INFORMATION EXTRACTION AS A BASIS FOR PORTABLE
TEXT CLASSIFICATION SYSTEMS

A Dissertation Presented

by

ELLEN M. RILOFF

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1994

Department of Computer Science

(© Copyright by Ellen M. Riloff 1994

All Rights Reserved

INFORMATION EXTRACTION AS A BASIS FOR PORTABLE
TEXT CLASSIFICATION SYSTEMS

A Dissertation Presented
by

ELLEN M. RILOFF

Approved as to style and content by:

Wendy G. Lehnert, Chair

W. Bruce Croft, Member

Edwina L. Rissland, Member

Barbara H. Partee, Member

W. Richards Adrion, Department Head

Department of Computer Science

ACKNOWLEDGMENTS

First and foremost, I must thank my advisor, Wendy Lehnert, for her support through the
years. I have always had the greatest respect for Wendy, but I am still amazed at her intelligence,
energy, and creativity. Working with Wendy has been a privilege and I have learned an awful lot
just by watching her do what she does best. I also thank Wendy for many personal insights and
her tolerance with me through various crises, both perceived and real. Sometimes she seemed to
know me better than I knew myself.

Bruce Croft has been a great asset to my committee and this dissertation has benefited
enormously from his input. I thank Bruce for helping me navigate the mysterious world of
information retrieval and for reassuring me that my work was interesting to people outside of
the Al community. Edwina Rissland was extremely helpful in making sure that I kept one eye on
the big picture and generality of my thesis. Edwina has been very supportive over the years and I
am especially thankful for her advice and counsel during several decision points in my career.

I first met Barbara Partee in 1988 when she served as the second reader on my Master’s
project. That summer is one of my fondest memories of UMass, in large part because I had several
meetings with Barbara that I enjoyed immensely. I thank Barbara for many insightful comments
about my work and for stimulating conversations that always reminded me of why I got into this
field in the first place.

Many friends have been instrumental in helping me survive the intellectual and psychological
minefields of graduate school. I owe the deepest debt of gratitude to Kishore Swaminathan. Despite
his propensity for stomach-wrenching puns, Kishore has been an invaluable source of support. I
am not exaggerating when I say that I probably would not have survived graduate school without
him. (Even though he thought I would never finish ... HA!) I thank Kishore for many spirited
arguments, long phone conversations, and emotional support.

I have been extremely lucky to have Claire Cardie as a friend and colleague. Claire and I
have been through a lot together and she has always been close by when I needed a friend. I am
especially grateful to Claire for letting me ramble on, sometimes incoherently, when I needed an
ear to lean on.

Copious thanks to David Fisher for his help with random things too numerous to mention
and for proof-reading a draft of this thesis. Working with David has made me realize that I would
truly enjoy having students of my own.

Special thanks to the other members of the NLP group: Joe McCarthy, Jon Peterson, and
Stephen Soderland; David Skalak, for always bringing a smile to my face; Stefan Wermter, for fun
traveling adventures; James Corbett, for sharing his wisdom on issues ranging from complexity
theory to Dr. Seuss; Karen & Pete, for letting me escape to NH one week when I desperately
needed to get away; and Priscilla Coe for handling many administrative tasks and helping me cope
with the realities of everyday life. Priscilla is the best.

Also, a word of acknowledgment to the funding agencies that made this work possible: this
research was supported by grants from NSF, ARPA, and ONR.

Last, but definitely not least, I thank my pet iguana, Kirbi, for helping me keep perspective
on life and for introducing countless people to the wonderful world of reptiles.

v

ABSTRACT

INFORMATION EXTRACTION AS A BASIS FOR PORTABLE TEXT CLASSIFICATION
SYSTEMS

SEPTEMBER 1994
ELLEN M. RILOFF
B.S., CARNEGIE MELLON UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Wendy G. Lehnert

Knowledge-based natural language processing systems have achieved good success with many
tasks, but they often require many person-months of effort to build an appropriate knowledge
base. As a result, they are not portable across domains. This knowledge-engineering bottleneck
must be addressed before knowledge-based systems will be practical for real-world applications.
This dissertation addresses the knowledge-engineering bottleneck for a natural language processing
task called “information extraction”. A system called AutoSlog is presented which automatically
constructs dictionaries for information extraction, given an appropriate training corpus. In the
domain of terrorism, AutoSlog created a dictionary using a training corpus and five person-hours
of effort that achieved 98% of the performance of a hand-crafted dictionary that took approximately
1500 person-hours to build.

This dissertation also describes three algorithms that use information extraction to support
high-precision text classification. As more information becomes available on-line, intelligent
information retrieval will be crucial in order to navigate the information highway efficiently
and effectively. The approach presented here represents a compromise between keyword-based
techniques and in-depth natural language processing. The text classification algorithms classify
texts with high accuracy by using an underlying information extraction system to represent
linguistic phrases and contexts. Experiments in the terrorism domain suggest that increasing the
amount of linguistic context can improve performance. Both AutoSlog and the text classification
algorithms are evaluated in three domains: terrorism, joint ventures, and microelectronics. An
important aspect of this dissertation is that AutoSlog and the text classification systems can be
easily ported across domains.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS i ettt et e et e e iv
ABSTRACT e e e e e e vi
LIST OF TABLES e e s e s e e s e xii
LIST OF FIGURES e e et e e s e xiv
Chapter
1. OVERVIEW e e e et et e e 1
1.1 AutoSlog: A System for Automated Dictionary Construction 1
1.2 Relevancy Signatures and Relevancy Indices 3
1.3 The Big Picture e e 6
1.4 Research Contributions L o o 6
1.5 Guide to this Dissertation L o Lo 8
2. INFORMATION EXTRACTION ittt ettt et 10
2.1 Selective Concept Extraction Using CIRCUS 10
2.2 The MUC-4 Task and Corpus« 0 i v i i i it it it e it e o 14
2.3 The MUC-5 Tasks and Corpora 0 v i i i v i i vt v i 19
2.3.1 The Joint Ventures Domain 19
2.3.2 The Microelectronics Domain 0. 21
2.4 SUMIMATY . . .« v v v v i e 24
3. AUTOMATED DICTIONARY CONSTRUCTION FOR INFORMATION EX-
TRACTION e e s e e s s e e 25
3.1 Motivation e e e e e 25
3.2 Behind the Design of AutoSlog Lo Lo 26
3.3 The Algorithm e 26
3.4 Sample Concept Node Definitions 30
3.5 Experimental Results 35
3.5.1 The Terrorism Domain 35
3.5.2 The Joint Ventures Domain 40
3.5.2.1 Moving AutoSlog to a New Domain 41
3.5.2.2 A Frequency-Based PP-attachment algorithm 43
3.5.2.3 Sample Concept Node Definitions for JV. 46
3.5.2.4 Changes to the AutoSlog Interface 50
3.56.2.5 ResultsforJV o oo 52

vi

3.5.3 The Microelectronics Domain o v v v i v v v vt 56

3.5.3.1 Sample Concept Node Definitions for ME 57

3.5.32 Resultsfor ME o 60

3.6 Experiments with Novice Users i i i v i i vt v i .. 62
3.6.1 An Experiment with Students 63
3.6.2 An Experiment with Domain Experts 68

3.7 SUmMmATy o o e 70
4. INFORMATION EXTRACTION AS A BASIS FOR TEXT CLASSIFICATION 72
4.1 Text Classification o e e 72
4.2 Motivation e e e e e e e e 74
4.3 The Relevancy Signatures Algorithm, 75
4.3.1 Relevancy Signatures L. Lo e e 75
4.3.2 The Algorithm L e 76
4.3.3 Experimental Results 78
4.3.4 A Simple Word-Based Algorithm, 79

4.4 The Augmented Relevancy Signatures Algorithm 81
4.4.1 Augmented Relevancy Signatures 0000 81
4.4.2 The Algorithm L e 82
4.4.3 Experimental Results 82

