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Abstract

Prior research has recognized the need to asso-
ciate affective polarities with events and has
produced several techniques and lexical re-
sources for identifying affective events. Our re-
search introduces new classification models to
assign affective polarity to event phrases. First,
we present a BERT-based model for affective
event classification and show that the classi-
fier achieves substantially better performance
than a large affective event knowledge base.
Second, we present a discourse-enhanced self-
training method that iteratively improves the
classifier with unlabeled data. The key idea is
to exploit event phrases that occur with a coref-
erent sentiment expression. The discourse-
enhanced self-training algorithm iteratively la-
bels new event phrases based on both the
classifier’s predictions and the polarities of
the event’s coreferent sentiment expressions.
Our results show that discourse-enhanced self-
training further improves both recall and preci-
sion for affective event classification.

1 Introduction

In recent years, researchers have been tackling the
problem of identifying affective events, which are
events that have a positive or negative effect on peo-
ple who experience the event. For example, events
that are typically positive include being hired for
a new job, breaking a sports record, or buying a
home. Conversely, events that are typically neg-
ative include being fired from a job, breaking an
arm, or having your house burn down. People’s
world knowledge about events and how they im-
pact people is sufficient for humans to infer the
affective state of someone who experiences such
an event, even if that person does not explicitly
express an emotion. Consequently, we will refer to
these events as having positive or negative polarity
with respect to an implicit affective state. Research

has shown that recognizing affective events is im-
portant for a variety of natural language processing
tasks, including narrative text comprehension and
summarization (Lehnert, 1981; Goyal et al., 2013),
dialogue systems (André et al., 2004), response
generation (Ritter et al., 2011), and sarcasm detec-
tion (Riloff et al., 2013).

Much of the prior work on recognizing affective
events has focused on producing lexical resources
of verbs or event phrases with corresponding af-
fective polarity values (Goyal et al., 2010, 2013;
Rashkin et al., 2016; Ding and Riloff, 2016, 2018).
These resources reflect substantial progress toward
recognizing affective events in text, but their cover-
age is limited by their fixed content. We hypothe-
sized that deep learning architectures that encode
rich meaning representations could lead to a more
effective approach for identifying affective events.
Specifically, neural classification models have the
capacity to generalize across lexically and syntacti-
cally different phrases that are semantically similar,
and similar events are usually associated with the
same affective polarity. To explore this approach,
we created a BERT-based model for affective event
classification and show that it recognizes affective
events more effectively than a large affective event
knowledge base.

Our research also introduces a discourse-
enhanced self-training method that further im-
proves affective event classification with unlabeled
data. Self-training is a well-known method for
using a classifier’s own predictions on unlabeled
instances to generate more training data. However,
self-training has limitations. Using the most confi-
dent labels may not improve recall much because
the new training instances are familiar, while us-
ing less confident labels often decreases precision
because the training data becomes more noisy. To
overcome these issues, we designed a discourse-
enhanced self-training method that combines the



classifier’s predictions with information from local
discourse contexts to robustly assign labels to new
training instances.

The key to this approach is to exploit unlabeled
event phrases that occur near coreferent sentiment
expressions. Specifically, we extract event phrases
that are followed by a sentiment expression in a
syntactic structure that suggests it likely refers to
the event. For example, consider the statement “I
got engaged today. It is exciting.”. “It” refers to the
act of getting engaged, so the positive sentiment
applies to that event. Our algorithm then predicts
the affective polarity for unlabeled events using
both the classifier’s prediction for the event phrase
as well as the associated sentiment expressions.
We show that our discourse-enhanced self-training
method improves both recall and precision for af-
fective event classification.

