the

percentage of the health-related affective events increases to 17% if we know the event is

negative, and decreases to 3% when it is positive. Similarly, 14% of affective events are

associated with the Leisure category, but the percentage increases to 23% when we know

it is a positive event, and decreases to 4% when it is negative. This observation shows
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that human need categories under different polarities have different distributions, and

knowing an event’s polarity can potentially help predict the human need category of an

event.

As discussed above, the two tasks of recognizing affective polarity and learning the

human needs of affective events are related. To jointly learn these two tasks, there are

2 questions remaining to be solved. Since the human need categories are proposed to

explain the affective polarity of events, only the affective events (positive or negative) were

annotated for this research, not the neutral ones. Therefore, the first question is should

we assign human need categories to neutral events? Answering this question requires

us to adapt the current definitions of human need categories to neutral events, which at

the same time may lead to a deeper understanding of the relationship between affective

polarity and human needs associated with events. The second question is how the two

tasks can be jointly learned together. The design of a new joint learning model would be a

promising direction for future research.

7.2.2 Recognizing Affective Polarity and Human Needs
of Events in Stories and Conversations

This dissertation focuses on acquiring affective knowledge of events, independent of

context. The ultimate goal is to obtain better understanding of natural language, especially

narrative stories and conversations using the learned knowledge. As a step forward,

another future research direction is to apply the learned knowledge to analyze the events in

narrative stories and conversations. Exploring this research direction can further validate

the quality and quantity of the learned prior knowledge of events, i.e., we can evaluate ac-

curacy of the learned knowledge when it is applied to narrative stories and conversations,

and we will also access the coverage of the learned knowledge on identifying affective

events in context.

Knowing how a story character is impacted by an event, and the reason, can help

us understand why the character has a specific plan or goal. However, several practical

questions need to be answered in this potential future research. First, we need to collect a

large set of narrative stories and conversations discussing daily life events. I used the Web

blog posts in this dissertation, but some of the blog posts are very noisy and difficult to use

for this potential research even though I have filtered many non-story blog posts. Second,
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manual annotation for this research can also be hard for human annotators because of the

difficulty of the research problem itself. Annotation guidelines need to be created carefully

and annotators need to be trained to achieve good annotation agreement.

More importantly, the challenge for this research problem is to design effective methods

to understand the contextual polarity and contextual human needs associated with event

mentions. The contextual polarity and and contextual human needs associated with an

event are determined by both the meaning of the event and its surrounding context, which

is different from the prior polarity and human needs studied in this dissertation, whose

values are based on the meaning of the event and world knowledge. There has been prior

research focusing on understanding the contextual polarity of phrases (Wilson et al., 2005).

Understanding the contextual polarity can be difficult because it can be influenced by its

context. For example, in the description “We went to Disney World last weekend, but we

had a very bad time there.”, the contextual polarity of the event “went to Disney World”

is negative even though it is a typically enjoyable event. Similarly, the contextual human

needs associated with event instances can also be influenced by its context. For example,

in the description “I lost my girlfriend’s ipad. She was angry and wanted to break up with

me.”, if we do not consider the context, the event “lost my girlfriend’s ipad” is related

to the Finance needs based on world knowledge. However, the contextual human needs

associated with the event are more about the Social needs rather than just Finance when

considering its context, because the event eventually caused a bad social relation, which is

more important for the experiencer.

7.2.3 Building a Hierarchical Knowledge Base of Affective Events

In this research, events are represented using frame-like structures that consist of 4

components: Agent, Predicate, Theme, and Prepositional Phrase. To obtain the most

generalized event representations, all events are normalized with two processing steps: (1)

events expressed in passive voice sentences are normalized to active voice, (2) all words

in event representations are lemmatized. These two normalization steps can normalize

events in different voice constructions, tenses, and word forms. However, many events

with very similar meanings are still represented as different events. For example, the

meanings of <I, eat, cake, ->, <I, eat, chocolate cake, ->, and <I, eat, chocolate, -> are
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similar but they are treated as totally different events in the current knowledge base (i.e.,

the AffectEventKB described in Chapter 5). One potential future research direction is to

build a hierarchical knowledge base of affective events, in which the bottom level events

are specific and higher level events will be more generalized. For example, the event <I,

eat, chocolate cake, -> can be generalized to <I, eat, #SweetFood#, -> in which “#Sweet-

Food#” is a more generalized concept than “chocolate cake”. Then, this generalized event

can be matched with many other similar events. The main advantage of this hierarchical

knowledge base of affective events is that it could back off to generalized events when an

event cannot find any match among the lower level specific events in the knowledge base.

For example, if the event <I, eat, chocolate pie, -> cannot find any match in the low level

specific events, then we can generalize the event to <I, eat, #SweetFood#, -> and find a

match in the knowledge base.