4.5 Case-based Text Classification 84
4.5.1 The Case Representation, 85
452 TheCaseBase i 85
4.5.3 Relevancy Indices L e e e e 87
4.5.4 The Algorithm L e 88
4.5.5 Experimental Results, 91

4.6 Comparative Analysis in Multiple Domains 92
4.6.1 Deriving Threshold Values Empirically 92
4.6.2 The Terrorism Domain. oo 94
4.6.3 The Joint Ventures Domain 95
4.6.3.1 Generating a Training Corpus 95

4.6.3.2 Generating a Semantic Feature Dictionary 97

4.6.3.3 Experimental Results 99

4.6.3.4 Comparing Algorithms Using Standard Deviations 103

4.6.4 The Microelectronics Domain 104

4.7 Additional Experiments with Multiple Relevancy Signatures 107
4.8 SummAary ot e 111
5. CHARACTERISTICS AND REQUIREMENTS FOR NEW DOMAINS 112
5.1 Characterizing Domains and Tasks 0L, 112
5.1.1 Properties of Domains e 112
5.1.2 Propertiesof Tasks e e 114

5.2 Domains and Tasks for AutoSlog oL, 115
5.2.1 Domains for AutoSlog L Lo oL 115
5.2.2 Tasks for AutoSlog Lo 116

vil

5.3 Domains and Tasks for Text Classification 116

5.3.1 Domains for IE-Based Text Classification 116

5.3.2 Tasks for IE-Based Text Classification 117

5.3.2.1 Tasks For Relevancy Signatures 117

5.3.2.2 Tasks For Augmented Relevancy Signatures 120

5.3.2.3 Tasks For Case-Based Text Classification 121

5.4 Moving to New Domains 0o 122

5.4.1 Resources Required for CIRCUS 123

5.4.2 Preparing a Training Corpus for Text Classification 123

5.4.3 Annotating a Corpus for AutoSlog L. 124

5.4.4 How Much Training Data Does AutoSlog Need? 125

5.4.5 Run-Time Measurements 127

BB Summary e 127

6. RELATED WORK e e s s e e s e 129

6.1 Automated Knowledge Acquisition for NLP 129

6.2 Machine Learning e e e e 131

6.3 Text Classification e 132

6.3.1 Traditional IR approaches, 132

6.3.2 Al approaches i i e e e 133

6.4 Information Retrieval 0 oL 134

6.4.1 Relevance Feedback 0 L. 134

6.4.2 NLP and Information Retrieval 135

6.5 Case-Based Reasoning Lo e 136

6.6 SUMMATY ¢ o i i e 137

7. CONCLUSIONS e e e e e e e e e e e e 138

7.1 Research Contributions, Revisited 138

7.2 Future Researcho 140

7.2.1 Automated Dictionary Construction 140

7.2.2 Text Segmentation L L e 141

7.2.3 Text Summarization L o 141

7.2.4 Multi-Class Text Categorization 142

7.2.5 Information Retrieval 0 .. 142

T.3 SUMMATYt v v i e 143

APPENDICES

A.CONCEPT NODE SUBTYPES FOR JOINT VENTURES 144

B. SEMANTIC FEATURES FOR JOINT VENTURES 145
C. COLLOCATION FREQUENCIES FOR PREPOSITIONAL PHRASE ATTACH-

MENT . . o e e e e e 146

BIBLIOGRAPHY e e e e e 148

viii

Table

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3

4.4

LIST OF TABLES

Page
Guide to this dissertation L Lo Lo 9
Targeted information for the terrorism domain 35
Frequently proposed patterns for terrorism 36
AutoSlog dictionary for terrorism Lo o 38
Comparative results e e 40
Targeted information for the joint ventures domain 41
Number of input strings by slot oo 0 L. 52
Core AutoSlog dictionary for joint ventures 53
Generalized AutoSlog dictionary for joint ventures 54
Frequently proposed patterns for JV L o oo L. 55
Targeted information for microelectronics 56
Core AutoSlog dictionary for microelectronics 61
Generalized AutoSlog dictionary for microelectronics 61
Frequently proposed patterns for microelectronics 62
Student dictionary scores on TST3and TST4 64
Student dictionary sizeso o e e e e e e e e e e 65
Comparative dictionary sizes« vt it i e e e 69
Comparative scores for Tips3 i e e e e 69
Comparative scores for Partl, Part2, and Part3 70
Sample signatures and conditional probabilities 0. L. 77
The power of the case outline 88
Augmented relevancy signatures results for JV under Precision 101
JV relevancy signature patterns used by Fold 9 102

X

4.5 Standard Deviation Results for Relevant Wordsin JV 104
4.6 Standard Deviation Results for Relevancy Signatures in JV 105
4.7 ME relevant words used by Fold 1 under Precision 106
5.1 Properties of technical domains L 0 L. 113
5.2 Properties of event-based domains o L 00 L 113
5.3 Six common information types in task descriptions 115
5.4 Appropriate domains and techniques for information extraction 116
5.5 Appropriate tasks and techniques for information extraction 117
5.6 Appropriate domains and techniques for text classification 117
5.7 Recall and precision scores for selected JV words 118
5.8 Relevancy percentages for selected signatures 119
5.9 Relevancy percentages for reliable slot triples 121
5.10 Appropriate tasks and techniques for text classification 122

Figure
1.1
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10

2.12
2.13
2.14
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

LIST OF FIGURES

Page
Flowchart for portable text classification systems 7
The concept node definition for SMURDER-ACTIVES 11
The concept node definition for SMURDER-PASSIVES 12
An instantiated concept node L L oo e 12
Semantic feature hierarchy for the terrorism domain 13
A relevant MUC-4 terrorism text oo ool 14
An irrelevant MUC-4 terrorism text 15
Another relevant MUC-4 terrorism text, 16
The MUC-4 terrorism template for text DEV-MUC4-0042 17
A relevant MUC-5 joint ventures text 19
An irrelevant MUC-5 joint ventures text 20
The MUC-5 joint ventures template for text 0083 22
A relevant MUC-5 microelectronics text 22
A irrelevant MUC-5 microelectronics text 22
The MUC-5 joint ventures template for text 0083 23
AutoSlog flowchart 27
AutoSlog heuristics and examples for the terrorism domain 29
Concept Node For “<target> was bombed” 31
Concept node for “<perpetrator> threatened to murder” 32
Concept node for “riddled by <perpetrator>” 32
Concept node for “took <victim>” 000, 33
Concept node for “<perpetrator> painted” 34
Concept node for “priests with <instrument>” 34

x1

3.9 Histogram of concept node frequencies in the terrorism domain 37

3.10 AutoSlog patterns for the joint ventures domain 42
3.11 Concept node for “<entity> formed venture” 47
3.12 Concept node for “teamed up with <entity>” 47
3.13 Concept node for “PERCENT-OBJECT by <entity>" 48
3.14 Concept node for “to make <entity>” 49
3.15 Concept node for “<entity> thrown hat” 49
3.16 Concept node for “fins with <entity>”, 50
3.17 Concept node for “<entity> developed technology” 58
3.18 Concept node for “researchers at <entity>” 58
3.19 Concept node for “using <process>” o oL 59
3.20 Recall and precision scores for the student dictionaries 65
3.21 Recall vs. number of definitions L oo Lo 66
3.22 Precision vs. number of definitions L 00000 Lo 67
3.23 Recall and precision scores for text filtering 67
4.1 Flowchart for the relevancy signatures algorithm 76
4.2 Relevancy signatures results on TST3 and TST4 78
4.3 Simple keyword algorithm on TST3 and TST4 80
4.4 Flowchart for the augmented relevancy signatures algorithm 82
4.5 Augmented relevancy signatures results on TST3 and TST4 83
4.6 A sample sentence, concept nodes, and resulting case 86
4.7 Flowchart for the case-based text classification algorithm 88
4.8 Case-based text classification results 0. 91
4.9 One fold of cross-validation o0 .. 93
4.10 Threshold experiments e e 94
4.11 Graph of cross-validation results 96
4.12 Graph of cross-validation results for joint ventures 100
4.13 Standard deviation curves in the joint ventures domain. 105

xi1

4.14 Graph of cross-validation results for microelectronics 106

4.15 TST3 results for multiple relevancy signatures 109
4.16 TST4 results for multiple relevancy signatures 110
5.1 Example text annotations for AutoSlog o000 L. 125
5.2 The relationship between dictionary coverage and training corpus size. 127

xiii

CHAPTER 1

OVERVIEW

Manual knowledge engineering is not much fun. It is time-consuming, tedious, and difficult.
Many graduate students in artificial intelligence spend a lot of time building knowledge bases by
hand. Eventually, they spend a lot of time trying to avoid it.

