
Learning Distributed Representations for Structured
Output Prediction

Vivek Srikumar∗
University of Utah

svivek@cs.utah.edu

Christopher D. Manning
Stanford University

manning@cs.stanford.edu

Abstract

In recent years, distributed representations of inputs have led to performance gains
in many applications by allowing statistical information to be shared across in-
puts. However, the predicted outputs (labels, and more generally structures) are
still treated as discrete objects even though outputs are often not discrete units
of meaning. In this paper, we present a new formulation for structured predic-
tion where we represent individual labels in a structure as dense vectors and allow
semantically similar labels to share parameters. We extend this representation
to larger structures by defining compositionality using tensor products to give a
natural generalization of standard structured prediction approaches. We define a
learning objective for jointly learning the model parameters and the label vectors
and propose an alternating minimization algorithm for learning. We show that
our formulation outperforms structural SVM baselines in two tasks: multiclass
document classification and part-of-speech tagging.

1 Introduction

In recent years, many computer vision and natural language processing (NLP) tasks have benefited
from the use of dense representations of inputs by allowing superficially different inputs to be related
to one another [26, 9, 7, 4]. For example, even though words are not discrete units of meaning, tradi-
tional NLP models use indicator features for words. This forces learning algorithms to learn separate
parameters for orthographically distinct but conceptually similar words. In contrast, dense vector
representations allow sharing of statistical signal across words, leading to better generalization.

Many NLP and vision problems are structured prediction problems. The output may be an atomic
label (tasks like document classification) or a composition of atomic labels to form combinatorial
objects like sequences (e.g. part-of-speech tagging), labeled trees (e.g. parsing) or more complex
graphs (e.g. image segmentation). Despite both the successes of distributed representations for
inputs and the clear similarities over the output space, it is still usual to handle outputs as discrete
objects. But are structures, and the labels that constitute them, really discrete units of meaning?

Consider, for example, the popular 20 Newsgroups dataset [13] which presents the multiclass
classification problem of identifying a newsgroup label given the text of a posting. Labels
include comp.os.mswindows.misc, sci.electronics, comp.sys.mac.hardware,
rec.autos and rec.motorcycles. The usual strategy is to train a classifier that uses separate
weights for each label. However, the labels themselves have meaning that is independent of the train-
ing data. From the label, we can see that comp.os.mswindows.misc, sci.electronics
and comp.sys.mac.hardware are semantically closer to each other than the other two. A sim-
ilar argument can be made for not just atomic labels but their compositions too. For example, a
part-of-speech tagging system trained as a sequence model might have to learn separate parameters

∗This work was done when the author was at Stanford University.

1

for the JJ→NNS and JJR→NN transitions even though both encode a transition from an adjective to
a noun. Here, the similarity of the transitions can be inferred from the similarity of its components.

In this paper, we propose a new formulation for structured output learning called DISTRO (DIS-
tributed STRuctred Output), which accounts for the fact that labels are not atomic units of meaning.
We model label meaning by representing individual labels as real valued vectors. Doing so allows us
to capture similarities between labels. To allow for arbitrary structures, we define compositionality
of labels as tensor products of the label vectors corresponding to its sub-structures. We show that
doing so gives us a natural extension of standard structured output learning approaches, which can
be seen as special cases with one-hot label vectors.

We define a learning objective that seeks to jointly learn the model parameters along with the label
representations and propose an alternating algorithm for minimizing the objective for structured
hinge loss. We evaluate our approach on two tasks which have semantically rich labels: multiclass
classification on the newsgroup data and part-of-speech tagging for English and Basque. In all cases,
we show that DISTRO outperforms the structural SVM baselines.

1.1 Related Work

This paper considers the problem of using distributed representations for arbitrary structures and is
related to recent work in deep learning and structured learning. Recent unsupervised representation
learning research has focused on the problem of embedding inputs in vector spaces [26, 9, 16, 7].
There has been some work [22] on modeling semantic compositionality in NLP, but the models do
not easily generalize to arbitrary structures. In particular, it is not easy to extend these approaches
to use advances in knowledge-driven learning and inference that standard structured learning and
prediction algorithms enable.