The challenge for this potential future research is to obtain generalized representations

of events and preserve their original polarities at the same time (i.e., the generalized events

should have same polarity as the specific events). The first question is how to build

a hierarchy of concepts. Manually building a concept hierarchy can be expensive and

inflexible to expand in the future. Though some existing knowledge bases (e.g., WordNet)

may have concept hierarchies, many of these concepts are too abstract to preserve the

polarity of events. One potential key step to solve this problem is to design an effective

automatic method to learn and build the concept hierarchy from the data. The second

question is how to accurately generalize each event component to a generalized concept in

the concept hierarchy. In the enhanced event frame representation described in Section 3.2,

the Agent, Theme, and Prepositional Phrase are formed with noun phrases, which can be

generalized using a noun concept hierarchy. For example, given a sentence “I met Charlie

who is an awesome cat”, we can first extract the event <I, meet, Charlie, ->, generalize

the event to be <I, meet, #Cat#, ->, and to more abstract event <I, meet, #FamilyAnimal#,

-> (assuming we have a concept called “#FamilyAnimal#”). Besides the noun phrases,

the predicate phrases can also be generalized. One simple method is to group synonym

verbs together as a single concept. For example, “see”, “watch”, and “look” have similar

meanings and can be generalized to the “#EyePerceive#” concept and then a more general

concept “#PerceptionAction#”. Eventually, the resulting hierarchical knowledge base of
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events of this research not only has general category information of each component in

an event, but also organizes events in a meaningful way, which can be retrieved based on

their abstract concepts.

Besides the research directions presented in the above sections, there are two other

research directions that are worth exploring in future. First, we could expand the current

affective event knowledge base (the AffectEventKB) by extracting affective events from

other data sources. The current AffectEventKB was extracted from the personal story

blog posts. However, there are a large amount of other types of texts that can be used

for acquiring affective events. For example, it is estimated that hundreds of millions

of tweets are tweeted per day. People often discuss events that happened to them in

tweets. Therefore, tweets are potentially good data sources for extracting a larger and

diverse set of affective events. Comparing and contrasting affective events extracted from

different types of texts is also an interesting research topic to explore. In addition, studying

and extracting affective events from other languages is another future research direction.

It is known that people with different backgrounds are often impacted differently by a

same event. For example, eating beef can be an enjoyable experience for many people

around the world. However, it could potentially be a taboo for many people with specific

religion backgrounds. Automatically acquiring affective events from different languages

and understanding their differences are very important for computers to understand how

the world works and comprehend natural languages.

Second, it is also a valuable research direction to apply the automatically acquired

affective event knowledge base to other applications and demonstrate the effectiveness

and usefulness of the knowledge base. Specifically, the learned knowledge base could

potentially be useful for fine-grained sentiment understanding, sarcasm detection, plot

unit generation, and dialogue response generation. With the knowledge base, the senti-

ment analysis system can potentially not only predict the overall sentiment polarity of a

given text, but also the fine-grained sentiment, i.e., how people are affected by each event

described in the text. The knowledge base can also be useful to improve the performance

of detecting sarcastic expressions. For example, the expression “I am so happy that mom

woke up with vacuuming my room” is sarcastic because the speaker expressed a positive

sentiment toward a negative event (i.e., “mom woke up with vacuuming my room”). Prior
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polarity of events learned in this research can be very useful to recognize events that are

negative based on prior world knowledge. It has been reported that 36% of +/- affect

states in fables originate from good or bad situations (i.e., positive or negative events)

(Goyal et al., 2013). The affective event knowledge base can potentially help recognize

the +/- affect states in fables and then improve the performance of producing plot unit

representations. Finally, the prior affective polarity and human need category information

of affective events can be useful to help dialogue agents to generate more appropriate

responses. For example, in our daily lives, we often talk about the events that happened to

us in our conversations with friends and families. When we describe an event to a dialogue

agent, the agent needs to understand how the event affects us and why it affects us in that

way (i.e., the reason for the event being affective). After understanding these two types of

information about the event, the dialogue agent can potentially generate more appropriate

responses.

7.3 Summary
This dissertation presents research for learning two types of knowledge about affective

events: affective polarity and human needs associated with events. The contribution

of this dissertation is twofold. First, this dissertation designed two graph-based semi-

supervised models (i.e., Event Context Graph model and Semantic Consistency Graph

model) to learn the affective polarity of events. The empirical results demonstrate that

many affective events can be identified and assigned prior polarities by these graph-based

semi-supervised learning models. The learned affective events (called AffectEventKB) are

freely available for the research community. Second, this dissertation proposes a novel

research problem of recognizing human needs of affective events, and demonstrates that

affective events can be categorized into a small set of human need categories by co-training

models with views based on event expressions and event contexts. At the end, this disser-

tation discusses potential future research directions based on the current research findings.



APPENDIX A

AFFECTIVE POLARITY ANNOTATION

GUIDELINES

Different situations affect people in different ways. Situations in this task refer to both

dynamic events (e.g., I killed someone) or static states (e.g., I’m happy). For this annotation

task, annotators will be given a description of a situation and must decide whether the

situation is generally Desirable, Undesirable, Mixed, or Neutral.