Knowledge-based approaches hold great promise for achieving success with many problems in
artificial intelligence. But knowledge-based techniques require a knowledge base. And it is not
practical to manually build a new knowledge base for every problem.

The goal of this dissertation is to demonstrate that domain-specific knowledge for natural
language processing can be acquired automatically from a training corpus. In other words,
knowledge-based natural language processing systems do not always have to rely on manually
encoded dictionaries and knowledge bases. From a practical perspective, this implies that
knowledge-based natural language processing systems can be portable across domains with only
minimal human effort.

This research addresses the issue of automated knowledge acquisition for natural language
processing. We claim that knowledge-based natural language processing systems can be portable
across domains. In Section 1.1, we describe a corpus-based approach to automated dictionary
construction for domain-specific natural language processing, embodied in a system named Au-
toSlog. Section 1.2 presents a second theme of this dissertation: the integration of natural language
processing with information retrieval. This section explains how natural language processing
techniques can be applied to the problem of text classification. Section 1.3 outlines the big picture
that we propose for developing portable knowledge-based systems for high-level language tasks.
This section explains how AutoSlog can be combined with statistical text classification algorithms
to produce a knowledge-based text classification system that can be easily ported across domains.
Finally, Section 1.4 discusses the research contributions of this work, and Section 1.5 is a guide to
the rest of the dissertation.

1.1 AutoSlog: A System for Automated Dictionary
Construction

Over the years, knowledge-based natural language processing (NLP) systems have achieved
good performance on many tasks (e.g., [Carbonell, 1979a, Cullingford, 1978, DeJong, 1982, Hayes
and Weinstein, 1991, Lehnert, 1991, Mauldin, 1991]). However, most knowledge-based systems
depend on a domain-specific knowledge base that was constructed by hand. Manual knowledge
engineering is a problem for several reasons:

1. Manual knowledge engineering is time-intensive. It often requires many person-months of
effort to build a knowledge base.

2. Manual knowledge engineering typically requires domain experts or experienced system
developers. The human resources needed for knowledge engineering are often expensive
and are not always readily available.

3. Manual knowledge engineering is difficult and prone to errors. Humans are not always the
best judges of what types of knowledge are useful for a task. Humans can overlook knowledge
that would be helpful, or can incorrectly judge knowledge to be useful.

4. Domain-specific systems that rely on a manually constructed knowledge base are not portable
across domains. To apply a knowledge-based system to a new domain, the entire knowledge
engineering process must be repeated.

Consequently, manual knowledge engineering is a major bottleneck for most knowledge-based
systems. Knowledge-based systems will not be practical for real-world applications until this
knowledge-engineering bottleneck is addressed. Most companies and potential users of this
technology simply cannot afford to invest the time and financial resources that are necessary
to build knowledge bases by hand.

This dissertation addresses the knowledge-engineering bottleneck for domain-specific natural
language processing systems. Automated knowledge acquisition is essential to the long-term
success of knowledge-based natural language processing. We claim that dictionaries for some
natural language processing tasks can be acquired with minimal effort, given a training corpus.
In particular, we have developed a system called AutoSlog that uses a training corpus to build
domain-specific dictionaries for a natural language processing task called “information extraction”.

Information eztraction systems are designed to extract specific types of information from text.
For example, in the terrorism domain, an information extraction system might extract references
to all perpetrators and victims of terrorist attacks. To illustrate, consider the following sentence:

A passerby was hurt when two terrorists attempted to kill the mayor.

An information extraction system for terrorism should extract “a passerby” as a victim, “two
terrorists” as perpetrators, and “the mayor” as the victim of an attempted murder.

AutoSlog creates dictionaries of case frames that are used to extract information from text.
The input to AutoSlog is a set of noun phrases and the output is a set of case frames through
which these noun phrases can be extracted. AutoSlog uses a training corpus to drive the dictionary
construction process, but the training corpus does not contain examples of case frames. Instead,
the corpus contains examples of noun phrases that need to be extracted. For example, a training
corpus for the terrorism domain would consist of texts in which all perpetrators and victims of
terrorist attacks have been marked and labeled by a person. In the sentence above, “a passerby”
would be marked as an injury victim, “two terrorists” would be marked as perpetrators, and “the
mayor” would be labeled as the victim of an attempted murder, e.g.,

A passerby was hurt when two terrorists attempted to kill the mayor.

f f ‘

injury victim perpetrator attempted murder
victim

Given the annotated sentence as input, AutoSlog uses heuristics to generate case frames that
can be used to extract the noun phrases. The case frames represent patterns that are general
in nature and can be used to extract a general class of information, such as murder victims.
Consequently, the case frames will be useful for extracting similar information from future texts.
For example, given the annotated sentence above with the noun phrase “a passerby” marked as

an injury victim, AutoSlog generates a case frame to recognize the pattern “X was hurt”. In the
future, whenever the pattern “X was hurt” appears in a text, the case frame will extract X as an
injury victim. For the previous sentence, AutoSlog generates three case frames that represent the
following patterns:

If a text contains the expression ‘X was hurt’
then extract X as a victim who was injured.

If a text contains the expression ‘X attempted to kill’
then extract X as a perpetrator.

If a text contains the expression ‘attempted to kill Y’
then extract Y as the victim of an attempted murder.

In recent years, there has been a great deal of interest in corpus-based techniques. Large
corpora are a rich source of knowledge for automated knowledge acquisition. This dissertation
presents several techniques for intelligently exploiting annotated corpora. The general idea is
that a domain expert can quickly scan a pile of texts and annotate them. The annotations
provide a source of domain knowledge that can be used to automatically produce domain-specific
knowledge bases. The goal of this dissertation is to minimize the burden on the domain expert
and to make the annotation process as simple and straightforward as possible. For example, the
annotations required for AutoSlog can be done quickly and easily by anyone familiar with the
domain. An annotated corpus for AutoSlog can be created in a matter of hours by a person
with only minimal training. Equally important, the domain expert does not need any background
in natural language processing. In the past, manually encoded knowledge bases were usually
constructed by experienced natural language processing researchers. In contrast, annotated corpora
for AutoSlog can be created by people with no background in text processing.

In Chapter 3, we describe AutoSlog in detail and present results that we have achieved with
AutoSlog for several domains. In the terrorism domain, we compared a dictionary produced by
AutoSlog with a dictionary that was manually constructed by two natural language processing
researchers. We estimated that the hand-crafted dictionary required approximately 1500 person-
hours to build. In contrast, the AutoSlog dictionary achieved 98% of the performance of the
hand-crafted dictionary but took only 5 person-hours to build. Chapter 3 also presents results
for AutoSlog in two additional domains, a joint ventures domain and a microelectronics domain,
and describes two experiments in which novices created their own dictionaries for information
extraction using AutoSlog.

1.2 Relevancy Signatures and Relevancy Indices

The second goal of this dissertation is to demonstrate that natural language processing
techniques can be used effectively in information retrieval applications. As more documents
become available on-line, intelligent information retrieval will become increasingly important to
navigate the information highway efficiently and effectively. Traditional approaches to information
retrieval use keyword searches and statistical techniques to retrieve relevant documents [Callan
et al., 1992, Foltz and Dumais, 1992, Frakes and Baeza-Yates, 1992, Salton, 1971, Salton, 1989,
Turtle and Croft, 1991]. However, these approaches have well-known limitations and natural
language processing techniques hold promise for overcoming many of them.