Standard learning approaches for structured output allow for modeling arbitrarily complex structures
(subject to inference difficulties) and structural SVMs [25] or conditional random fields [12] are
commonly used. However, the output itself is treated as a discrete object and similarities between
outputs are not modeled. For multiclass classification, the idea of classifying to a label set that
follow a known hierarchy has been explored [6], but such a taxonomy is not always available.

The idea of distributed representations for outputs has been discussed in the connectionist literature
since the eighties [11, 21, 20]. In recent years, we have seen several lines of research that address the
problem in the context of multiclass classification by framing feature learning as matrix factorization
or sparse encoding [23, 1, 3]. As in this paper, the goal has often explicitly been to discover shared
characteristics between the classes [2]. Indeed, the inference formulation we propose is very similar
to inference in these lines of work. Also related is recent research in the NLP community that
explores the use of tensor decompositions for higher order feature combinations [14]. The primary
novelty in this paper is that in addition to representing atomic labels in a distributed manner, we
model their compositions in a natural fashion to generalize standard structured prediction.

2 Preliminaries and Notation

In this section, we give a very brief overview of structured prediction with the goal of introducing
notation and terminology for the next sections. We represent inputs to the structured prediction
problem (such as, sentences, documents or images) by x ∈ X and output structures (such as labels
or trees) by y ∈ Y . We define the feature function Φ : X × Y → <n that captures the relationship
between the input x and the structure y as an n dimensional vector. A linear model scores the
structure y with a weight vector w ∈ <n as wTΦ(x,y). We predict the output for an input x as
arg maxy w

TΦ(x,y). This problem of inference is a combinatorial optimization problem.

We will use the structures in Figure 1 as running examples. In the case of multiclass classification,
the output y is one of a finite set of labels (Figure 1, left). For more complex structures, the feature
vector is decomposed over the parts of the structure. For example, the usual representation of a
first-order linear sequence model (Figure 1, middle) decomposes the sequence into emissions and
transitions and the features decompose over these [8]. In this case, each emission is associated with
one label and a transition is associated with an ordered pair of labels.

2

y

x

Atomic part
Label yp = (y)

Multiclass classification

y0 y1 y2

xAtomic part
Label yp = (y0)

Compositional part
Label yp = (y0, y1)

Sequence labeling. The emissions are
atomic and the transitions are compo-
sitional.

y0 y1 y2

x

Compositional part
Label yp = (y0, y1, y2)

A purely compositional part

Figure 1: Three examples of structures. In all cases, x represents the input and the y’s denote the outputs to
be predicted. Here, each square represents a part as defined in the text and circles represent random variables
for inputs and outputs (as in factor graphs). The left figure shows multiclass classification, which has an atomic
part associated with exactly one label. The middle figure shows a first-order sequence labeling task that has both
atomic parts (emissions) and compositional ones (transitions). The right figure shows a purely compositional
part where all outputs interact. The feature functions for these structures are shown at the end of Section 3.1.

In the general case, we denote the parts (or equivalently, factors in a factor graph) in the structure
for input x by Γx. Each part p ∈ Γx is associated with a list of discrete labels, denoted by yp =
(y0
p, y

1
p, · · ·). Note that the size of the list yp is a modeling choice; for example, transition parts in

the first-order Markov model correspond to two consecutive labels, as shown in Figure 1.

We denote the set of labels in the problem as L = {l1, l2, · · · , lM} (e.g. the set of part-of-speech
tags). All the elements of the part labels yp are members of this set. For notational convenience,
we denote the first element of the list yp by yp (without boldface) and the rest by y1:

p . In the rest of
the paper, we will refer to a part associated with a single label as atomic and all other parts where
yp has more than one element as compositional. In Figure 1, we see examples of a purely atomic
structure (multiclass classification), a purely compositional structure (right) and a structure that is a
mix of the two (first order sequence, middle).