2 Related Work

Several lines of research have focused on the prob-
lem of recognizing events that have implicit af-
fective states. Research on narrative understand-
ing used bootstrapped learning to identify patient
polarity verbs, which impart affective polarity to
their patients (Goyal et al., 2010, 2013). Vu et al.
(2014) extracted “emotion-provoking events” us-
ing the seed pattern “I am < EMOTION > that <
EVENT >, pattern expansion, and clustering. Reed
et al. (2017) learned lexico-syntactic patterns asso-
ciated with first-person affect to improve affective
sentence classification alongside supervised learn-
ers. Li et al. (2014) extracted “major life events”
from Twitter by clustering tweets that occurred
with speech act words, such as “congratulations”
or “condolences”. But their work did not assign
affective polarity to events, and focused only on
major life events that prompt expressive speech
acts. Our work has a broader scope, aiming to rec-
ognize everyday events as well (e.g., being hungry
is negative, and seeing a rainbow is positive).

Work in opinion analysis created a +/-
EffectWordNet (Choi and Wiebe, 2014) to rec-
ognize the effects of events on entities, although
the effects are not necessarily “affective” because
the entities need not be animate (e.g., baking a
cake has a positive effect on the cake because it
is created). Subsequent work developed implica-
ture rules to use +/- effects for opinion analysis
(Deng and Wiebe, 2014, 2015). There has also been
work on recognizing the connotation of words and

senses (Kang et al., 2014) and connotation frames
(Rashkin et al., 2016), which infer connotative po-
larities for a verb’s arguments from the writer’s
and entity’s perspective. These efforts associated
polarity with individual verbs, not event phrases.

Saito et al. (2019) used discourse relations to
propagate affective polarity from seeds using a
Japanese web corpus. They extracted events that
co-occur with seeds in a large corpus, then used
discourse relations as constraints in the learning
process. Another line of related work is Emotion
Cause Extraction, which links emotion expressions
to the events that caused the emotion (Gui et al.,
2016, 2017; Chen et al., 2018; Li et al., 2018; Xia
and Ding, 2019). This research uses datasets cre-
ated from Chinese news and microblogs that con-
tain an explicitly mentioned emotion. This work
assigns polarity to events in the context of a specific
text passage. In contrast, our work aims to identify
the prior affective polarity of an event, irrespec-
tive of context. Consequently, our classifier can be
used to predict the affective polarity of events in
contexts that do not contain any explicit emotion
or sentiment indicators.

Our research is most closely related to the work
by (Ding and Riloff, 2016, 2018), which identifies
stereotypically affective events and their prior po-
larity, irrespective of context. The Affective Event
Knowledge Base (AEKB) produced by (Ding and
Riloff, 2018) contains over half a million event
phrases coupled with polarity labels. These events
were extracted from nearly 1.4 million personal
blog posts in the ICWSM 2009 and 2011 Spinn3r
datasets1. The polarity labels were generated auto-
matically using a weakly supervised method. Their
approach optimizes for semantic consistency over
a graph of event nodes that are linked by edges
capturing three types of semantic relations.

Our discourse-enhanced self-training algorithm
adds a new twist to traditional self-training methods
(Mihalcea, 2004; Kehler et al., 2004; McClosky
et al., 2006). The approach is also reminiscent
of co-training (Blum and Mitchell, 1998), which
trains two classifiers based on independent views
of the data. However in co-training, each classifier
must be able to make reliable predictions on its
own. We do not expect the coreferent sentiment
expressions used by our approach to be sufficient
by themselves because they are quite noisy (e.g.,
due to imperfect coreference, imperfect sentiment

1http://www.icwsm.org/data/



Method F1
POS NEG NEU

Pre Rec Pre Rec Pre Rec
Blogs 71.4 75.7 55.1 70.4 63.3 79.3 88.5
Twitter-found 65.2 72.2 40.6 78.7 60.8 65.6 87.9
Twitter-all 50.8 72.2 26.2 78.7 37.1 65.6 61.8

Table 1: Performance of AEKB across data sets.

labels, and issues like sarcasm). The strength of
our method is that this signal can serve alongside
the main classifier to produce a diverse new set of
high-quality labels.