The information retrieval problem that we will focus on is ezt classification. The problem is
the following: given a set of texts, the texts must be separated into two piles, one pile of texts
that are relevant to a specific domain and one pile of texts that are irrelevant to the domain. For
example, in the domain of terrorism, texts that mention a terrorist incident should be classified as

relevant and texts that do not mention a terrorist incident should be classified as irrelevant. This

is a two-class text categorization task.
We propose that information extraction techniques can be used to support text classification.

This approach represents a compromise between keyword-based techniques and in-depth natural
language processing. We have developed several algorithms that use information extraction to
classify texts on the basis of linguistic phrases and contexts. Information extraction technology is
powerful enough to make discriminations that are difficult to make with keyword-based techniques,

yet it is more robust and practical than in-depth natural language processing.
Keywords can recognize some concepts that are useful for relevancy discriminations. However,

concepts are often expressed with complex linguistic patterns that cannot be recognized by
keywords alone. To illustrate, we will use examples from the MUC-4 corpus [MUC-4 Proceedings,
1992]. The MUC-4 corpus consists of 1500 texts that mention something having to do with
terrorism. However, the text classification task for MUC-4 (which will be described in Section 2.2)
specifies that a text should be classified as “relevant” only if it mentions a specific terrorist incident
involving civilian victims or targets. Only 53% of the texts in the MUC-4 corpus satisfy this
definition of relevance. The remaining texts often refer to terrorism in general or describe incidents
where terrorists are fighting against other terrorists or military forces. The classification task for
MUC-4 involves, among other things, distinguishing texts that mention terrorism against civilian

targets from texts that mention military incidents.
Although people are often killed in terrorist incidents, the word “dead” is not a good keyword

for terrorism because people die in many ways that have nothing to do with terrorism. For example,
in the MUC-4 corpus, the word “dead” commonly appears in both terrorist event descriptions and
military event descriptions. However, the expression “was found dead” indicates that a dead body
was found and has an implicit connotation of foul play. This expression is likely to appear in texts
describing criminal activity and, in many cases, terrorist activity. For example, the expression “was
found dead” appears in terrorist event descriptions but never appears in military event descriptions
in the MUC-4 corpus. Consequently, the word “dead” is not a good keyword for terrorism by itself

but the expression “was found dead” is a strong indicator of terrorism in the MUC-4 corpus.
The first text classification algorithm proposed in this dissertation is called the Relevancy

Signatures Algorithm. A signature represents linguistic expressions that include linguistic context
immediately surrounding an individual word. For example, signatures can represent active and
passive verb constructions such as “has been bombed”, or they can represent a noun preceded
by a specific verb form, such as “was found dead” or “planted bombs”. Relevancy signatures are
signatures that are strongly associated with a domain. Relevancy signatures can be acquired
automatically by identifying signatures that are highly correlated with a domain in a training
corpus. For example, in the MUC-4 corpus, the signature representing the expression “was found
dead” is highly correlated with texts describing terrorist events. Once a signature attains the status
of a relevancy signature, it can be used to classify new texts. Relevancy signatures perform well

in domains that are characterized by strong key phrases.
However, relevancy discriminations sometimes depend on the types of objects involved in an

event. For example, assassinations of government officials are often politically motivated and are
frequently carried out by terrorists. This is in contrast to assassinations of rock stars, which are
usually carried out by random individuals. Similarly, car bombings are often the result of terrorist
activity but bombings of military installations are usually the result of military actions. These
sorts of discriminations depend on the objects involved in the event and cannot be made on the

basis of a fixed set of linguistic expressions.
The second text classification algorithm that we will describe is called the Augmented

Relevancy Signatures Algorithm. Augmented relevancy signatures represent relevant linguistic ex-
pressions as well as local semantic context surrounding them. Relevancy signatures alone represent
relevant linguistic expressions, but they do not capture the semantic information surrounding the
expression. For example, a signature can represent the expression “was bombed” but cannot
represent what was bombed. Consider the following two sentences:

(a) A car bomb exploded.
(b) The foreign debt crisis exploded.

The first sentence probably describes a terrorist incident but the second one does not. This is
because the object of the explosion in sentence (a) was a car bomb (which is typically associated
with terrorism) but the object of the explosion in the second sentence was an abstract object, the
foreign debt crisis.

Augmented relevancy signatures include semantic information about role objects as well as
linguistic phrases. For example, given the sentence “The mayor of Achi was assassinated”, augmented
relevancy signatures represent the key phrase “was assassinated” as a signature and the object of
the assassination, “the mayor of Achi”’, as a government-official victim. The incident is classified
as relevant if both the key phrase, “was assassinated”, and the object, government-official victim,
are highly associated with the domain. As with the signatures, relevant types of objects are
acquired automatically using a training corpus. Augmented relevancy signatures can achieve better
results than relevancy signatures alone for domains in which the context surrounding key phrases
is important.

Augmented relevancy signatures represent local context surrounding key phrases, but they
only capture semantic context associated with a single object. Sometimes, relevancy discrimina-
tions depend on multiple pieces of information that may be scattered throughout a sentence. For
example, consider the following sentence:

The man took the money and fled.

This sentence probably describes a robbery. However, none of the individual words or phrases
are highly associated with robberies. The words “took”, “money”, and “fled” do not necessarily
indicate a robbery. The phrase “took money” occurs in many contexts that do not describe a
robbery, for example “the man took the money as a gift”, “the man took the money out of his
wallet”, or “the man took the money from the customer”. In fact, the word “fled” may be the most
revealing word since people often flee from the scene of a crime. But people certainly flee from
many different types of crimes, not just robberies. And sometimes the person who flees is a victim,
not a perpetrator. This example illustrates how multiple pieces of information can act together to
paint a clear picture of an event even though the words and phrases individually do not.

This phenomenon motivated the third text classification algorithm called the Case-Based Text
Classification Algorithm. This algorithm uses case-based reasoning techniques (e.g., [Ashley, 1990,
Hammond, 1986, Kolodner and Simpson, 1989] to represent bigger chunks of context for text
classification. Instead of using individual linguistic phrases and objects to classify texts, the
case-based algorithm uses the context of an entire sentence. To classify a new text, the algorithm
looks at each sentence and uses the notion of a relevancy indez to retrieve similar sentences from
the training corpus. If the retrieved sentences are strongly associated with relevant texts in the
training corpus, then the new text is classified as relevant. By using multiple pieces of information
that may be scattered throughout a sentence, the case-based algorithm can recognize relevant event
descriptions that the previous algorithms cannot. The case-based algorithm is most appropriate
for domains that are not characterized by strong key phrases and depend on rich contextual
distinctions.

The Relevancy Signatures Algorithm, the Augmented Relevancy Signatures Algorithm, and
the Case-Based Text Classification Algorithm are knowledge-based approaches to text classification
because they depend on a domain-specific information extraction system. However, information
extraction systems for new domains can be developed quickly using AutoSlog. As a result, the
text classification algorithms can be easily ported across domains. In the next section, we show
how AutoSlog can be hooked up with the text classification algorithms to create portable text
classification systems.

1.3 The Big Picture

In Section 1.1, we briefly described a system called AutoSlog that automatically constructs
domain-specific dictionaries for information extraction. AutoSlog greatly reduces the knowledge-
engineering bottleneck for information extraction systems. In this section, we describe how the
dictionary created by AutoSlog can also be used to support higher-level language tasks.

In particular, dictionaries created by AutoSlog can be combined with statistical algorithms
to create knowledge-based text classifiers. A picture of the general scheme appears in Figure 1.1.
The input is an annotated training corpus of texts. The information that needs to be extracted
from these texts has been marked by a person. The training corpus is then given to AutoSlog
which builds a dictionary of case frames that can extract the desired types of information. These
case frames constitute a dictionary for the domain.

