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Abstract

Many applications need a lexicon that represents semantic information but acquiring lex-
ical information is time consuming. We present a corpus-based bootstrapping algorithm
that assists users in creating domain-specific semantic lexicons quickly. Our algorithm
uses a representative text corpus for the domain and a small set of “seed words” that
belong to a semantic class of interest. The algorithm hypothesizes new words that are
also likely to belong to the semantic class because they occur in the same contexts as
the seed words. The best hypotheses are added to the seed word list dynamically, and
the process iterates in a bootstrapping fashion. When the bootstrapping process halts, a
ranked list of hypothesized category words is presented to a user for review. We used this
algorithm to generate a semantic lexicon for eleven semantic classes associated with the
MUC-4 terrorism domain.

1 Introduction

Natural language understanding requires both syntactic and semantic knowledge,
yet there are surprisingly few resources available for lexical semantic information.
In contrast, a variety of dictionaries and computational tools are available for ac-
quiring syntactic information (e.g., (Brill 1994; Church 1989; Marcus, Santorini, &
Marcinkiewicz 1993; Weischedel et al. 1993)). Ideally, one would like to have a se-
mantic knowledge base that contains semantic representations of all words, phrases,
and concepts in the language. Given the vast scope of human knowledge and the
practical limitations of manual knowledge engineering, it is unrealistic to expect a
complete semantic knowledge base any time soon. Nevertheless, there have been
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two noteworthy efforts to build general-purpose semantic knowledge bases, Word-
Net (Miller 1990) and Cyc (Lenat, Prakash, & Shepherd 1986).

While general-purpose semantic information may be sufficient for some tasks, it
is unlikely to be sufficient for domain-specific applications. For example, consider
a natural language processing (NLP) application for extracting information from
medical texts. A medical information extraction system needs a lexicon of syntactic
and semantic information about medical terms and concepts. A general-purpose
semantic lexicon will not contain the specialized medical jargon and terminology
that are required for medical information processing. Even within the context of a
single domain, different applications may require different levels of specialization.
For example, an NLP system for cardiology texts would probably need a different
dictionary than an NLP system for podiatry texts.

One possible solution is to develop automated methods for generating domain-
specific semantic lexicons, which can be used to replace or supplement broad-
coverage dictionaries. We define a domain-specific lexicon as a dictionary that con-
tains lexical information pertaining to a specific subject matter. For example, a
domain-specific lexicon for cardiology would contain the words, phrases, and con-
cepts that are most important for understanding cardiology texts.

Creating a domain-specific lexicon has several benefits. First, by definition, a
domain-specific lexicon contains the specialized terminology that is required for
in-depth understanding of the subject matter. Second, many ambiguity problems
in natural language can be simplified by taking advantage of the limited domain.
For example, the word “monitor” has several noun word senses, including one that
refers to a computer screen and one that refers to a lizard. Within the context of a
specific domain, one of the word senses will dominate. The noun “monitor” usually
refers to a computer screen in computer science texts, but usually refers to a lizard
in zoology texts. If an NLP system is designed for a limited domain, including only
relevant word senses in the lexicon can substantially reduce ambiguity resolution
problems.

Many NLP systems do rely on domain-specific lexicons, but these dictionaries are
usually constructed by hand. Manual dictionary construction is time consuming
and prone to errors of omission. To address these problems, we have adopted a
semi-automated approach to semantic lexicon construction. Given a few sample
words that belong to a semantic class, our algorithm automatically hypothesizes
new words that are also likely to belong to the semantic class. The most confident
predictions are added to the lexicon automatically and the process repeats in a
bootstrapping fashion. When automatic bootstrapping is finished, a human reviews
the list of hypothesized category members and decides which ones to add to the
lexicon. This corpus-based approach has several advantages over manual dictionary
construction: a semantic lexicon can be built very quickly, the lexicon will be tailored
for the domain represented by the text corpus, and important domain words are
less likely to be omitted from the dictionary.

First, we present the corpus-based bootstrapping algorithm that automatically
generates candidate words for a semantic category. Next, we present an experiment
to evaluate the effectiveness of this algorithm empirically by generating a semantic
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lexicon for eleven semantic classes associated with terrorism. Finally, we compare
our approach to related work and summarize our conclusions.