3 Creating Affective Event Classifiers

3.1 Motivation

Ding and Riloff (2018) created an Affective
Event Knowledge Base (AEKB) that contains over
571,000 English event phrases labeled with affec-
tive polarity (positive, negative, or neutral). The
AEKB was automatically generated from a corpus
of personal blogs and is currently the largest re-
source of event phrases with polarity labels for the
English language. We were curious to understand
how effective the AEKB is at recognizing affective
events in new texts. Twitter is another form of so-
cial media where we expect to find many affective
expressions, so we created a new data set for af-
fective event recognition in tweets to evaluate the
generality of the AEKB and our new classifiers.

We produced a new dataset for affective events
that contains 1,500 event phrases extracted from
Twitter paired with manually assigned polarity la-
bels. Section 4 describes the data creation process
and gold standard annotation effort in detail. We
represented events using a 4-tuple similar to the
event representation in the AEKB: 〈Agent, Pred-
icate, Theme, Prepositional Phrase (PP)〉.2 We
then evaluated the coverage and accuracy of the
AEKB on our Twitter data. Every Twitter event
was matched against the AEKB and, if a match
was found, the polarity found in the AEKB was
assigned to the event. Table 1 shows the results as
a macro-averaged F1 score, alongside recall and
precision for each of the three polarities: positive
(POS), negative (NEG), and neutral (NEU).

The first row (Blogs) shows the results originally
reported in (Ding and Riloff, 2018) for events ex-
tracted from blog posts, for comparison. Of the
1, 500 Twitter events, only 997 events (66%) were
found in the AEKB. The second row of Table 1

2The main difference is that we also allowed adjectival
modifiers in noun phrases.

(Twitter-found) shows results for these 997 events.
The overall performance is fairly similar across
Twitter and blogs, except that recall for positive po-
larity is substantially lower. The lower precision for
neutral polarity suggests that many positive Twitter
events are labeled as neutral in the AEKB.

Another issue is that one third (34%) of the Twit-
ter events were not found in the AEKB at all. The
third row of Table 1 (Twitter-all) shows the results
across all 1, 500 Twitter events, where the missing
events are left unlabeled. Overall, only 37% of
the negative events and 26% of the positive events
could be recognized by the AEKB.

These results show that despite its large size,
the AEKB cannot recognize many affective events
for two reasons: (1) the AEKB’s precision is not
perfect, so some positive and negative events are
labeled as neutral, and (2) many affective events are
not present in the knowledge base. Our research
addresses these limitations by exploring whether
classification models can achieve better coverage
and accuracy by generalizing across events.

3.2 A BERT-based Affective Event Classifier
Our goal is to design a classifier that can label
an event tuple with affective polarity. Represen-
tations produced by the transformer-based BERT
model (Devlin et al., 2019) have achieved state-of-
the-art performance across a variety of NLP tasks,
so we used the pre-trained BERTBASE as the basis
for our classifier and performed fine-tuning during
the training.

The input is the sequence of tokens that com-
prise an event tuple. For example, 〈I, ride, bike, -〉
is converted into the sequence “I ride bike”. We
use the uncased version of the BERT base model
as our encoder. We use the 768-dimension output
embedding of the special token [CLS], and pass the
output vector of the special token [CLS] to a fully
connected layer with softmax to produce a prob-
ability distribution over the three polarity classes.
Each input event is then assigned the polarity with
the highest probability value. We will refer to this
model as Aff-BERT.

3.3 Experimental Results for Blogs Data
Baselines We developed two baselines to com-
pare with Aff-BERT. The first model is a 1-layer
LSTM. We first use ELMo (Peters et al., 2018) to
encode an event sequence and feed the last layer
of ELMo’s outputs into the LSTM. The LSTM
outputs a polarity distribution for the event. The



Method F1
POS NEG NEU

Pre Rec Pre Rec Pre Rec
AEKB 71.4 75.7 55.1 70.4 63.3 79.3 88.5
Aff-BERT(AEKB) 73.6 73.2 56.6 75.6 69.5 80.9 88.5
ELMo+Linear(Gold) 62.3 56.0 53.7 56.2 51.3 78.2 81.4
ELMo+LSTM(Gold) 70.5 71.4 60.8 70.8 57.3 81.3 88.5
Aff-BERT(Gold) 77.4 71.7 66.2 78.2 77.2 85.0 87.4

Table 2: Performance on the blogs test set.

second baseline is a linear classifier, which takes
as input the average of the last layer of ELMo’s
outputs and produces a polarity distribution.