The decomposition of the structure decomposes the feature function over the parts as

Φ(x,y) =
∑
p∈Γx

Φp (x,yp) . (1)

The scoring function wTφ(x,y) also decomposes along this sum. Standard definitions of struc-
tured prediction models leave the definition of the part-specific feature function Φp to be problem
dependent. We will focus on this aspect in Section 3 to define our model.

With definitions of a scoring function and inference, we can state the learning objective. Given a
collection of N training examples of the form (xi,yi), training is the following regularized risk
minimization problem:

min
w∈<n

λ

2
wTw +

1

N

∑
i

L(xi,yi;w). (2)

Here, L represents a loss function such as the hinge loss (for structural SVMs) or the log loss (for
conditional random fields) and penalizes model errors.The hyper-parameter λ trades off between
generalization and accuracy.

3 Distributed Representations for Structured Output

As mentioned in Section 2, the choice of the feature function Φp for a part p is left to be problem
specific. The objective is to capture the correlations between the relevant attributes of the input x
and the output labels yp. Typically, this is done by conjoining the labels yp with a user-defined
feature vector φp(x) that is dependent only on the input.

3

When applied to atomic parts (e.g. multiclass classification), conjoining the label with the input fea-
tures effectively allocates a different portion of the weight vector for each label. For compositional
parts (e.g. transitions in sequence models), this ensures that each combination of labels is associated
with a different portion of the weight vector. The implicit assumption in this design is that labels and
label combinations are distinct units of meaning and hence do not share any parameters across them.
In this paper, we posit that in most naturally occurring problems and their associated labels, this
assumption is not true. In fact, labels often encode rich semantic information with varying degrees
of similarities to each other. Because structures are composed of atomic labels, the same applies to
structures too.

From Section 2, we see that for the purpose of inference, structures are completely defined by
their feature vectors, which are decomposed along the atomic and compositional parts that form the
structure. Thus, our goal is to develop a feature representation for labeled parts that exploits label
similarity. More explicitly, our desiderata are:

1. First, we need to be able to represent labeled atomic parts using a feature representation
that accounts for relatedness of labels in such a way that statistical strength (i.e. weights)
can be shared across different labels.

2. Second, we need an operator that can construct compositional parts to build larger struc-
tures so that the above property can be extended to arbitrary structured output.

3.1 The DISTRO model

In order to assign a notion of relatedness between labels, we associate a d dimensional unit vector
al to each label l ∈ L. We will refer to the d ×M matrix comprising of all the M label vectors as
A, the label matrix.

We can define the feature vectors for parts, and thus entire structures, using these label vectors. To
do so, we define the notion of a feature tensor function for a part p that has been labeled with a list
of m labels yp. The feature tensor function is a function Ψp that maps the input x and the label list
yp associated with the part to a tensor of order m+ 1. The tensor captures the relationships between
the input and all the m labels associated with it. We recursively define the feature tensor function
using the label vectors as:

Ψp (x,yp,A) =

{
alyp ⊗ φp(x), p is atomic,

alyp ⊗Ψp

(
x,y1:

p ,A
)
, p is compositional. (3)

Here, the symbol ⊗ denotes the tensor product operation. Unrolling the recursion in this definition
shows that the feature tensor function for a part is the tensor product of the vectors for all the labels
associated with that part and the feature vector associated with the input for the part. For an input x
and a structure y, we use the feature tensor function to define its feature representation as

ΦA (x,y) =
∑
p∈Γx

vec (Ψp (x,yp,A)) (4)

Here, vec(·) denotes the vectorization operator that converts a tensor into a vector by stacking its
elements. Figure 2 shows an example of the process of building the feature vector for a part that is
labeled with two labels. With this definition of the feature vector, we can use the standard approach
to score structures using a weight vector as wTΦA (x,y).