The judgment should be made from the speaker’s perspective (i.e., the person who is

describing the situation). Sometimes, the speaker will be explicitly mentioned – in this

case, we have replaced instances of “I”, “me”, “we”, and “us” with the general term

“@speaker”. If the speaker is not explicitly mentioned, you should assume that the speaker

is experiencing the situation (e.g., “bus is late” refers to the speaker’s bus, and “mom is

sick” refers to the speaker’s mom).

A.1 Situation Representation
A situation is represented with four components: Agent, VerbPhrase, Object, and

PrepositionalPhrase. The Agent is a person or entity performing an action or in a state.

The VerbPhrase could be a single verb (e.g., kill) or compound verb phrase (e.g., want

to kill). The Object is the object of the verb phrase (i.e., the person or thing that is acted

upon). In many cases, one or more of these components will be empty. Empty fields will

be represented with a hyphen (-).

All words in the situation representations appear in their root forms. For example,

“be” covers all forms of “to be” such as “am”, “is”, and “are”. Similarly, “kill” covers all

variations of “to kill” such as “kills” and “killed”.

The following table shows some situation representations, along with examples that

illustrate how the situations might appear in actual sentences.
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Table A.1: Event Examples and Their Corresponding Sentences.

Situation Representation Sentences

(@speaker, feel, unappreciated, - )
(1) I am feeling very unappreciated and
very underpaid.
(2) I felt so ... unappreciated, overwhelmed
and overworked.
(3) But I just want to say, I feel so unappre-
ciated and all my efforts have gone to waste.

(@speaker, be, - , in disney world)
(1) The world looked so pretty and clean this
morning I started to think I was in Disney
World.
(2) I was in disney world a few years ago
and the person i went with looked up and
was shocked .
(3) I was in the famous Disney World in
Orlando Florida with My ex Tony and his
sister and brother in law.

(@speaker, be, sick, for time)
(1) But the point is I’m sick for the first time
in a while.
(2) When I was younger I was really sick for
a long time , and that changed everything
completely.
(3) My parents are freaked out about me be-
ing sick so for the first time since.

(@speaker, get, ticket, - )
(1) Then , driving a little too fast , I got a
speeding ticket .
(2) tonight im gonna go watch mummy3 cuz
i got free tickets from work .
(3) Bottom line , I got a free ticket from
United and was transfered to a Continental
flight .

(bus, be, comfortable, -)
(1) The bus was so comfortable .
(2) The bus was from RajHamsa Travels ,
and was comfortable enough for us to fall
asleep
(3) The Hagey Tour bus was very comfort-
able.
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A.2 Annotation Guidelines
Please assign one of these 4 labels to each situation: DESIRABLE, UNDESIRABLE,

MIXED, or NEUTRAL.

You will be asked to label each situation generally, in the absence of any specific context,

so please try to imagine how you would expect most people to feel when they experience

the situation. For example, people typically enjoy going to Disney World so that should be

labeled as a Desirable experience, even though of course there will always be exceptions

(i.e., a relatively smaller set of people may hate Disney World or have a bad experience

while there). No situation will be 100% Desirable, Undesirable, or Neutral. Please focus

on the most typical scenarios and use your best judgment as to whether you expect that

most people (say > 50%) would consider the situation to be Desirable, Undesirable, or

Neutral.

The definitions and guidance for each label are explained below.

• DESIRABLE: Use this label if most people would consider the situation to be desir-

able, enjoyable, pleasant, or beneficial. The speaker should generally be pleased if

the situation happens to him/her.

Following are some stereotypical desirable situation:

(@speaker, have, birthday party, - )
(@speaker, be, - , in disney world)
(bus, be, comfortable, - )
(@speaker, find, job, - )

• UNDESIRABLE: Use this label if most people would consider the situation to be

undesirable, unenjoyable, unpleasant, or detrimental. The speaker should generally

be displeased if the situation happens to him/her.

Following are some stereotypical undesirable situations:

(@speaker, be, sick, for time)
( car , injure, mom, - )
(bus, be, late, - )
(@speaker, lose, job, - )

• NEUTRAL: Use this label if most people would NOT consider the situation to be

desirable or undesirable. For example, many ordinary situations may be neither

beneficial nor objectionable.
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Following are some stereotypical neutral situations:

(@speaker, walk, - , towards it)
(@speaker, sit, - , - )
(@speaker, drive, - , - )

• MIX: Use this label if the situation is rarely neutral but will frequently be considered

Desirable by some people and Undesirable by other people. You should feel that

both views are common, and it is not clear to you which one is more dominant. For

example:

(@speaker, get, ticket, - )

You may imagine common Desirable contexts for this situation (e.g., getting tickets

to a concert or sports game) and common Undesirable contexts for this situation (e.g.,

getting a traffic ticket for speeding or an expired parking meter).

(@speaker, anticipate, snow, -)

You may imagine that some people are very excited about upcoming snowy weather

(e.g., skiers and snowboarders) while other people are worried about snowy weather

(e.g., people who have travel plans or who hate snow shoveling).