Each text is then given to a conceptual sentence analyzer, CIRCUS. CIRCUS wuses the
dictionary produced by AutoSlog to extract information from the texts. Statistical techniques
identify which types of information are highly correlated with the relevant texts in the training
corpus. That is, the statistics reveal which kinds of information are more commonly found in
relevant texts than in irrelevant texts. Presumably, these types of information are good indicators
for the domain and can be used to recognize relevant texts in a new corpus.

All three text classification algorithms mentioned in the previous section can be hooked up
with AutoSlog in this fashion. Each algorithm compiles statistics for different kinds of linguistic
context. The relevancy signatures algorithm identifies which signatures produced by CIRCUS
are highly correlated with relevant texts. The augmented relevancy signatures algorithm identifies
which signatures and eztracted objects are highly correlated with relevant texts. And the case-based
algorithm identifies which cases (i.e., sentence contexts) are highly correlated with relevant texts.

It is important to keep in mind that the signatures and case base are all generated auto-
matically as a side effect of CIRCUS’ sentence processing. The statistical techniques are domain-
independent, so the only domain-specific information used by the system is the dictionary of case
! The dictionary of case frames, however, can be constructed automatically by AutoSlog
using a training corpus. As a result, the text classification system benefits from knowledge-based
natural language processing but is portable across domains.

frames.

1.4 Research Contributions

The research contributions of this work fall into two categories: dictionary construction for
information extraction, and the application of natural language processing to text classification.

Claim #1: Dictionaries for information extraction can be constructed automatically.

Information extraction systems typically rely on a dictionary of case frames or patterns to
extract relevant information from text [Hobbs et al., 1992, Jacobs et al., 1991, Lehnert et al.,
1992a). This dictionary is usually the primary knowledge-engineering bottleneck for information
extraction systems. In the past, these dictionaries have been constructed manually by experienced
natural language processing researchers.

Using AutoSlog, dictionaries for information extraction can be acquired automatically with
only minimal effort. AutoSlog is a major contribution toward making information extraction
systems portable across domains. In the terrorism domain, a dictionary produced by AutoSlog
achieved performance comparable to that of a hand-crafted dictionary. We have also applied

1Well, almost. The augmented relevancy signatures algorithm and the case-based algorithm
also rely on a semantic feature dictionary. We address the problem of how to acquire semantic
features in Section 4.6.3.2.

annotated training
corpus

domain-specific
dictionary

Text CIas@

Figure 1.1: Flowchart for portable text classification systems

AutoSlog to two other domains, joint ventures and microelectronics, and achieved good results in
these domains as well. We claim that the heuristics underlying AutoSlog are applicable to a broad
range of domains.

Claim #2: Information eztraction can support high precision tezt classification.

Traditional approaches to information retrieval use word-based techniques that have well-
known limitations, which we will outline in Section 4.1. Natural language processing techniques
can overcome many of these limitations but are often hampered by practical difficulties. The
state-of-the-art in natural language processing is such that in-depth analyses of unconstrained
text are not yet feasible. Information extraction, however, is a practical and robust technology
that has achieved good success for domain-specific text analysis [Lehnert and Sundheim, 1991,
MUC-3 Proceedings, 1991, MUC-4 Proceedings, 1992, MUC-5 Proceedings, 1993]. We claim that
information extraction techniques are powerful enough to overcome many of the limitations of word-
based techniques and can achieve strong performance on text classification tasks. In particular,
information extraction techniques can be used to build highly accurate text classification systems.

The third claim of this dissertation is:

Claim #3: Knowledge-based tezt classification sysitems can be portable across do-
mains.

The text classification algorithms that we have developed are knowledge-based because they
rely on an information extraction system that uses a domain-specific dictionary. However, the
text classification algorithms are domain-independent and the domain-specific dictionary can
be acquired automatically, given an appropriate training corpus. Therefore the complete text
classification system is fully trainable and can be easily scaled up or ported to new domains.
By automating the construction of a knowledge-based text classification system, we have greatly
reduced the knowledge engineering bottleneck typically required for such systems while still
benefiting from a knowledge-based approach.

1.5 Guide to this Dissertation

To help the reader navigate this dissertation, Table 1.1 briefly describes the contents of each
chapter. The annotations for each chapter (in italics) indicate the importance of the chapter and
how it relates to the others.

Table 1.1: Guide to this dissertation

CHAPTER 2: Introduction to information extraction (IE), the CIRCUS sentence analyzer, and
the MUC-4 and MUC-5 tasks. Imporiant background for readers who are not familiar with
CIRCUS or MUC-4 and MUC-5.

CHAPTER 3: Description of the AutoSlog system that automatically constructs dictionaries
for information extraction; experimental results in three domains; experimental results for
dictionaries created by novice users. For readers who are interested in the technical details and
results of automated dictionary construction. The sections on ezperiments with novice users
can be skipped without loss of continuity.

CHAPTER 4: Description of three text classification algorithms based on information extraction;
a procedure for automatically identifying good threshold values; experimental results in three
domains.? For readers who are interested in the technical details and results of IE-based text
classification algorithms.

CHAPTER 5: Discussion of general properties of domains and tasks that are appropriate for
AutoSlog and IE-based text classification; explanation of how to port the systems across
domains. For readers who are interested in the general applicability of the approaches and how
to bring up the systems in ¢ new domain.

CHAPTER 6: Discussion of related work in automated dictionary construction, machine learning,
information retrieval, and case-based reasoning. For readers who are interested in how this
research relates to previous work.

CHAPTER T7: Summary of research claims, supporting results, and directions for future research.
Summary of the claims and contributions of this disseriation.

2Portions of this chapter also appear in [Riloff and Lehnert, 1994].

CHAPTER 2

INFORMATION EXTRACTION

Natural language processing (NLP) holds promise for dealing with many real-world applica-
tions, such as database access, question answering, and information retrieval. However, in-depth
natural language processing is an expensive endeavor that can strain computational resources.
Furthermore, the state-of-the-art in natural language processing is such that we do not yet have
practical NLP systems that can generate in-depth analyses of unconstrained text.

As an alternative to full-blown natural language processing, some researchers in the NLP
community have turned their attention to information eztraction. Whereas in-depth natural
language processing requires a complete analysis of text, information extraction is a more focused
and well-defined task. The goal of an information extraction system is to extract specific types
of information from text. For example, in the domain of terrorism, an information extraction
system might extract the names of all perpetrators, victims, physical targets, and weapons that
were involved in a terrorist attack. The main advantage of this task is that portions of a
text that are not relevant to the domain can be effectively ignored. This simplifies the job of
the NLP system considerably. Information extraction is less computationally expensive than
full-blown natural language processing because many phrases and even entire sentences can be
ignored if they are not relevant to the domain. And since the system is only concerned with the
domain-specific portions of the text, some of the most difficult problems in NLP are simplified (e.g.,
part-of-speech tagging, ambiguity resolution, etc.). Information extraction is a more practical and
robust technology than in-depth natural language understanding and has achieved success in the
last few years [Lehnert and Sundheim, 1991, MUC-3 Proceedings, 1991, MUC-4 Proceedings, 1992,
MUC-5 Proceedings, 1993].

In this chapter, we describe a conceptual sentence analyzer called CIRCUS that performs
information extraction, and we describe the MUC-4 and MUC-5 information extraction tasks and
corpora that were used to evaluate the work in this dissertation.

2.1 Selective Concept Extraction Using CIRCUS

Selective concept extraction is a natural language processing technique that supports informa-
tion extraction. This technique is essentially a form of text-skimming that selectively processes
text that is relevant to a domain. Selective concept extraction is implemented in a conceptual
sentence analyzer called CIRCUS [Lehnert, 1991]. The backbone of CIRCUS is a domain-specific
dictionary of concept nodes. Concept nodes are case frames that extract relevant information from
a sentence.