2 A Corpus-based Bootstrapping Algorithm

The goal of our approach is to begin with just a handful of seed words that are
known to belong to a semantic class, and then leverage those seed words to find
new words that also belong to the semantic class. Our algorithm is based on the
observation that members of a semantic category often appear near other members
of the category in natural language text. Four common syntactic constructions often
group together members of the same semantic class:

Conjunctions lions and tigers and bears
Lists lions, tigers, bears
Appositives the horse, a black stallion

Compound Nouns tuna fish 5 oak tree

These syntactic constructions will not always contain members of the same se-
mantic class, but they have a tendency to do so. Conjunctions and lists often group
together similar items. Appositives and compound nouns frequently represent sub-
class/superclass relationships. For example, the appositive phrase “the horse, a
black stallion” is a superclass followed by its subclass, and the phrase “the stallion,
an impressive horse” is a subclass followed by its superclass. Compound nouns usu-
ally have the superclass as head noun with the subclass as a modifier (e.g., “tuna
fish”).

Since these four types of syntactic constructions are very common in natural
language text, their affinity for semantically similar words can be exploited by a
corpus-based bootstrapping approach. The general idea of our algorithm is to begin
with a small number of known category words and then identify other words that
are collocated near the known category words with unusual regularity.

2.1 An overview of the algorithm

The input to our algorithm is a text corpus that is representative of the domain,
and a small set of seed words for the semantic category of interest. The output is
a list of new words that are hypothesized to belong to the same semantic class, in
ranked order based upon their strength of association with the class.

During the first iteration, the algorithm generates a ranked list of new words that
are hypothesized to belong to the same semantic category as the seed words. The
top N words in the ranked list are assumed to be correct, and are dynamically added
to the seed word list as new seed words. The enhanced seed word list represents a
larger context in which to look for additional category members during the next
iteration. The process repeats for a fixed number of iterations, or until no new seed
words can be found. When the bootstrapping process halts, the final ranked list of
hypothesized category members is reviewed by a person to confirm (or disconfirm)
whether each word should be added to the lexicon.



2.2 The bootstrapping algorithm

The general idea behind our approach is motivated by Yarowsky’s word sense dis-
ambiguation algorithm (Yarowsky 1992) and the notion of statistical salience. Our
algorithm uses a somewhat different statistical measure, but it is based on the same
general principle of looking for words that are more frequent within a category con-
text than in the corpus as a whole. The bootstrapping algorithm for hypothesizing
words that belong to a semantic category can be broken down into five steps.

1. Identify all sentences in the corpus that contain a seed word. Run each sentence
though a parser to segment the sentence into simple noun phrases, verb phrases,
and prepositional phrases. (A partial parser is sufficient.)

2. Collect a narrow context window around each seed word that occurs as a head
noun in a noun phrase. Restricting the seed words to be head nouns ensures that
the seed word is the main concept of the noun phrase. Also, this reduces the chance
of finding different word senses of the seed word (although multiple noun senses can
still be a problem). The context window consists of only two words: the closest noun
to the left of the word, and the closest noun to the right of the word. Only nouns
are collected under the assumption that most, if not all, true category members
should be nouns. The context windows do not cross sentence boundaries. Note that
our context window is much narrower than those used by other researchers (e.g.,
(Yarowsky 1992)). We experimented with larger context windows and found that
the narrow window more consistently includes words of the same semantic class,
presumably because it focuses on local syntactic constructions. For simplicity, we
will refer to the set of nouns gathered during this step as the category context for a
semantic class.

3. Compute a category score for each word in the category context. The category
score of a word W for category C is defined as:

_ frequency of W in C's context windows
SCOT@(W’ C) - frequency of W in corpus

This score is essentially the conditional probability that the word appears in a cat-
egory context. Note that this is not exactly a conditional probability because a
single word occurrence can belong to more than one context window. For example,
consider the sentence: They seized one M-16, a rifle, and a .45-caliber pistol. The
word rifle is in the context windows for both M-16 and pistol even though there
is just one occurrence of it in the sentence. Consequently, the category score for a
word can be greater than 1.