The LSTM has a hidden size of 512 and a
dropout rate of 0.2. The learning rate is 0.01 for
the LSTM, 0.1 for the linear classifier, and 1e-5 for
Aff-BERT. We train all models for 5 epochs with a
batch size of 50 and a linear warmup rate of 10%
using AdamW optimizer.

Experiments Our first set of experiments evalu-
ates Aff-BERT on the same blogs data that Ding
and Riloff (2018) used to evaluate their AEKB. The
validation and test data sets contain 490 and 1,000
manually annotated events, respectively.

The first row of Table 2 shows the results origi-
nally reported by (Ding and Riloff, 2018) for com-
parison. The second row shows the results when
training Aff-BERT with the events that have po-
larity labels with predicted scores ≥ 0.6 in the
AEKB.3 It shows that Aff-BERT trained with the
AEKB data performs better than the AEKB itself.
The substantial recall gain for negative events is
likely due to the generalization power of BERT’s
representations.

Next, we experimented with learning from gold
labeled data by performing 10-fold cross-validation
on the blogs test data. The third, fourth, and fifth
rows of Table 2 show the results for the linear clas-
sifier, LSTM and Aff-BERT, respectively, trained
with gold data. While the linear classifier and the
LSTM do not perform as well as the AEKB, Aff-
BERT trained on gold labeled data performs sub-
stantially better than both the AEKB and Aff-BERT
trained on the AEKB. This shows that fine-tuning
BERT on a relatively small amount of gold labeled
data produces a strong affective event classifier,
with respect to both recall and precision.

The strength of this model led us to wonder
whether classification performance could be further
improved by self-training with unlabeled data. As
we will describe in Section 5, standard self-training

3We tried score thresholds from 0 to 1 with the increment
of 0.1, and 0.6 gave the best result.

produced only a small improvement, but we de-
veloped a new discourse-enhanced self-training al-
gorithm that achieved bigger performance gains.
In the next section, we describe how we collected
events with coreferent sentiment expressions for
the discourse-enhanced self-training algorithm.

4 Harvesting Events with Coreferent
Sentiment Expressions

The key idea behind our approach is to create a
self-training method that uses not only the classi-
fier’s own predictions but also a secondary source
of information derived from local discourse con-
texts. Intuitively, the secondary signal confirms the
classifier’s prediction when they agree, or creates
doubt about the classifier’s prediction when they
disagree. By taking both signals into account, we
can assign high-quality labels to a diverse set of
new examples in each cycle, which creates a robust
self-training process.

From this point on, we turn our attention to Twit-
ter because it is a vast resource that we can query
to acquire a large set of event phrases in specific
contexts, and where people share their everyday
experiences. We acquire our unlabeled data by
searching for event phrases on Twitter that occur
with coreferent sentiment expressions. We use a
heuristic to identify sentiment expressions that are
likely to refer to an event in the preceding sentence.
Specifically, we look for sentiment expressions that
begin a sentence and match one of the following
forms:
(a) {this/that/it/I}, {be/feel/seem}, {ADJ+}
(b) {this/that/it}, {be/feel/seem}, {ADJ* N+}
where the head adjective (ADJ) or head noun (N)
is a sentiment term with positive or negative polar-
ity. The sentiment expression cannot be followed
by any events in its sentence and must follow a
sentence that contains at least one event. Given
these restrictions, the pronouns “this’, “that”, and
“it” are likely referring to an event in the previous
sentence, although this is not guaranteed. Similarly,
the pronoun “I” is referring to the speaker who is
likely expressing their sentiment toward something
that was just mentioned, which is often (though not
always) the prior event. We will call the phrases
that match these patterns coreferent sentiment ex-
pressions because they express a sentiment that
refers back to something mentioned earlier.