APPENDIX B

EXAMPLE EVENTS WITH AFFECTIVE

POLARITY ANNOTATIONS

Table B.1: Examples of Positive Events

(@speaker; trust to do; -; -) (@speaker’s mother; marry; him; -)
(cast; sing; -; -) (@speaker; kiss; her; -)
(@speaker’s apartment; be; clean; -) (@speakers; want to have; child; -)
(night; be; glad; -) (@speaker; get; gas money; -)
(-; focus; @speaker’s attention; -) (@speakers; get; girl; -)
(cell phone; have; reception; -) (day; be; magical; -)
(party; be; okay; -) (@speakers; spend; hour; at park)
(people; buy; home; -) (@speaker; get; haircut; -)
(boat ride; be; fun; -) (@speaker; love; challenge; -)
(@speakers; go; -; to stanley park) (@speaker; work out; -; -)
(@speaker; work out; 5 day a week; -) (@speaker’s heart; feel; happy; -)
(@speaker; kiss; his chest; -) (@speaker; kiss; neck; -)
(@speaker; accept; @speaker; -) (snow; be; bright; -)
(@speakers; win; game; by point) (@speakers; start to climb; mountain; -)
(@speaker; won; -; -) (@speakers; be; serious; about it)
(epidural; start to work; -; -) (walk; be; cool; -)
(lesson; be; good; -) (@speaker; vanquish; -; -)
(@speaker; want to congratulate; her; -) (@speaker; play; music; -)
(he; love; @speaker’s child; -) (@speaker’s mom; offer to help; -; -)
(@speaker; love; journey; -) (@speaker; be; foodie; -)
(the day; be; mild; -) (@speaker; get; compliment; -)
(@speaker; understand; -; in time) (thing; finish; -; -)
(@speaker; be; glad; for day) (@speaker; buy; lip gloss; -)
(@speaker; manage to escape; -; -) (@speakers; get; marry; -)
(@speaker; go; sex; -) (@speaker; have; your support; -)
(@speaker’s family; stay; -; with @speaker) (@speaker; be; proud; of work)
(one; benefit; -; -) (@speaker’s baby; turn; 4; -)
(-; attract; @speaker; to book) (@speaker; love; cuteness; -)
(@speaker; go to say; goodnight; -) (daddy; be; nice; -)
(@speaker; start; -; at @speaker’s new job) (@speaker; seem to accept; -; -)
(@speaker; have; mp3; -) (palace; be; amazing; -)
(@speaker’s birthday; be; amazing; -) (@speaker; have; choise; -)
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Table B.2: Examples of Negative Events

(parking; be; insane; -) (@speaker; be; busy; with @speaker’s homework)
(@speakers; be; bummed; -) (dog; pass away; -; -)
(life; be; dull; -) (@speaker; kneel; infront; -)
(@speaker; get; concussion; -) (@speaker; have to freeze; @speaker’s ass; -)
(@speaker; be; -; in cemetery) (@speaker; not be; good; with thing)
(song; not help; -; -) (patience; wear; thin; -)
(computer; be; slow; -) (@speaker; give; grief; -)
(@speakers; give; finger; -) (@speaker; drop; @speaker’s phone; in toilet)
(they; coerce; @speaker; -) (@speaker’s clock; be; wrong; -)
(@speaker; cheat; -; on one) (people; be; incapable; -)
(thunder; crash; -; -) (@speaker; avoid; @speaker’s blog; -)
(brake; stop to work; -; -) (people; fuck over; @speaker; -)
(couple; yell; -; -) (@speaker; not be; happy; at work)
(@speaker; be; scared; about it) (alice; force; @speaker; -)
(@speaker; come to crash; -; -) (bath; not help; -; -)
(thing; addicting; -; -) (@speaker’s face; look; pale; -)
(-; lose; @speakers; -) (@speaker; begin to hyperventilating; -; -)
(@speaker; dump; -; -) (word; forget; -; -)
(tear; pour; -; from eye) (-; stick; @speaker; at end)
(house phone; not work; -; -) (-; swamp; @speaker; with homework)
(@speaker; use to terrify; -; -) (@speaker; not learn; something; -)
(jerk; say; -; -) (@speaker; get; -; into arguement)
(sucker; be; big; -) (@speaker; not be; sure; of @speaker’s feeling)
(@speaker; clash; -; -) (@speaker; be; bitch; to everyone)
(@speaker; not eat; dinner; -) (@speaker; be; busy; in way)
(@speaker; have to wait; while; -) (boy; be; obsess; -)
(@speaker; feel; burden; -) (one; be; pushy; -)
(@speaker; be; unloved; -) (@speaker; crash; -; on your couch)
(engine; stop to run; -; -) (@speaker; mean; crazy; -)
(computer; be; dead; -) (-; catch; @speaker; in thunderstorm)
(@speaker; start to sniffle; -; -) (you; cut down; @speaker; -)
(@speaker; quarrel; -; -) (god; be; embarrassed; -)
(@speaker; need; toilet; -) (@speaker; start to blush; -; -)
(@speaker; be; druggy; -) (he; be; asshole; to @speaker)
(neku; frown; -; -) (@speaker; need; help; with one)
(@speaker; hear; horror story; -) (you; annoy; @speaker; -)
(dessert; be to die; -; -) (you; kill; @speaker; in @speaker’s sleep)
(ghost; play; -; -) (house; be; crowded; -)
(@speaker; refrain; -; -) (timing; be; difficult; -)
(time; sob; -; -) (foot; fall; -; -)
(@speakers; wait; -; for aaa) (-; reduce; @speaker; to mess)
(@speaker; tear; strip; -) (@speakers; be; low; on gas)
(-; turn off; @speaker’s water; -) (everything; mean; nothing; -)
(you; startle; @speaker; -) (@speaker’s contraction; be; long; -)
(@speakers; be; lower; -) (stomach; hurt; -; -)
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Table B.3: Examples of Neutral Events