A concept node is triggered by an individual word but is activated only in certain linguistic
contexts. Each concept node has a set of enabling conditions that specify a linguistic context
that must be present in order for the concept node to be activated. For example, in the domain
of terrorism, the CIRCUS dictionary contains two concept nodes that are both triggered by the
word “murdered’. The first one, $murder-active$, is activated if the verb “murdered’ appears in

11

an active construction, such as “the terrorists murdered the mayor’. The second concept node,
$murder-passive$, is activated if the verb “murdered” appears in a passive construction, such as
“three peasants were murdered by guerrillas”. A concept node may be triggered by several different
words. For example, $murder-passive$ is also triggered by the word “killed” so it is also activated
by phrases such as “three peasants were killed by guerrillas”. If a sentence contains multiple trigger
words, then CIRCUS may produce multiple concept nodes for the sentence. If a sentence contains
no trigger words, then CIRCUS produces no output for that sentence. Instantiated concept nodes
are the only output generated by CIRCUS.

A concept node definition specifies a set of slots that extract information from text. Each
slot extracts a particular type of information and contains a syntactic expectation that predicts
where the information will be found in a clause. For example, $murder-passive$ contains two
slots: a wictim slot and a perpeirator slot. Since $murder-passive$ is activated only in a passive
construction, the concept node predicts that the victim is the subject of the verb “murdered” and
the perpetrator is the object of the preposition “by”. Alternatively, $murder-active$ predicts that
the subject of the verb is a perpetrator and the direct object is a victim. Figures 2.1 and 2.2 show
the concept node definitions for $murder-active$ and $murder-passive$.

Name: $MURDER-ACTIVES$
Trigger Word: murdered
Variable Slots: ((perpetrator (*SUBJECT* 1))

(victim (*DOBJ* 1)))

Slot Constraints: ((class orGANIZATION *SUBJECT¥)
(class TERRORIST *SUBJECT*)
(class HUMAN *SUBJECT*)
(class PROPER-NAME *SUBJECT?*))
((class HUMAN *DOBJ*)
(class PROPER-NAME *DOBJ*))

Constant Slots: (type murder)
Enabling Conditions: ((active))

Figure 2.1: The concept node definition for SMURDER-ACTIVES

Each slot also has a set of hard and soft constraints that specify semantic preferences for
the types of fillers that can legitimately fill the slot. The hard constraints must be satisfied in
order for the slot to be filled. For example, $murder-passive$ contains a hard constraint (zs-prep?)
which dictates that perpetrators should be extracted only from prepositional phrases containing
the preposition “by”. Other prepositional phrases will not be extracted as perpetrators.

The soft constraints act only as preferences for fillers. Therefore a slot may be filled even
if a soft constraint is violated. For example, $murder-passive$ contains soft constraints for both
victims and perpetrators: victims should be of the class HUMAN or PROPER-NAME and perpetrators
should be of the class ORGANIZATION, TERRORIST, HUMAN, or PROPER-NAME. A word satisfies the
soft constraints for a slot if the word contains one of the appropriate semantic feature classes in
its dictionary definition. CIRCUS uses a dictionary that associates semantic features with lexical
items, for example the word “guerrilla” has the semantic feature TERRORIST in the dictionary,

12

Name: $MURDER-PASSIVES$
Trigger Word: murdered
Variable Slots: (victim (*SUBJECT* 1)))

(perpetrator (*PREP-PHRASE* (is-prep? ’(by))))

Slot Constraints: ((class HUMAN *SUBJECT*)
(class PROPER-NAME *SUBJECT?*))
((class orGANIZATION *PREP-PHRASE*)
(class TERRORIST *PREP-PHRASE*)
(class HUMAN *PREP-PHRASE*)
(class PROPER-NAME *PREP-PHRASE*))

Constant Slots: (type murder)
Enabling Conditions: ((passive))

Figure 2.2: The concept node definition for §MURDER-PASSIVE$

and the word “peasant” has the semantic feature HUMAN.! A slot is filled even if the extracted
information is not of the appropriate semantic class, but a semantic feature violation will be flagged.
Words that are not in the dictionary are assumed to be proper nouns. Figure 2.3 shows a sample
sentence and the resulting instantiated concept node produced by CIRCUS.

Sentence: Three peasants were murdered by guerrillas.

$MURDER-PASSIVES
victim = “three peasants”
perpetrator = “guerrillas”

Figure 2.3: An instantiated concept node

Since concept nodes are the only form of CIRCUS output, the dictionary of concept nodes
is crucial for effective information extraction. The UMass/MUC-4 system [Lehnert et al., 1992a]
used two dictionaries: a part-of-speech dictionary containing 5436 lexical definitions, including
semantic features for domain-specific words, and a dictionary of 389 concept node definitions for
the terrorism domain. The concept node dictionary was manually constructed for MUC-4, which is
described in the next section. However, in Chapter 3 we explain how these concept node definitions
can be acquired automatically [Riloff, 1993a, Riloff and Lehnert, 1993].

The part-of-speech and semantic feature dictionary was also built by hand for MUC-4. Each
of the 5436 words in the dictionary was assigned one or more semantic features from the hierarchy
shown in Figure 2.4. This hierarchy was derived from a concept hierarchy given to the participants
of MUC-4 by the conference organizers. For example, the types of human targets, physical targets,
and weapons were specified in the MUC-4 guidelines. We added a few features to represent concepts
that are related to the relevant event types. For example, the feature money relates to robberies,
and the feature property is used to distinguish small objects (such as windows and equipment)

1This does not imply that terrorists are not human. Terrorists are a subclass of humans in the
semantic feature hierarchy.

13

from larger objects (such as buildings and vehicles) that are legitimate bombing targets. The
semantic feature hierarchy contains some atypical categorizations; for example, aerial-bombs are
not a subclass of bombs (because the MUC-4 guidelines categorized them separately) and terrorists
are not a subclass of human-target because they were not considered to be legitimate victims of
terrorist crimes. We added clergy as a special subclass of civilians because the MUC-4 corpus
contained a lot of texts about the murder of several jesuit priests.

attack active-military
cvilan —— 1
human human-target diplomat
terorrist former-govt-official
_ former-active-military
human-title govt-official
law-enforcement
location building legal-or-judicial
church politician
. civilian-residence ity-
media : security-guard
commercial
communications diplomat-office-or-residence
money energy financial
generic-loc govt-office-or-residence
entity organization military-phys-target law-enforcement-facility
terrorist-phys-target organization-office
phys-target —— |fransport-facility politican-office-or-residence
transport-route school
n transport-vehicle -
political water bomb dynamite
grenade mine
proper-name aeri_al—bomt_) molotov-cocktail vehicle-bomb
cutting-device
f handgun
explosive H
property fire machine-gun
glun mortar
time-period projectile rifle
tortu
weapon —— | torture rocket

Figure 2.4: Semantic feature hierarchy for the terrorism domain

Some words in the dictionary were assigned multiple semantic features. For example,
the definition of the word “army” contains both the organizetion and active-military features.
Ambiguous words were also assigned multiple features, e.g., the definition of the word “Flores”
contains three semantic features (proper-name, human, location) because it can be a person’s name
or a city.?2 The UMass/MUC-4 system used special routines to allow a head noun to inherit features
from noun modifiers in the same noun phrase. Words that did not have an entry in the dictionary
were assumed to be proper names.

It is important to note that the semantic feature hierarchy used by CIRCUS only represents
concepts that are related to terrorism. The vast majority of the words in the dictionary were
assigned the general entity feature. CIRCUS can get away with limited semantic coverage because
it is a text-skimmer. Semantic features are accessed only by the concept nodes, inside enabling
conditions or as soft constraints. For example, the murder concept nodes have soft constraints
that prefer human victims, which allows CIRCUS to skip over metaphorical expressions such as
“the bill was killed in Congress”. Words that are not triggered or extracted by concept nodes are
presumably unrelated to the domain anyway so the system does not need to know anything more
about them.