We found that the syntactic constructions above
typically convey a sentiment about an event in the



Tweet1: I rode a horse today! That was fun.
〈I, ride, horse, -〉

Tweet2: Someone was abducted on the street right
next to mine. It’s terrifying.

〈-, abduct, someone, on street〉

Tweet3: Disrupting my daily routine and alienating
many people. I am angry !

〈-, disrupt, my daily routine, -〉
〈-, alienate, people, -, -〉

Table 3: Examples of harvested tweets and extracted
events.

prior sentence, but this heuristic is not perfect. For
example, the sentiment sometimes applies to an
object in the prior sentence and not an action (e.g.,

“I bought a book. It is excellent” describes an excel-
lent book and not an excellent buying experience).
Nevertheless, the self-training algorithm will use
this data in the aggregate, so some noise can be
tolerated. In the following sections, we describe
each step of the Twitter data harvesting process.

4.1 Creating Sentiment Queries
We create an initial set of sentiment queries
for Twitter by instantiating the syntactic patterns
shown earlier with 3,010 subjective adjectives and
2,023 nouns from the MPQA lexicon (Wilson et al.,
2005). We also use the 1,147 words labeled with
“anypos” in MPQA as an adjective and a noun to in-
stantiate the patterns. For example, given the adjec-
tive “good”, we exhaustively generate all phrases
that match the regular expression: “{that/this/it/I}
{be/feel/seem} good”, such as “That is good” and

“I feel good”.
We then download tweets that contain these

phrases. If the context around the sentiment ex-
pression satisfies the constraints mentioned earlier,
then we extract the events in the previous sentence
as affective event candidates. Table 3 shows three
tweets that were retrieved with queries for the sen-
timent expressions in italics along with the events
extracted from each tweet in boldface.

4.2 Creating Event Queries
Next we can use the extracted events to harvest
more tweets with coreferent sentiment expressions.

Searching for phrases that match an event is not
trivial. The Twitter API only supports exact phrase
matching but an event is represented as a tuple
(<Agent, Predicate, Theme, PP>). Furthermore,

the components in an event tuple contain lemma-
tized head words. We want to construct queries that
will retrieve phrases containing morphological vari-
ations (e.g., “drove” for the lemma “drive”) as well
as modifiers preceding heads (e.g., “a fancy car”
instead of just “car”). To circumvent this problem,
we generate text spans for each event tuple from
the original tweets that it was extracted from. The
text span contains all words between the leftmost
word and the rightmost word of the tuple. Then we
apply the PrefixSpan algorithm (Saraf et al., 2015)
to compute the frequency of all subsequences of
words. For each event tuple, we create queries from
the 20 most frequent subsequences that contain all
words in the event tuple. For example, <he, drive,
car> might yield queries such as “he drove a fancy
car”, “he has driven my car”, etc.

After we retrieve tweets that match an event
query, we apply the same constraints as before
but in reverse: the sentence that mentions the event
must be followed by a coreferent sentiment expres-
sion matching our patterns. In this step, we assume
that unknown terms in the ADJ or N position of
the patterns are sentiment-bearing, allowing us to
identify new sentiment expressions. We found this
heuristic to be quite good and produced some in-
teresting affective terms that are not in the MPQA
lexicon. For example, the new negative terms in-
clude “cyberbullying”, “yucky” and “gutless”, and
the new positive terms include “record-breaking”,

“reassuring” and “heart-warming”.

4.3 Iteratively Harvesting Events

The first step of data harvesting creates sentiment
queries from the MPQA lexicon and extracts new
event phrases. The second step of data harvesting
creates event queries and extracts new sentiment
phrases. Given these building blocks, we create
a cycle that alternates these steps, iteratively har-
vesting new events with associated sentiment ex-
pressions. In each iteration, we form queries for
sentiment or event phrases that have frequency ≥ 5
and have not been used as queries previously. We
download 5,000 tweets for each event query and
1,000 tweets for sentiment expression query.4 Fi-
nally, we discard retweets and duplicated tweets5.
To be consistent with the criteria used for affective

4Many tweets collected by event queries contain no coref-
erent sentiment expression, so we downloaded more tweets
for event queries to increase the number of matched instances.