(@speaker; send; synopsis; -) (truth; feel; -; -)
(horoscope; say; -; -) (@speaker; move out; -; for college)
(way; lay; -; -) (@speaker; get; call; on tuesday)
(@speakers; run; -; into hiker) (@speaker; wear; -; around @speaker’s neck)
(eye; look; -; -) (@speaker; have to drink; time; -)
(@speakers; hope to stay; -; -) (@speaker; try to learn; @speaker’s way; -)
(place; have; time; -) (-; rearrange; room; -)
(world; not do; -; -) (@speaker; not yell; -; at @speaker)
(@speaker; say; time; to him) (@speaker; walk; -; into store)
(@speaker; start to take; video; -) (@speaker; take; his wrist; -)
(@speaker; whole; -; -) (@speaker; skip; practice; -)
(trunk; be; open; -) (@speakers; see; color; -)
(home; change; -; -) (@speaker; have to take; @speaker’s dad; -)
(@speaker; stretch out; -; on couch) (@speakers; get; -; to grandparent house)
(@speaker; go out; way; -) (@speaker; decide to rent; car; -)
(@speakers; wen; -; -) (@speaker’s contraction; be; -; by time)
(@speaker; want; photo; -) (@speaker; have; meeting; in morning)
(work; include; -; -) (weather; call; -; for rain)
(@speakers; decide to buy; them; -) (@speakers; decide; -; on it)
(@speaker; categorize; -; -) (she; be; home; with @speaker)
(@speaker; walk; -; to entrance) (@speaker; flip; -; through them)
(@speaker; think; -; of post) (@speaker; not have; bra; -)
(@speaker; wake; dream; -) (@speaker; begin to reflect; -; -)
(@speakers; order; takeout; -) (@speaker; sit; -; through session)
(@speaker; get; 10 minute; -) (@speaker; not help; everyone; -)
(nip; be; -; in air) (@speaker; go; -; to os grid)
(@speaker; scribble; -; -) (@speakers; have to get; bed; -)
(@speaker; feel to tell; him; -) (@speaker; download; ringtone; -)
(@speaker; do to keep; her; -) (@speakers; have to spend; time; -)
(@speaker; have; -; in store) (@speaker; plan; it; -)
(@speakers; hurry on; -; -) (ride; slow down; -; -)
(lens don t; have; account; -) (@speaker; find to challenge; -; -)
(brother; stay; -; -) (-; build; it; for @speaker)
(@speaker; give; papers; -) (@speaker; edit out; -; -)
(voice; stop; -; -) (@speaker; run; -; into @speaker’s dad)
(@speakers; drive; -; on freeway) (type; say; -; -)
(@speaker’s cervix; be; open; -) (@speakers’ house; stand; -; -)
(@speaker; go to drag; it; -) (@speakers; see; cave; -)
(thought; be; much; for @speaker) (@speaker; go to pick; @speaker’s brother; -)
(@speakers; arrive; -; in germany) (@speakers; end up to watch; rest; -)
(@speaker; have to hang; phone; -) (tour bus; pull up; -; -)
(neon sign; say; -; -) (@speaker; hear; @speaker’s sister; -)
(@speaker; cought; -; -) (mommy; bring; @speaker; -)
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DERIVATION FOR THE SEMANTIC

CONSISTENCY GRAPH MODEL

C.1 Computing Update Equations for v and c
In the Semantic Consistency Graph (SCG) model, each event i is associated with a

polarity vector vi, which is a L-dimensional vector where L is the number of polarity labels

(i.e., positive, negative, and neutral).

Equation C.1 denotes the objective function of the SCG model, in which vi and ck are

the parameters to be optimized. Since the objective function is convex, I obtain the update

equations by computing the derivatives for these two variables and setting them to zero.

Details of the two update equations are describe below.
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n
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C.1.1 Update Equation for vt+1
i

In the SCG model, I first compute the update equation for vi. Given the vt and ct, the

objective function C.1 can be reformulated to the Equation C.2. The last two terms in C.1

are removed because they are not related to vt+1.

J(vt+1) = β
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Then, the partial derivative of the objective C.2 with respect to vt+1
i is computed as the

following equation.