In our running examples from Figure 1, we have the following definitions of feature functions for
each of the cases:

1. Purely atomic part, multiclass classification (left): Denote the feature vector associated
with x as φ. For an atomic part, the definition of the feature tensor function in Equation (3)
effectively produces a d × |φ| matrix alyφ

T . Thus the feature vector for the structure y is
ΦA (x,y) = vec

(
alyφ

T
)
. For this case, the score for an input x being assigned a label y

can be explicitly be written as the following summation:

wTΦA (x,y) =

d∑
i=0

|φ|∑
j=0

wdj+ialy,iφj

4

al1 ∈ <d
al2 ∈ <d

φp(x) ∈ <N

⊗ ⊗vec () → vec ()

d× d×N
Feature tensor

→

Feature vector ∈ <d2N

Figure 2: This figure summarizes feature vector generation for a compositional part labeled with two labels
l1 and l2. Each label is associated with a d dimensional label vector and the feature vector for the input is N
dimensional. Vectorizing the feature tensor produces a final feature vector that is a d2N -dimensional vector.

2. Purely compositional part (right): For a compositional part, the feature tensor function
produces a tensor whose elements effectively enumerate every possible combination of
elements of input vector φp(x) and the associated label vectors. So, the feature vector for
the structure is ΦA (x,y) = vec

(
aly0 ⊗ aly1 ⊗ aly2 ⊗ φp(x)

)
.

3. First order sequence (middle): This structure presents a combination of atomic and com-
positional parts. Suppose we denote the input emission features by φE,i for the ith label
and the input features corresponding to the transition1 from yi to yi+1 by φT,i. With this
notation, we can define the feature vector for the structure as

ΦA (x,y) =
∑
i

vec
(
alyi ⊗ φ

E,i
)

+
∑
i

vec
(
alyi ⊗ alyi+1

⊗ φT,i
)
.

3.2 Discussion

Connection to standard structured prediction For a part p, a traditional structured model con-
joins all its associated labels to the input feature vector to get the feature vector for that assignment
of the labels. According to the definition of Equation (3), we propose that these label conjunctions
should be replaced with a tensor product, which generalizes the standard method. Indeed, if the
labels are represented via one-hot vectors, then we would recover standard structured prediction
where each label (or group of labels) is associated with a separate section of the weight vector. For
example, for multiclass classification, if each label is associated with a separate one-hot vector, then
the feature tensor for a given label will be a matrix where exactly one column is the input feature
vector φp(x) and all other entries are zero. This argument also extends to compositional parts.

Dimensionality of label vectors If labels are represented by one-hot vectors, the dimensionality
of the label vectors will beM , the number of labels in the problem. However, in DISTRO, in addition
to letting the label vectors be any unit vector, we can also allow them to exist in a lower dimensional
space. This presents us with a decision with regard to the dimensionality d.

The choice of d is important for two reasons. First, it determines the number of parameters in the
model. If a part is associated with m labels, recall that the feature tensor function produces a m+ 1
order tensor formed by taking the tensor product of the m label vectors and the input features. That
is, the feature vector for the part is a dm|φp(x)| dimensional vector. (See 2 for an illustration.)
Smaller d thus leads to smaller weight vectors. Second, if the dimensionality of the label vectors
is lower, it encourages more weights to be shared across labels. Indeed, for purely atomic and
compositional parts if the labels are represented by M dimensional vectors, we can show that for
any weight vector that scores these labels via the feature representation defined in Equation (4), there
is another weight vector that assigns the same scores using one-hot weight vectors.

4 Learning Weights and Label Vectors

In this section, we will address the problem of learning the weight vectors w and the label vectors
A from data. We are given a training set withN examples of the form (xi,yi). The goal of learning

1In a linear sequence model defined as a CRF or a structural SVM, these transition input features can simply
be an indicator that selects a specific portion of the weight vector.

5

is to minimize regularized risk over the training set. This leads to a training objective similar to
that of structural SVMs or conditional random fields (Equation (2)). However, there are two key
differences. First, the feature vectors for structures are not fixed as in structural SVMs or CRFs but
are functions of the label vectors. Second, the minimization is over not just the weight vectors, but
also over the label vectors that require regularization.