5A tweet is duplicated if it shares 6 or more consecutive
words with another tweet.



events in the AEKB by (Ding and Riloff, 2018),
we also discarded events that did not contain a first-
person reference or a family member term.6

We ran the harvesting process over Twitter for 4
iterations, after which few new events were found.
The final dataset contains 2,068,600 unique event
tuples and 15,494 unique sentiment expressions.

4.4 Gold Dataset Creation

We created a gold standard dataset for affective
events from Twitter (Twitter Dataset) by having
two human annotators label 1,500 randomly se-
lected events of frequency ≥ 5. Each event was
labeled as positive, negative, or neutral using the
same criteria defined by (Ding and Riloff, 2018)
for the AEKB. The pairwise inter-annotator agree-
ment using Cohen’s kappa was .75. The two an-
notators then adjudicated their disagreements to
produce the final set of gold labels. The final
dataset contains 435 (29%) positive, 348 (23%)
negative and 717 (48%) neutral events. This new
evaluation dataset and the collection of the unla-
beled harvested events are publicly available at
https://www.cs.utah.edu/˜yyzhuang/.

5 Discourse-enhanced Self-training

We designed an enhanced self-training algorithm
that learns from unlabeled data by iteratively label-
ing new instances using both the affective event
classifier’s prediction as well as polarities associ-
ated with the event’s discourse contexts. We will
refer to this method as Discourse-enhanced Self-
training. The intuition is that (1) new instances are
labeled only if both sources of information agree,
which yields high-quality labels, and (2) a more di-
verse set of instances will be labeled than if only the
classifier’s most confident predictions were used.

Figure 1 illustrates how an unlabeled event is
scored during Discourse-enhanced Self-training.
Each event is paired with the set of coreferent senti-
ment expressions that occurred with it in our Twit-
ter dataset. The affective event classifier is applied
to the event and generates a probability distribution
over the three polarity values. In parallel, an ex-
ternal sentiment classifier produces a probability
distribution over the polarity classes for each of
the coreferent sentiment expressions. The proba-
bility distributions are then averaged to produce

6(Ding and Riloff, 2018) also discarded events that only
mentioned other people, but we did not apply this restriction
due to the difficulty of recognizing people terms in tweets.

Figure 1: Illustration of Discourse-enhanced Scoring

an average probability distribution for the set of
sentiment expressions as a whole. Finally, a joint
scoring function takes the two probability distribu-
tions and produces a joint probability distribution
for the event. The polarity with the highest proba-
bility is used as the event’s label.

Algorithm 1 outlines our Discourse-enhanced
Self-training procedure in detail. The process be-
gins with a gold labeled set of events EL, a set of
unlabeled events EU where each event ei in EU

is paired with a set of coreferent sentiment expres-
sions CSEi, an external sentiment classifier, and
two confidence thresholds θjnt and θneu. Each iter-
ation starts by training the event classifier on EL.
The event classifier is then applied to every unla-
beled event ei in EU to produce an event score
vector sei . Next, the sentiment classifier is applied
to every coreferent sentiment expression cse in
CSEi to produce a polarity distribution. Then the
polarity distributions of all cse in CSEi are aver-
aged to produce an average polarity distribution
s̄CSEi for the whole set CSEi. The joint scoring
function then produces a joint score vector sjnti
for the event ei by the equation below:

sjnti =
sei � s̄CSEi

sei · s̄CSEi

, (1)

where � denotes element-wise multiplication and ·
denotes dot product. Conceptually the joint scoring
function gives equal weight to the event classifier

https://www.cs.utah.edu/~yyzhuang/


Algorithm 1: Discourse-enhanced Self-training
Input: Labeled events EL, Unlabeled events EU where

each event ei has an associated set of coreferent
sentiment expressions CSEi, an external
Sentiment Classifier, and thresholds θjnt and
θneu

1 while EU is not empty and not maximum iteration do
2 Train the Event Classifier over EL