∂

∂vt+1
i

J(vt+1) = β(log vt+1
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Finally, I compute the update equation for vt+1
i by setting the derivative to zero.

vt+1
i ∝ exp

1
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where Oi = β + ∑j W̃sim
ij + ∑j W̃opp

ij + γ ∑k W̃cmp
ik .

C.1.2 Update Equation for ct+1
k

Similarly, given vt+1, the original objective function C.1 is reformulated as the Equation

C.5.

J(ct+1) = γ ∑
(k,i)
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ki D(ct+1
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Given vt+1, the partial derivative of the objective function C.5 with respect to ct+1
k is

computed as the following equation.

∂
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J(ct+1) = γ ∑
i
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Finally, I compute the update equation for ct+1
k by setting the derivative to zero.

ct+1
k ∝ exp

η log c0
k + γ ∑i W̃cmp′

ki log vt+1
i

η + γ ∑i W̃cmp′
ki

(C.7)

C.2 Update Equations for the Component Graph
In Chapter 5, I also designed an independent graph (described in Section 5.2.3.5) for

improving component initialization. In this section, I present the derivation process to
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compute the update equation for component nodes in the component graph. The follow-

ing formula is the objective function for the component graph.

Jcmp = ∑
(i,j)

ŨijD(ci||cj) +
ml
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i=0

D(ci||cs
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∑
i=0

D(ci||c0
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in which m denotes the total number of component nodes, and ml denotes the total number

of components that are contained in the MPQA lexicon.

Given ct, the objective function can be reformulated as the following equation,
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where δ(i) = 1 if the component i is contained in the MPQA lexicon, otherwise δ(i) = 0.

Then, the partial derivative of the above objective function with respect to ct+1
i can be

computed as the following equation.
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Finally, the update equation for ct+1
i is computed as the following equation.

ct+1
i ∝ exp
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(C.11)



APPENDIX D

EXAMPLES OF AUTOMATICALLY LEARNED

AFFECTIVE EVENTS

Table D.1: Examples of Automatically Learned Positive Events with Confidence 0.5

(brand; be; best; -) (band; be; sweet; -)
(@speaker; enjoy; convention; -) (everything; be; ready; -)
(@speaker; dream; kind; -) (mountain; be; stunning; -)
(he; inspiring; @speaker; -) (@speaker; be; careful; in future)
(@speaker; stand to grin; -; -) (you; be; happy; for @speaker)
(conversation; be; awesome; -) (activity; be; good; -)
(@speaker; not look; pathetic; -) (weather; be; wonderful; -)
(procedure; be; successful; -) (@speaker; love; flickr; -)
(it; be; love; for @speaker) (@speaker; be; brilliant; -)
(strawberry; be; delicious; -) (@speaker; want to find; joy; -)
(@speaker; come; -; in peace) (garden; be; interesting; -)
(@speakers’ friend; come to visit; -; -) (@speaker; get to open; present; -)
(tech; be; nice; -) (@speaker; enjoy; diving; -)
(family; give; support; -) (@speakers; be; excellent; -)
(everyone; have; peace; -) (@speaker; be; grateful; for work)
(@speaker; like; table; -) (honesty; make; -; -)
(view; be; astounding; -) (@speakers; have; spending time; -)
(@speaker; love; he; with day) (technique; be; simple; -)
(@speaker; like; other; -) (@speaker’s new job; be; good; -)
(he; claim to love; @speaker; -) (night; be; dance; -)
(bit; be; worth; -) (christmas; be; perfect; -)
(flower; live; -; -) (@speakers; take; adventure; -)
(@speaker; love to keep; she; -) (@speaker; love to leave; -; -)
(time; be; good; for @speaker) (@speaker; hug; -; for time)
(@speaker; love; penguin; -) (he; pull; @speaker; into kiss)
(@speaker; enjoy; round; -) (@speaker; like; his hair; -)
(@speaker; thank; father; -) (@speaker; love; sound; -)
(t; be; nice; -) (@speaker; like; opera; -)
(@speaker; enjoy; fire; -) (impressive; know; -; -)
(book; be; amazing; -) (comfort; be; something; -)
(@speaker; forgiving; -; -) (god; help out; @speaker; -)
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Table D.2: Examples of Automatically Learned Negative Events with Confidence 0.5