4. Remove stopwords, numbers, and words with a total frequency < 5 (these words
are assumed to be statistically unreliable). We used a stopword list containing about
30 general nouns, mostly pronouns (e.g., I, he, she, they) and determiners (e.g., this,
that, those). Finally, sort the remaining nouns by category score so that the nouns



most strongly associated with the category appear at the top.

5. Add the top five nouns (that are not already seed words) to the seed word list,
go back to Step 1, and repeat the process. The process halts after a fixed number
of iterations or if no new seed words are found. This bootstrapping mechanism dy-
namically grows the seed word list so that each iteration produces a larger category
context. In our experiments, the top five nouns were added automatically without
any human intervention, but this sometimes allows non-category words to dilute
the seed word list. A few inappropriate words are not likely to have much impact,
but many inappropriate words or a few high frequency words can weaken the feed-
back process. One alternative is to have a person verify that each word belongs to
the target category before adding it to the seed word list, but this would require
human intervention at each iteration of the feedback cycle. We chose to avoid this
additional human interaction.

3 Experimental Results

To determine the effectiveness of our bootstrapping algorithm, we built a seman-
tic lexicon for a real application. Qur experiments focused on the domain of Latin
American terrorism, which was the topic of the information extraction task for the
Fourth Message Understanding Conference (MUC-4) (MUC-4 Proceedings 1992).
We used the 1700 texts in the MUC-4 data set as our text corpus, and chose eleven
semantic classes representing items that needed to be extracted for the MUC-4 task:
building, civilian, energy, financial, government official, location, military, terrorist,
time, vehicle, weapon. Some of these classes represent people who are common per-
petrators or victims of terrorism: civilian, government official, military, terrorist.
A few of the classes represent objects that are frequent targets of terrorism: build-
ing, energy, financial, vehicle. The other classes represents dates (time), locations
(location), and types of weapons (weapon).

As input to our algorithm, we also need a set of seed words for each semantic
class. We used two general criteria as guidance when selecting seed words:

1. The word should be frequent in the domain. This is necessary to ensure that
there will be many occurrences of the word in the corpus.

2. The word should be (relatively) unambiguous. This minimizes the risk of
finding inappropriate contexts around the word.

Using this criteria, we defined five seed words for each of the eleven semantic
classes. They are shown in Figure 1. We do not claim that this is the best possible
set of seed words, but they worked well in our experiments. More experimentation
is needed to determine the effect of the initial seed words on the final output. We
experimented with different numbers of seed words and found that using five initial
seed words worked about as well as using more.

We ran the bootstrapping algorithm for eight iterations, adding five new words
to the seed word list after each iteration. When the bootstrapping process finished,
we had a ranked list of hypothesized words for each of the eleven semantic classes.



Building: building buildings hotel homes office

Civilian: civilians peasants businessmen passengers residents
Energy: fuel gas gasoline oil power

Financial: bank banking currency dollar money

Gov’t Official:

governor mayor ambassador president senator

Location: city town region district neighborhood
Military: army commander infantry soldier troop
Terrorist: terrorists terrorist guerrillas guerrilla rebels
Time: hour day week month year

Vehicle: airplane car jeep plane truck

Weapon: bomb dynamite explosives gun rifle

Fig. 1. Seed Word Lists for the Terrorism Domain

The bootstrapping algorithm found many new members of each class, although
the quality of the ranked lists varied depending on the semantic class. In the next
section, we evaluate the results of this experiment quantitatively.

3.1 Evaluating the results

To evaluate the effectiveness of the bootstrapping algorithm, we manually reviewed
the top 500 words on the ranked lists for each semantic class. We judged a word to
belong to a semantic category if:

1. The word is a member of the category. For example, TNT and rifle are mem-
bers of the weapon category. Or,

2. The word refers to a part of a member of the category. For example, cartridge
and clips are parts of a weapon. The rationale behind judging subparts to be
category members is that the subpart belongs to the same semantic class as
the whole object.

The manual review process took about 30 minutes for each semantic class, except
for a few categories that required dictionary lookup (e.g., the human reviewer did
not recognize many of the weapon names). In general, however, reviewing the ranked
lists is quite fast for someone who has knowledge of the domain. Figure 2 shows
the words that were judged to be legitimate category members for the building,
civilian, and weapon classes.