2The MUC-4 dictionary did not distinguish between conjunctions of features (e.g., the army is
both military and an organization) and disjunctions of features (e.g., Flores is either a human or
a city).

14

Each of the words in the MUC-4 dictionary was also assigned one or more part-of-speech
tags. The UMass/MUC-4 system used 12 parts-of-speech, one of which was a “special” tag that
included several parts-of-speech such as relative pronouns and conjunctions that required more
complicated processing. For MUC-5, CIRCUS employed a trainable part-of-speech tagger called
OTB [Lehnert et al., 1993a] that assigned parts-of-speech to words dynamically during sentence
analysis. OTB used 18 part-of-speech tags, including the same “special” tag that covered additional
parts-of-speech.

2.2 The MUC-4 Task and Corpus

Our interest in information extraction was motivated by the ARPA3-sponsored message
understanding conferences. These conferences are competitive performance evaluations designed
to assess the state-of-the-art in text analysis. The Fourth Message Understanding Conference
(MUC-4) was held in June 1992. Seventeen research labs from both academia and industry
participated in MUC-4. Each site had to develop a system to extract information about terrorism
in Latin America from newswire articles. An extensive set of domain guidelines defined what
constituted “terrorism”. In general, a text was defined as relevant only if it mentioned a specific
terrorist incident that occurred in one of seven Latin American countries. General descriptions
of terrorist events (e.g., “there have been many bombings ..."”), events that happened more than 2
months prior to the newswire date, and terrorist events involving military targets and personnel
were not considered to be relevant. Eight general types of incidents were relevant: arsons, attacks,
bombings, forced work stoppages, kidnappings, hijackings, murders, and robberies. Incidents of
these types that were attempted (e.g., attempted murders) or threatened (e.g., death threats) were

also relevant so there were actually 24 possible event types.
Figure 2.5 shows a relevant text from MUC-4. This text is relevant because it describes a

terrorist attack on a civilian target (the U.S. embassy) in Miraflores, Peru.

DEV-MUC4-0042 (NCCOSC)

LIMA, 16 JAN 90 (TELEVISION PERUANA) — [TEXT] TEN TERRORISTS HURLED
DYNAMITE STICKS AT U.S. EMBASSY FACILITIES IN THE MIRAFLORES DIS-
TRICT, CAUSING SERIOUS DAMAGE BUT FORTUNATELY NO CASUALTIES. THE
ATTACK TOOK PLACE AT 2100 ON 15 JANUARY [0100 GMT ON 16 JAN].

INSIDE THE FACILITY, WHICH WAS GUARDED BY 3 SECURITY OFFICERS, A
GROUP OF EMBASSY OFFICIALS WERE HOLDING A WORK MEETING.

ACCORDING TO THE FIRST POLICE REPORTS, THE ATTACK WAS STAGED BY 10
TERRORISTS WHO USED 2 TOYOTA CARS WHICH WERE LATER ABANDONED.
ONE OF THE VEHICLES WAS LEFT ON THE THIRD BLOCK OF JOSE PARDO
AVENUE, WHILE THE OTHER WAS LEFT ON THE FIRST BLOCK OF BELLA VISTA
STREET IN MIRAFLORES.

Figure 2.5: A relevant MUC-4 terrorism text

Figure 2.6 shows an irrelevant text from MUC-4. This text is irrelevant because it describes
a military incident. Even though a terrorist group (the FMLN) was involved, this incident is not
considered to be relevant because the terrorist group was fighting military forces.

3ARPA is the Advanced Research Projects Agency of the U.S. Government.

15

DEV-MUC4-0005 (NCCOSC)

CLANDESTINE, 8 JAN 90 (RADIO VENCEREMOS)- [TEXT] A WAR BULLETIN IN-
DICATES THAT ON 6 JANUARY AT 1625, FMLN [FARABUNDO MARTI NATIONAL
LIBERATION FRONT] TROOPS CLASHED WITH THE CAVALRY COMPANY IN
FINCA SANTA ELENA, SANTA TECLA, NEAR SAN SALVADOR, KILLING THREE
AND WOUNDING FOUR ENEMY TROOPS, INCLUDING THE PATROL LEADER
WHO WAS AMONG THOSE KILLED. OUR TROOPS SEIZED AN M-14 RIFLE FROM
THE ENEMY, 3,000 CARTRIDGES FOR A 7.62-MM RIFLE, FIVE KNAPSACKS, SIX
GRENADES, AND FIELD EQUIPMENT.

Figure 2.6: An irrelevant MUC-4 terrorism text

Figure 2.7 shows another relevant text that is more typical of the MUC-4 texts. This text
contains both relevant and irrelevant event descriptions. The second and third paragraphs describe
two different bombing incidents that are both relevant because they involve terrorist perpetrators
and civilian targets. The first, fourth, and fifth paragraphs, however, describe military incidents
that are not relevant. A text is considered to be relevant if it mentions at least one relevant
terrorist incident, even if it also contains irrelevant event descriptions.

For each relevant text, the MUC-4 systems had to extract relevant information and put the
information into one or more “templates”. A template is essentially a large case frame with a
predefined set of slots, one slot for each type of information to be extracted from the text. For
example, the MUC-4 templates had slots for the names of perpetrators, victims, physical targets,
weapons, dates, locations, etc. A separate template had to be filled out for each different event.
Each instantiated template was supposed to represent information pertaining to a single terrorist
incident. If a text describes multiple relevant events then multiple templates should be generated. If
a text describes no relevant terrorist events then only a dummy template containing no information
should be generated. Figure 2.8 shows the instantiated bombing template for the relevant text in
Figure 2.5.

The possible values for each slot fall into two different categories: string fills and set fills. The
string fill slots are filled with strings that are extracted directly from the text (shown in quotes).
For example, the perp: individual id slot is filled with the name of the perpetrator as it appears
in the text; for text dev-muc4-0042 the perpetrators are “ten terrorists”. Similarly, the human
victims in text dev-muc4-0042 are “embassy officials” and “security officers”. In general, the string
fill slots have an infinite set of possible values.

In contrast, the set fill slots must be filled with a fixed set of predefined values. For example,
the incident: type slot must be filled with one of the 8 event types: arson, attack, bombing,
kidnapping, forced work stoppage, hijacking, murder, robbery. The incident: stage of execution
slot must be filled with one of three possible values: accomplished, attempted, threatened.
Together, these two slots effectively represent 24 types of events (e.g., murders, attempted murders,
and death threats are different). Information often appears in multiple template slots as a string
fill and set fills. For example, the instrument is represented as a string fill for the instrument:
id slot (“dynamite sticks”) and also as set fills for the instrument: type slot (dynamite). The
set fill slots represent the general category of the string that appeared in the text. The distinction
between string fill slots and set fill slots will become apparent when we discuss the automated
dictionary construction system, AutoSlog, in Chapter 3.

ARPA provided the MUC-4 participants with a corpus of 1500 texts and associated answer
keys to use for development purposes. The answer keys are instantiated templates that were

DEV-MUC4-0018 (NCCOSC)

SAN SALVADOR, 10 JAN 90 (AFP) - [TEXT] OFFICIAL SOURCES HAVE REPORTED
THAT SEVERAL GUERRILLA ATTACKS AND HEAVY FIGHTING TOOK PLACE
THE EVENING OF 9 JANUARY AND THIS MORNING THROUGHOUT THE COUN-
TRY, AND AS A RESULT, THREE SOLDIERS WERE KILLED AND THREE OTHERS
INJURED.

ALLEGED GUERRILLA URBAN COMMANDOS LAUNCHED TWO HIGHPOWER
BOMBS AGAINST A CAR DEALERSHIP IN DOWNTOWN SAN SALVADOR THIS
MORNING. A POLICE REPORT SAID THAT THE ATTACK SET THE BUILDING
ON FIRE, BUT DID NOT RESULT IN ANY CASUALTIES ALTHOUGH ECONOMIC
LOSSES ARE HEAVY.