(@speaker; smell; trouble; -) (one; become; sick; -)
(thing; fall; -; through crack) (@speaker; empty; it; -)
(air conditioner; break; -; -) (@speaker; bruise up; -; -)
(@speaker’s head; fall off; -; -) (@speaker; be; absurd; -)
(@speaker; feel; stuck; -) (he; blow; @speaker’s mind; -)
(@speaker; itch to know; -; -) (hallway; be; empty; -)
(@speakers; feel; powerless; -) (@speaker; have; blister; on @speaker’s heel)
(one; seem to bother; -; -) (-; freak out; @speaker; at time)
(@speaker; go to cut; you; -) (smile; not go; -; -)
(school; be; hard; -) (it; not satisfy; @speaker; -)
(-; chastise; @speaker; -) (@speaker’s uncle; be; dead; -)
(two; fall; asleep; -) (-; go; virus; -)
(@speaker; feel; weak; at knee) (@speaker; fight; man; -)
(@speaker; lose; 2lb; -) (-; murder; family; -)
(damage; result; -; -) (@speaker; find to puzzling; -; -)
(@speaker; waste; day; -) (@speakers; have; tragedy; -)
(@speaker; be; sarcastic; -) (@speaker; suffer; -; from anxiety)
(@speaker; feel; bad; for dog) (@speaker’s mind; shut off; -; -)
(battle; go on; -; -) (@speaker; try to talk; @speaker’s way; -)
(@speaker; fight; he; -) (im; gon to die; -; -)
(@speakers’ brain; hurt; -; -) (battle; be; battle; -)
(problem; take; place; -) (@speaker; kick; cat; -)
(car; start to slow; -; -) (@speaker; be; -; like ugh)
(thing; keep to try; -; -) (@speaker; not want to embarrass; she; -)
(-; confuse; @speaker’s mind; -) (@speaker; not recommend; place; -)
(-; challenge; one; -) (@speaker; intimidate; people; -)
(people; kill; animal; -) (step; hurt; -; -)
(guess; be; wrong; -) (@speaker; mess around; -; with them)
(@speaker; end up to kill; them; -) (@speaker; miss; son; -)
(idea; be; laughable; -) (@speaker; not appreciate; him; -)
(@speaker; happen to disagree; -; -) (@speakers; slow; -; to crawl)
(chest; hurt; -; -) (@speaker; keep to hurt; people; -)
(-; steal; @speaker’s computer; -) (@speaker’s entire body; feel; -; -)
(-; punish; people; -) (this weekend; be; hard; -)
(@speaker; livid; -; -) (water; be; filthy; -)
(@speaker; frickin; -; -) (moan; seem to come; -; -)
(@speaker; roar; -; with laughter) (@speaker; resent; @speaker; -)
(@speaker; try to scream; time; -) (it; be; @speaker’s ass; -)
(@speakers; be; unlikely; -) (reason; be; fault; -)
(@speaker; lose; direction; -) (what; mean; -; -)
(@speaker; keep to lose; weight; -) (rsquo; feel; bad; -)
(plot; be; similar; -) (@speaker; not dare to let; -; -)
(@speaker; fall; -; on her bed) (pier; be; empty; -)
(@speaker; poke; hole; in it) (@speaker; die; -; of heat exhaustion)
(ride; be; cramped; -) (hell; be; -; in place)
(one; give; rat ass; -) (@speaker; split; they; -)
(@speaker; need; knife; -) (@speaker; fail to remember; -; -)
(work; not be; fun; -) (@speaker’s mouth; feel; -; -)
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HUMAN NEEDS ANNOTATION GUIDELINES

Affective events are events that typically affect people in positive or negative ways.

For this annotation task, we want to know the reason why an event affects someone

positively or negatively. You will be given a series of events paired with their affective

polarity (Positive or Negative). For example: 〈I, go, , to Disneyland〉 → Positive. For each

event, please determine which of the categories below best explains the reason why the

event is Positive or Negative for most people. Use the following statement as a guideline:

The event is Positive because this type of goal has been achieved.
OR
The event is Negative because this type of goal has not been achieved.

In some cases, more than one type of goal may apply. Please choose the one that is the

most relevant reason to explain the polarity. For example, consider 〈 , kidnap, me, 〉 →

Negative. A kidnapping event is Negative with respect to both Physical Safety (category

B) and Freedom of Movement (Category G). But for most people, the Physical Safety issue

is of greater concern that the Freedom of Movement issue, so this event should be put into

Category B. (Please note that in my original guideline, I used the term “Goals”. Later I

changed to “Human Needs” which is more appreciate for this research.)

A. PHYSIOLOGICAL GOALS

(1) The goal to be able to breathe pleasant or beneficial air, and to avoid unpleasant

air.

(2) The goal to avoid hunger, to avoid unpleasant food, and to eat or obtain pleasing

food.

(3) The goal to avoid thirst, to avoid unpleasant beverages, and to drink or obtain
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pleasing beverages.

(4) The goal to sleep, regularly and comfortably.

(5) The goal to maintain warmth of the human body, to not be too hot or too cold.

(6) The goal to have or obtain shelter (i.e. a place to live or stay) and to avoid unpleas-

ant shelters.

Examples:

〈I, not eat, , for days, 〉 → Negative is negative because the goal of avoiding hunger

is not achieved.

〈I, wake up, , at 2am〉 → Negative is negative because the speaker failed to achieve

the goal of having enough sleep or sleeping soundly.

〈I, eat, cake, 〉 → Positive is positive because the goal of having enjoyable food is

achieved.

〈I, buy, house, 〉 → Positive is positive because the goal of owning a shelter is

achieved.

B. PHYSICAL HEALTH AND PHYSICAL SAFETY GOALS

(1) The goal to be physically healthy and safe. Affective events in this category could

be related to heath problems, body injuries, exercise etc.