In order to encourage the labels to share weights, we propose to impose a rank penalty over the
label matrix A in the learning objective. Since the rank minimization problem is known to be
computationally intractable in general [27], we use the well known nuclear norm surrogate to replace
the rank [10]. This gives us the learning objective defined as f below:

f(w,A) =
λ1

2
wTw + λ2||A||∗ +

1

N

∑
i

L(xi,yi;w,A) (5)

Here, the ||A||∗ is the nuclear norm of A, defined as the sum of the singular values of the matrix.
Compared to the objective in Equation (2), the loss function L is also dependent of the label matrix
via the new definition of the features. In this paper, we instantiate the loss using the structured hinge
loss [25]. That is, we define L to be

L(xi,yi;w,A) = max
y

(
wTΦA(xi,y) + ∆(y,yi)−wTΦA(xi,yi)

)
(6)

Here, ∆ is the Hamming distance. This defines the DISTRO extension of the structural SVM.

The goal of learning is to minimize the objective function f in terms of both its parameters w and
A, where each column of A is restricted to be a unit vector by definition. However, the objective
is not longer jointly convex in both w and A because of the product terms in the definition of the
feature tensor.

We use an alternating minimization algorithm for solving the optimization problem (Algorithm 1).
If the label matrix A is fixed, then so are the feature representations of structures (from Equation
(4)). Thus, for a fixed A (lines 2 and 5), the problem of minimizing f(w,A) with respect to only w
is identical to the learning problem of structural SVMs. Since gradient computation and inference
do not change from the usual setting, we can solve this minimization over w using stochastic sub-
gradient descent (SGD). For fixed weight vectors (line 4), we implemented stochastic sub-gradient
descent using the proximal gradient method [18] for solving for A. The supplementary material
gives further details about the steps of the algorithm.

Algorithm 1 Learning algorithm by alternating minimization. The goal is to solve
minw,A f(w,A). The input to the problem is a training set of examples consisting of pairs of
labeled inputs (xi,yi) and T , the number of iterations.

1: Initialize A0 randomly
2: Initialize w0 = minw f(w,A0)
3: for t = 1, · · · , T do
4: At ← minA f(wt−1,A)
5: wt+1 ← minw f(w,At)
6: end for
7: return (wT+1,AT)

Even though the objective function is not jointly convex in w and A, in our experiments (Section
5), we found that in all but one trial, the non-convexity of the objective did not affect performance.
Because the feature functions are multilinear in w and A, multiple equivalent solutions can exist
(from the perspective of the score assigned to structures) and the eventual point of convergence is
dependent on the initialization.

For regularizing the label matrix, we also experimented with the Frobenius norm and found that not
only does the nuclear norm have an intuitive explanation (rank minimization) but also performed
better. Furthermore, the proximal method itself does not add significantly to the training time be-
cause the label matrix is small. In practice, training time is affected by the density of the label
vectors and sparser vectors correspond to faster training because the sparsity can be used to speed
up dot product computation. Prediction is as fast as inference in standard models, however, because
the only change is in feature computation via the vectorization operator, which can be performed
efficiently.

6

5 Experiments

We demonstrate the effectiveness of DISTRO on two tasks – document classification (purely atomic
structures) and part-of-speech (POS) tagging (both atomic and compositional structures). In both
cases, we compare to structural SVMs – i.e. the case of one-hot label vectors – as the baseline.

We selected the hyper-parameters for all experiments by cross validation. We ran the alternating
algorithm for 5 epochs for all cases with 5 epochs of SGD for both the weight and label vectors.
We allowed the baseline to run for 25 epochs over the data. For the proposed method, we ran all
the experiments five times with different random initializations for the label vectors and report the
average accuracy. Even though the objective is not convex, we found that the learning algorithm
converged quickly in almost all trials. When it did not, the objective value on the training set at the
end of each alternating SGD step in the algorithm was a good indicator for ill-behaved initializations.
This allowed us to discard bad initializations during training.

5.1 Atomic structures: Multiclass Classification

Our first application is the problem of document classification with the 20 Newsgroups Dataset [13].
This dataset is collection of about 20,000 newsgroup posts partitioned roughly evenly among 20
newsgroups. The task is to predict the newsgroup label given the post. As observed in Section 1,
some newsgroups are more closely related to each other than others.