3 For each ei ε EU , apply the Event Classifier to get
an event score

4 For each ei ε EU , apply the Sentiment Classifier to
each cse ε CSEi and compute the average cse
sentiment score

5 Compute the joint score for each ei ε EU by Eqn. 1
6 Label new events (Ejnt) based on the joint scores

and θjnt

7 Label additional neutral events (Eneu) based on the
event scores and θneu

8 Update EL and EU :
EL = EL ∪ Ejnt ∪ Eneu

EU = EU − Ejnt − Eneu

9 end

and the sentiment classifier in the final decision
of the label. Finally, each event ei is assigned the
polarity with the highest value in sjnti .

We generate a set of new labeled events Ejnt by
assigning labels to unlabeled events that have a po-
larity probability ≥ θjnt based on the joint scores.
All other events remain unlabeled. However, we
found that this process labels relatively few events
as neutral. Since neutral events can also co-occur
with positive and negative sentiment expressions,
they may have relatively low neutral scores. To
better maintain the distribution of events over all
three polarities, we also add a new set of events
Eneu, which the event classifier predicts as neutral
with confidence ≥ θneu.

Discourse-enhanced Self-training needs an exter-
nal sentiment classifier, so we fined-tuned a BERT-
based model with the gold standard Twitter dataset
from SemEval-2017 (Rosenthal et al., 2017) fol-
lowing the experiment setups in Section 3.2 and
Section 3.3. In our experiments, we set θneu to 0.9
and θjnt to 0.95 based on the model’s performance
over the validation set.

6 Experimental Results

We performed 10-fold cross validation over the
gold Twitter Dataset, where each of the 10 runs
used 80% of the data (8 folds) for training, 10% of
the data (1 fold) for validation/tuning, and 10% of
the data (1 fold) for testing. We compare Discourse-
enhanced Self-training (DEST) with strictly super-
vised learning and traditional self-training. During

Method Precision Recall F1
Supervised 76.5 75.2 75.7
Self-training 77.6 77.2 77.0
DEST 79.6 78.7 79.0

Table 4: Results for learning from unlabeled data.

Figure 2: Learning curves through 10 iterations.

each iteration of the traditional self-training model,
the affective event classifier Aff-BERT is applied to
each unlabeled event. Events with polarity score ≥
0.9 are selected as new labeled data. We chose 0.9
as the threshold based on the model’s performance
on the validation set.

For the DEST model, to ensure a rich set of
discourse contexts, we only used unlabeled events
that (a) had at least 10 distinct coreferent sentiment
expressions and (b) did not include “this”, “that”
or “it” as a subject or object of the event phrase
because an event is often vague without knowing
what the pronoun refers to. This resulted in 8,532
events in the unlabeled event set.

6.1 Results

Table 4 reports the performance of the models af-
ter 10 iterations of learning with unlabeled data,
where the first row shows the results for Aff-BERT
trained only with gold labeled data for comparison.
For both self-training models, no new examples
were labeled after 10 iterations. Table 4 shows that
ordinary self-training produced small gains in both
precision and recall. Our Discourse-enhanced Self-
training algorithm achieved larger gains, improving
precision over the supervised model from 76.5%
→ to 79.6% and improving recall from 75.2%→
78.7%.

Figure 2 shows the learning curves for each
method over the 10 iterations based on their F1



Method
POS NEG NEU

Pre Rec Pre Rec Pre Rec

Supervised 74.4 71.5 79.0 74.0 76.1 80.1

DEST 81.8 74.8 78.4 80.0 79.4 82.4

Table 5: Recall and precision across polarities.

Figure 3: Learning curves of models with training sets
of different sizes.

score. The flat line is the F1 score for Aff-BERT
trained with only gold labeled data. Ordinary self-
training produced its highest F1 score after the
first iteration, then declined and stayed stable with-
out further improvement. In contrast, the learning
curve of Discourse-enhanced Self-training gradu-
ally ascends, reaching its peak in iteration 7 and
showing signs that it could potentially exceed that
peak with more unlabeled data.