When the manual review process was finished, the semantic lexicon for terrorism
contained 494 words. Since 500 words were reviewed for each of the eleven classes
(except the financial and weapon classes which produced fewer than 500 words), this
result implies that only about 10% of the words on the ranked lists were members of
their respective semantic categories. This viewpoint is misleading though, because
we should only expect the most highly ranked items to be true category members.
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Building: ministry hospital garrison house bank prison embassy home stores offices palace
schools doors residence gas_station room houses tower ministries establishments hospitals
housing registry entrance restaurant entry gate walls office buildings building windows
floor homes mansions hotel apartment properties Sheraton

Civilian: Salvadoran Salvadorans jesuits person police Colombian priests personnel stu-
dents Msgr Panamanian citizens people advisers families civilian judges body persons
brothers Ecuadoran family peoples employees peasant journalists woman men owners vic-
tims crew policeman bishops witnesses bodies policemen foreigners newsmen women nuns
crowd Americans activists children clergymen faces manager workers friend child corpses
leg residents professionals farmers brother Nicaraguans industrialists lady Indian survivors
businessmen passengers civilians peasants intellectuals pedestrians drivers

Weapon: rockets bombs car_bomb missile missiles tanks arms bullets rocket bullet
weapons car_bombs artillery firearms guns machinegun pistol cannon submachinegun gun
bomb mortars explosives ammunition submachineguns cartridges pistols fuse machineguns
grenades rifles dynamite AR-15 M-60 clips AK-47 M-16 rifle cartridge mortar grenade TNT
M-79

Fig. 2. The semantic lexicon for three categories

The density of true category members should decrease as one progresses down the
list.

We reviewed 500 words for each category because we did not know how quickly
the density of true category members would drop off, or how far down the lists we
would need to go. We answered these questions empirically by analyzing the density
of true category members at various points in the ranked lists. Figure 3 shows
the results of this analysis. We walked down each ranked list and measured the
percentage of true category members after each set of 50 words. The actual number
of true category members appears in parentheses. For example, Figure 3 shows that
13 of the top 50 hypothesized building words (26%) were actually buildings. Only
four additional building words were found among the next 50 words, so the density
of true category members drops to 17% after reviewing the top 100 words.

Figure 3 confirms our hypothesis that the density of true category members is
highest at the top, which suggests that our scoring metric is doing a good job
of promoting the most likely category members. The effectiveness of the ranking
scheme yields a law of diminishing returns: the payoff of finding additional category
members steadily decreases as you walk down the list.

Of the eleven semantic classes in our experiment, none of them added many new
category members after the 400th item. And only a few categories were still adding
new members after the 300th item, which suggests that reviewing only the top 300
words is probably sufficient. Figure 3 also suggests a mechanism for automatically
deciding when to stop the manual review process: if the number of new category
members does not change much after reviewing a fixed number of words, then it
is probably safe to assume that there are not many new category members lying
ahead. For example, 43 government officials were found among the top 150 words,



Building Civilian Energy Financial Govt Location
After 50 .26 (13) (18) .12 (6) .28 (14) .38 (19) .74 (37)
After 100 .17 (17) (22) .06 (6) .19 (19) .35 (35) .57 (57)
After 150 .15 (22) (27)  .04(6) .15 (22) 29 (43) .51 (77)
After 200 .13 (26) (38) .03 (6) 11 (22) .21 (43) .50 (100)
After 250 .11 (28) (42)  .02(6) .09 (23) 17 (43) .46 (114)
After 300 .11 (32) 7(51) .02(6) .08 (23) 14 (43) .43 (129)
After 350 .10 (36) (55) .02 (6) .07 (23) 12 (43) .40 (139)
After 400 .09 (37) (58) .01 (6) .06 (23) 11 (43) .37 (150)
After 450 .09 (39) (62) .01 (6) —(=) .10 (43) .35 (158)
After 500 .08 (39) (68) .01 (6) —(=) .09 (43) .33 (164)