Examples:

〈my head, hurt, , 〉 →Negative is negative because the goal of being physical healthy

is failed.

〈I, do, yoga, 〉 → Positive is positive because a goal of yoga is to improve one’s

health.

〈 I, hear, intruder, 〉 → Negative is negative because the the speaker is probably

concerned about their physical safety.

C. LEISURE AND AESTHETIC GOALS

(1) The goal to have entertaining (fun) activities, to avoid the lack of fun or entertain-

ing activities.
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(2) The goal to have leisure, to avoid too much work because it detracts from leisure

time.

(3) The goal to have an enjoyable, pleasant environment

(4) The goal to pursue and appreciate the beauty of nature, art, music and other aes-

thetically beautiful things.

Examples:

〈I, play, computer game, 〉 → Positive is positive because it describes a fun activity.

〈I, clean, bathroom, 〉 →Negative is negative because it is typically unenjoyable and

detracts from leisure time.

〈room, be, noisy, 〉 → Negative is negative because the environment is undesirable.

〈I, see, rainbow, 〉 → Positive is positive because the goal to pursue/appreciate

beauty is achieved.

D. SOCIAL RELATIONS, FAMILY, FRIENDS, SELF-WORTH AND SELF-ESTEEM

GOALS

(1) The goal to have family, to have close family relations, to avoid damaging family

relations.

(2) The goal to have friendships.

(3) The goal to maintain pleasant social relations with others, to avoid conflicts and

arguments.

(4) The goal to maintain socially and culturally acceptable behavior.

(5) The goal to realize and improve one’s self-worth, to be recognized by others.

(6) The goal to maintain and improve self-esteem or dignity.

NOTE: if the event describes that emotions/sentiments or opinions are directed to

the experiencer or others, then it belongs to this category.

Examples:

〈my mom, visit, me, 〉 → Positive is positive because a family relationship is being

maintained.

〈I, begin to miss, home, 〉 →Negative is negative because the goal to be with family
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is not satisfied.

〈I, have, friend, 〉 → Positive is positive because the friendship goal is achieved.

〈nobody, talk, , to me〉 → Negative is negative because social relations with others

are not good.

〈they, mock, me, 〉 →Negative is negative because the speaker’s self-esteem/dignity

is hurt.

〈 , direct, anger, at me〉 is negative because bad emotion is directed at me.

E. FINANCES, POSSESSIONS AND JOB SECURITY GOALS

(1) The goal to obtain and protect financial income.

(2) The goal to acquire possessions and maintain good condition of one’s possessions.

NOTE: if the possession is more directly related to another type of goal (e.g. food),

select that category instead of this one.

(3) The goal to have a job and satisfying work.

Examples:

〈I, get, money, 〉 → Positive is positive because the goal to have financial income is

achieved.

〈I, buy, computer, 〉 → Positive is positive because the goal to obtain useful tools is

achieved.

〈I, lose, my wallet, 〉 → Negative is negative because the goal to protect possessions

is failed.

〈I, get fired, , 〉 → Negative is negative because the goal to have a job and work well

has failed.

F. COGNITION AND EDUCATION GOALS

(1) The goal to obtain skills, information, and knowledge, to improve one’s intelli-

gence.

(2) The goal to remember and mentally process information correctly.

Examples:
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〈I, learn to mow, lawn, 〉 → Positive is positive because the speaker learned a skill.

〈I, graduate, , 〉 → Positive is positive because the goal to acquire knowledge is

achieved.

〈I, forget, , 〉 →Negative is negative because the speaker did not process information

successfully.

G. FREEDOM OF MOVEMENT AND ACCESSIBILITY GOALS

(1) The goal to move freely.

(2) The goal to access things or services in a timely manner.

Examples:

〈I, wait, , for 5 hours 〉 → Negative is negative because the goal to access something

in a timely manner is not achieved.

〈 , trap, me, in car〉 → Negative is negative because the goal to move freely is not

satisfied.

H. MENTAL STATES, EMOTIONS, or OPINIONS

Use this category label if the event DOES NOT belong to previous categories, and

meets one of the following rules.

(1) The event directly describes experiencers’ sentiments, emotions, feelings, or phys-

ical expressions of emotions.

(2) The event expresses some opinions about some objects.

Examples:

〈I, be, happy, 〉 → Positive because speaker’s internal emotion state is positive.

〈I, be, mean, 〉 → Negative because it describes a negative internal mental state.

〈 Spanish, be, good, 〉 → Positive because it describes a positive opinion.

IMPORTANT: if an event both expresses a sentiment/emotion and is also related to

previous Goal classes, please use the Goal category label. For example, 〈I, like, cake, 〉

belongs to the Physiological category.

I. NONE OF ABOVE



144

Please use this category if:

(1) An event or situation is too general or abstract to be assigned to any of the other

categories.

(2) The reason why the event is Positive or Negative falls into a different category

than the ones listed previously.

Examples:

〈I, have, problem, 〉 → Negative is negative, but we do not know the specific reason

why.

〈I, get, mistake, 〉 → Negative is negative, but we do not know what the mistake is.
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