Table 5 shows the performance breakdown
across the three polarities. Discourse-enhanced
Self-training improved both precision and recall
for all polarities, except that precision was slightly
lower for negative polarity. Most notably, DEST
achieved a 6.0% absolute gain in recall for nega-
tive polarity, and a 3.3% absolute gain in recall for
positive polarity, alongside a 7.4% absolute gain in
precision.

We also generated learning curves for the super-
vised learner and Discourse-enhanced Self-training
when trained with different amounts of labeled
data . Figure 3 shows results when using 50%
to 100% of the gold training data in increments
of 10%. Discourse-enhanced Self-training showed
even greater relative improvement over the super-
vised learner when only 50% of the gold data was
used for training. In addition, when using about
60% of the gold data, DEST achieved performance
comparable to the supervised learner trained with

Incorrect→ Correct
Neutral→ Positive:
〈I, see, exhibit, -〉 〈I, sleep, -, through whole night〉
〈I, get, tip, -〉 〈I, start, my new job, -〉
Neutral→ Negative:
〈I, need, air, -〉 〈-, separate, child,from parent〉
〈I, not get, reply, -〉 〈someone, unfollow, me, -〉

Correct→ Incorrect
Neutral→ Positive:
〈I, have, your book, -〉 〈I, watch, guy, -〉
Neutral→ Negative:
〈I, have, brace, -〉 〈I, have, comment, -〉

Table 6: Examples of labels that are changed by the
joint scoring function.

100% of the data.
Overall, the Discourse-enhanced Self-training

approach produced substantial gains over fully su-
pervised learning, and achieved more robust learn-
ing from unlabeled data than ordinary self-training.
This approach could be applied to many other types
of problems as well, when a secondary source of
information relevant to the task is available.

7 Analysis

To better understand the behavior of the resulting
classifier, we did a manual analysis of events whose
polarity was impacted by the coreferent sentiment
expressions. The top portion of Table 6 shows
examples of events for which the affective event
classifier assigned an incorrect polarity but the joint
scoring function produced the correct polarity. We
saw many cases like these where the event phrase
contained neutral words but the coreferent senti-
ment expressions revealed consistently positive or
negative discourse contexts.

The bottom portion of Table 6 shows examples
of events for which the affective event classifier
assigned a correct polarity but the joint scoring
function assigned an incorrect polarity. We ob-
served two types of issues that caused this behavior.
One common problem was incorrect coreference.
Sometimes the sentiment was coreferent with the
subject or object of the event, but not the event
itself. For example, 〈I, have, your book, -〉 was
followed by sentiments about the book itself (e.g.,

“It is well-written” and “That is inspiring”). In other
cases the sentiment was coreferent with an event
earlier in the discourse. These errors suggest that
incorporating a better event coreference resolution



algorithm would likely improve results.
We also found some events that were correctly la-

beled as positive by the affective event classifier but
labeled as negative by the sentiment classifier with
high confidence, and consequently the event classi-
fier’s correct predictions were overridden. Most of
these cases were expressions of love or empathy in
response to negative events, such as 〈God, help, us,
-〉, 〈my heart, go, -, to family〉, 〈you, have, my sym-
pathy, -〉. This is an interesting phenomenon that
may require better discourse modeling, including
the recognition of expressive speech acts.

8 Conclusion

In this work, we proposed a BERT-based super-
vised classifier for affective event recognition and
showed that it substantially outperforms a large af-
fective event knowledge base. We also designed a
novel discourse-enhanced self-training algorithm
to leverage unlabeled data iteratively. By combin-
ing both the affective event classifier’s prediction
and the polarities of coreferent sentiment expres-
sions, our algorithm substantially improved upon
the supervised learning results. The resulting clas-
sification model is substantially more effective for
affective event recognition than previous methods.
We also believe that the general idea behind our
discourse-enhanced self-training approach could
be useful for many other types of problems where
additional information can be extracted from larger
contexts to serve as a secondary signal to help con-
firm or disconfirm a classifier’s predictions.
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