Military Terrorist Time  Vehicle Weapon

After 50 .28 (14) .34 (17) 06 (3) .30 (15) .58 (29)
After 100 .19 (19) .23 (23) 05 (5) .19 (19) .34 (34)
After 150 .17 (26) .18 (27) 04 (6) .15 (22) .25 (38)
After 200 .15 (30) .17 (35) 04 (8) .13(26) .20 (40)
After 250 .14 (34) .15 (38) .03 (8) .10 (26) .16 (40)
After 300 .13 (40) .13 (39) .05 (14) .09 (27) .14 (43)
After 350 .11 (40) .12 (43) .05 (19) .08 (28) .12 (43)
After 400 .10 (41) .11 (45) .06 (23) .07 (29) .11 (43)
After 450 .09 (42) .10 (47) .05 (23) .06 (29) .10 (43)
After 500 .09 (43) .10 (48) .05 (24) .06 (29) —(=)

Fig. 3. Density of category members in the ranked lists

but no new government officials were found thereafter. If we had noticed this trend,
we could have stopped the review process after reviewing 200 words.

Another interesting aspect of our results is the varying levels of effectiveness for
different semantic classes. The location class performed best: the bootstrapping
algorithm found 164 locations, with a 74% hit rate for the top 50 words and nearly
a 50% hit rate even after 250 words. The energy class was the most problematic: the
bootstrapping algorithm found only six energy words. The MUC-4 texts primarily
describe terrorist and military incidents, so energy sources are mentioned only when
they are the target of an attack. The corpus does contain a few descriptions of
attacks on oil pipelines and electricity substations, but it is doubtful that a wide
variety of energy words are present in the corpus. Therefore the energy category
illustrates an important point: it is probably overkill to use this algorithm for a
semantic class that will not be well-represented in the domain. For most of the eleven
semantic classes, however, a substantial number of new category members were
found. Recently, we used the terrorism semantic lexicon as part of another algorithm
to generate conceptual case frames automatically (Riloff & Schmelzenbach 1998).
The semantic lexicon allows the algorithm to infer the conceptual roles and semantic
constraints for case frame slots.



4 Related Work

Semantic lexicons are built by hand for most NLP applications, but several tech-
niques have been developed to learn lexical semantic information automatically.
Most of these methods learn the meanings of an unknown word by using contex-
tual expectations from the definitions of surrounding words (e.g., (Granger 1977;
Carbonell 1979; Jacobs & Zernik 1988; Cardie 1993; Hastings & Lytinen 1994)).
An alternative approach is to derive knowledge automatically from on-line dictio-
naries (Dolan, Vanderwende, & Richardson 1993). All of these approaches rely on
an existing dictionary or knowledge base as a starting point. Our system is the
first aimed at building semantic lexicons from scratch using only a representative
text corpus and a handful of predefined seed words. The only additional knowledge
used by our system is a part-of-speech dictionary for syntactic segmentation. We
used a hand-crafted part-of-speech dictionary for these experiments, but statisti-
cal and corpus-based taggers are widely available (e.g., (Brill 1994; Church 1989;
Weischedel et al. 1993)).

One other relevant piece of related research is Roark and Charniak’s work (Roark
& Charniak 1998), which improves upon preliminary results that we reported
in (Riloff & Shepherd 1997). Roark and Charniak confirmed our intuition that
conjunctions, appositives, lists, and compound nouns can help identify items of the
same semantic class by adapting our algorithm to look exactly for those syntactic
constructions.

5 Conclusions

Semantic lexicons are essential for many NLP applications, but creating lexical
resources by hand is extremely time consuming. Furthermore, hand-built lexicons
are often incomplete because humans can easily overlook words that are impor-
tant for the domain. The corpus-based bootstrapping algorithm that we presented
can assist humans in building semantic lexicons quickly and in providing assurance
that important words are not overlooked. This algorithm requires no pre-existing
semantic knowledge or specialized resources. To use this technique for a new ap-
plication domain, the user only needs to supply a representative text corpus and
a handful of seed words for each semantic category of interest. The corpus-based
bootstrapping algorithm illustrates how text corpora can be exploited to acquire
semantic information semi-automatically, without the need for special resources.
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