We used the ‘bydate’ version of the data with tokens as features. Table 1 reports the performance of
the baseline and variants of DISTRO for newsgroup classification. The top part of the table compares
the baseline to our method and we see that modeling the label semantics gives us a 2.6% increase in
accuracy. In a second experiment (Table 1, bottom), we studied the effect of explicitly reducing the
label vector dimensionality. We see that even with 15 dimensional vectors, we can outperform the
baseline and the performance of the baseline is almost matched with 10 dimensional vectors. Recall
that the size of the weight vector increases with increasing label vector dimensionality (see Figure
2). This motivates a preference for smaller label vectors.

Algorithm Label Matrix Rank Average accuracy (%)
Structured SVM 20 81.4

DISTRO 19 84.0
Reduced dimensionality setting

DISTRO 15 83.1
DISTRO 10 80.9

Table 1: Results on 20 newsgroup classification. The top part of the table compares the baseline against the
full DISTRO model. The bottom part shows the performance of two versions of DISTRO where the dimension-
ality of the label vectors is fixed. Even with 10-dimensional vectors, we can almost match the baseline.

5.2 Compositional Structures: Sequence classification

We evaluated DISTRO for English and Basque POS tagging using first-order sequence models.

English POS tagging has been long studied using the Penn Treebank data [15]. We used the standard
train-test split [8, 24] – we trained on sections 0-18 of the Treebank and report performance on
sections 22-24. The data is labeled with 45 POS labels. Some labels are semantically close to each
other because they express variations of a base part-of-speech tag. For example, the labels NN, NNS,
NNP and NNPS indicate singular and plural versions of common and proper nouns

We used the Basque data from the CoNLL 2007 shared task [17] for training the Basque POS tagger.
This data comes from the 3LB Treebank. There are 64 fine grained parts of speech. Interestingly,
the labels themselves have a structure. For example, the labels IZE and ADJ indicate a noun and
an adjective respectively. However, Basque can take internal noun ellipsis inside noun-forms, which
are represented with tags like IZE IZEELI and ADJ IZEELI to indicate nouns and adjectives
with internal ellipses.

In both languages, many labels and transitions between labels are semantically close to each other.
This observation has led, for example, to the development of the universal part-of-speech tag set

7

[19]. Clearly, the labels should not be treated as independent units of meaning and the model should
be allowed to take advantage of the dependencies between labels.

Language Algorithm Label Matrix Rank Average accuracy (%)
English Structured SVM 45 96.2

DISTRO 5 95.1
DISTRO 20 96.7

Basque Structured SVM 64 91.5
DISTRO 58 92.4

Table 2: Results on part-of-speech tagging. The top part of the table shows results on English, where we see
a 0.5% gain in accuracy. The bottom part shows Basque results where we see a nearly 1% improvement.

For both languages, we extracted the following emission features: indicators for the words, their
prefixes and suffixes of length 3, the previous and next words and the word shape according to the
Stanford NLP pipeline2,3. Table 2 presents the results for the two languages. We evaluate using the
average accuracy over all tags. In the English case, we found that the performance plateaued for any
label matrix with rank greater than 20 and we see an improvement of 0.5% accuracy. For Basque,
we see an improvement of 0.9% over the baseline.

Note that unlike the atomic case, the learning objective for the first order Markov model is not even
bilinear in the weights and the label vectors. However, in practice, we found that this did not cause
any problems. In all but one run, the test performance remained consistently higher than the baseline.
Moreover, the outlier converged to a much higher objective value; it could easily be identified. As
an analysis experiment, we initialized the model with one-hot vectors (i.e. the baseline) and found
that this gives us similar improvements as reported in the table.

6 Conclusion

We have presented a new model for structured output prediction called Distributed Structured Output
(DISTRO). Our model is motivated by two observations. First, distributed representations for inputs
have led to performance gains by uncovering shared characteristics across inputs. Second, often,
structures are composed of semantically rich labels and sub-structures. Just like inputs, similarities
between components of structures can be exploited for better performance. To take advantage of
similarities among structures, we have proposed to represent labels by real-valued vectors and model
compositionality using tensor products between the label vectors. This not only lets semantically
similar labels share parameters, but also allows construction of complex structured output that can
take advantage of similarities across its component parts.

We have defined the objective function for learning with DISTRO and presented a learning algorithm
that jointly learns the label vectors along with the weights using alternating minimization. We
presented an evaluation of our approach for two tasks – document classification, which is an instance
of multiclass classification, and part-of-speech tagging for English and Basque, modeled as first-
order sequence models. Our experiments show that allowing the labels to be represented by real-
valued vectors improves performance over the corresponding structural SVM baselines.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. Stanford University gratefully ac-
knowledges the support of the Defense Advanced Research Projects Agency (DARPA) Deep Explo-
ration and Filtering of Text (DEFT) Program under Air Force Research Laboratory (AFRL) contract
no. FA8750-13-2-0040. Any opinions, findings, and conclusion or recommendations expressed in
this material are those of the authors and do not necessarily reflect the view of the DARPA, AFRL,
or the US government.

2http://nlp.stanford.edu/software/corenlp.shtml
3Note that our POS systems are not state-of-the-art implementations, which typically use second order

Markov models with additional features and specialized handling of unknown words. However, surprisingly,
for Basque, even the baseline gives better accuracy than the second order TnT tagger[5, 19].

8

http://nlp.stanford.edu/software/corenlp.shtml

References
[1] J. Abernethy, F. Bach, T. Evgeniou, and J. Vert. Low-rank matrix factorization with attributes. arXiv

preprint cs/0611124, 2006.

[2] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification. In
International Conference on Machine Learning, 2007.

[3] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. Advances in Neural Information
Processing Systems, 2007.

[4] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2013.

[5] T. Brants. TnT: a statistical part-of-speech tagger. In Conference on Applied Natural Language Process-
ing, 2000.

[6] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Hierarchical classification: combining bayes with svm. In
International Conference on Machine learning, 2006.

[7] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In
International Conference on Artificial Intelligence and Statistics, 2011.

[8] M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with
perceptron algorithms. In Conference on Empirical Methods in Natural Language Processing, 2002.

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language process-
ing (almost) from scratch. Journal for Machine Learning Research, 12, 2011.

[10] M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system theory. In Proceedings
of the American Control Conference, volume 4, 2004.

[11] G. E. Hinton. Representing part-whole hierarchies in connectionist networks. In Annual Conference of
the Cognitive Science Society, 1988.

[12] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Machine Learning, 2001.

[13] K. Lang. Newsweeder: Learning to filter netnews. In International Conference on Machine Learning,
1995.

[14] T. Lei, Y. Xin, Y. Zhang, R. Barzilay, and T. Jaakkola. Low-rank tensors for scoring dependency struc-
tures. In Annual Meeting of the Association for Computational Linguistics, 2014.

[15] M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
The Penn Treebank: Annotating Predicate Argument Structure. In Workshop on Human Language Tech-
nology, 1994.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[17] J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret. The CoNLL 2007 shared
task on dependency parsing. In CoNLL shared task session of EMNLP-CoNLL, 2007.

[18] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3), 2013.

[19] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. arXiv preprint arXiv:1104.2086,
2011.

[20] T. A Plate. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3), 1995.

[21] P. Smolensky. Tensor product variable binding and the representation of symbolic structures in connec-
tionist systems. Artificial intelligence, 46(1), 1990.

[22] R. Socher, B. Huval, C. Manning, and A. Ng. Semantic Compositionality Through Recursive Matrix-
Vector Spaces. In Empirical Methods in Natural Language Processing, 2012.

[23] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In Advances in Neural
Information Processing Systems, 2004.

[24] K. Toutanova, D. Klein, C. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a cyclic
dependency network. In Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, 2003.

[25] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. Journal for Machine Learning Research, 2005.

[26] J. Turian, L. Ratinov, and Y. Bengio. Word Representations: A Simple and General Method for Semi-
Supervised Learning. In Annual Meeting of the Association for Computational Linguistics, 2010.

[27] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1), 1996.

9