DURING THE EVENING OF 9 JANUARY, GUERRILLA URBAN COMMANDOS
BOMBED TWO ELECTRICITY FACILITIES IN DIFFERENT PLACES IN SAN SAL-
VADOR, WHICH CAUSED POWER OUTAGES IN SOME ARFEAS OF THE CAPITAL.

MEANWHILE, THE ARMED FORCES PRESS COMMITTEE (COPREFA) REPORTED
TODAY THAT THREE ARMY SOLDIERS WERE KILLED RECENTLY IN CLASHES
AGAINST MEMBERS OF THE FARABUNDO MARTI NATIONAL LIBERATION
FRONT (FMLN) IN DIFFERENT PARTS OF THE CENTRAL AND EASTERN RE-
GIONS OF THE COUNTRY.

THE WAR BULLETIN BY COPREFA STATED THAT THE CLASHES, IN WHICH
THREE MEMBERS OF THE GENERAL JUAN RAMON BELLOSO BATTALION
WERE INJURED, TOOK PLACE IN SAN JOSE GUAYABAL, IN THE CENTRAL CUS-
CATLAN DEPARTMENT, AND IN SANTA ELENA IN THE EASTERN USULUTAN
DEPARTMENT.

Figure 2.7: Another relevant MUC-4 terrorism text

16

17

PRI R®DNEOS

[T
- o

L e e =Y
NSOk 0N

20.

21.

22.
23.

24.

message: id

message: template
incident: date

incident: location

incident: type

incident: stage of execution
incident: instrument id
incident: instrument type
perp: incident category
perp: individual id

perp: organization id

perp: organization confidence
phys tgt: id

phys tgt: type

phys tgt: number

phys tgt: foreign nation
phys tgt: effect of incident
phys tgt: total number
hum tgt: name

hum tgt: description

hum tgt: type
hum tgt: number

hum tgt: foreign nation
hum tgt: effect of incident

hum tgt: total number

dev-muc4-0042 (nccosc)

1

15 Jan 90

Peru: Lima (city): Miraflores (neighborhood)
bombing

accomplished

“dynamite sticks” / “dynamite”

dynamite: “dynamite sticks” / “dynamite”
terrorist act

“ten terrorists” / “10 terrorists”

“embassy facilities”

diplomat office or residence: “embassy facilities”
1 / plural: “embassy facilities”

United States: “embassy facilities”

some damage: “embassy facilities”

“embassy officials”

“security officers”

diplomat: “embassy officials”

security guard: “security officers”
plural: “embassy officials”

3: “security officers”

United States: “embassy officials”

no injury or death: “security officers”
no injury or death: “embassy officials”

Figure 2.8: The MUC-4 terrorism template for text DEV-MUC4-0042

18

manually encoded by the participants of MUC-3* and MUC-4. Each answer key contains the
correct information corresponding to a relevant terrorist incident reported in a text; that is, the
information that should be extracted from the text. ARPA also supplied an additional 200 texts
and associated answer keys as test sets for the final MUC-4 evaluation. This entire set of 1700
texts and corresponding answer keys served as the testbed for the experiments described in this
dissertation.

The answer keys also served as a set of correct classifications for each text. If a text has
instantiated key templates associated with it in the corpus, then it should be classified as a relevant
text. If a text has no instantiated key templates associated with it (i.e., only a dummy template)
then it should be classified as an irrelevant text. This is a binary classification problem: a text
is either relevant to the terrorism domain or irrelevant. The texts were selected by keyword
search from a database of newswire articles® because they contain words associated with terrorism.
However, many of them do not mention any relevant terrorist incidents. Of the 1700 texts in the
MUC-4 corpus, only 53% describe a relevant terrorist event.®

Because many of the texts in the corpus are irrelevant, the MUC-4 systems had to distinguish
the relevant from the irrelevant texts. Although the MUC-4 task was information extraction,
information detection” (i.e., text classification) was an implicit subtask. To be successful in MUC-4,
the information extraction systems also had to be good at detection. The UMass/MUC-4 system
did not use a separate text classification module. Instead, it extracted information from every
text and relied on a discourse analysis module to discard irrelevant templates. This strategy
was very effective®, but it is expensive. A reliable text classification module could have filtered
out irrelevant texts so we would not have needed to apply the complete NLP system to every
text.® Furthermore, a text classification module could have improved accuracy by preventing
irrelevant texts from slipping through to discourse analysis which often had trouble recognizing
irrelevant event descriptions. Furthermore, the discourse analysis module was domain-specific
and not portable across domains. The MUC-4 application illustrates how text classification can
be useful not only for stand-alone applications, but also as a partner for other natural language
processing tasks.

MUC-3 was the Third Message Understanding Conference held in 1991 [MUC-3 Proceedings,
1991].

SThe database was constructed by the Foreign Broadcast Information Service (FBIS) of the
U.S. government [MUC-4 Proceedings, 1992].

6For our text classification experiments, we counted all of the texts that had “optional”
templates as relevant texts.

TARPA has recently initiated a competitive performance evaluation called TREC that focuses
explicitly on the task of information detection [Harman, 1994, Harman, 1993].

8The MUC-4 systems were evaluated on the basis of two blind test sets, TST3 and TST4. The
UMass/MUC-4 text filtering scores were 91% recall with 94% precision on TST3 and 91% recall
with 82% precision on TST4 [MUC-4 Proceedings, 1992].

9The text classification algorithms described here still require CIRCUS to extract information
from the texts, but the UMass/MUC-4 system contained additional components for discourse
analysis that would not be needed.

19

2.3 The MUC-5 Tasks and Corpora

In 1993, ARPA sponsored the Fifth Message Understanding Conference (MUC-5). MUC-5
was also a competitive performance evaluation that focused on the information extraction task.
ARPA gave the MUC-5 participants two new domains: joint ventures (a business domain) and
microelectronics (a technical domain). Nineteen sites participated in MUC-5, including the NLP
group at the University of Massachusetts. In the next two sections, we describe each of these
domains.

2.3.1 The Joint Ventures Domain

The first domain is a business domain related to joint venture activities. For the joint ventures
(JV) domain, a text is considered to be relevant if it describes a joint venture between two or more
partners. A joint venture, or tie-up, is defined as: “a cooperative association between 2 or more
parties to own and/or develop a project together”. The names of at least two partners must be
explicitly mentioned in the text and a business purpose or explicit identification as a tie-up or
joint venture is necessary. A new corporate entity (i.e., a child company) may or may not result.
Figure 2.9 shows a relevant JV text from the MUC-5 corpus.

0083: DECEMBER 18, 1990, TUESDAY Copyright (c) 1990 Jiji Press Ltd.

NIPPON FIRE AND MARINE INSURANCE CO. SAID TUESDAY IT WILL SET UP
A NONLIFE INSURANCE FIRM IN JAKARTA WITH PT BANK BALI OF INDONE-
SIA. NIPPON FIRE AND MARINE INSURANCE HAS ALREADY MADE A 49 PCT
CAPITAL PARTICIPATION IN AMB, A NONLIFE INSURANCE FIRM UNDER THE
CONTROL OF THE INDONESIAN BANK. AMB WILL INCREASE ITS CAPITAL ON
THURSDAY FROM THE PRESENT 500 MILLION INDONESIAN RUPIAHS TO 15
BILLION RUPIAHS, OF WHICH 49 PCT WILL BE PROVIDED BY NIPPON FIRE AND
MARINE. UPON OBTAINING INDONESIAN GOVERNMENT APPROVAL OF THE
CAPITAL PARTICIPATION, AMB WILL START BUSINESS AS A JOINT NONLIFE
INSURANCE COMPANY NAMED BALI NIPPON INSURANCE. NIPPON FIRE AND
MARINE WILL BE THE FIFTH JAPANESE NONLIFE INSURANCE COMPANY TO
SET UP SUCH A JOINT VENTURE IN THE ISLAND REPUBLIC.

Figure 2.9: A relevant MUC-5 joint ventures text

Irrelevant texts in the MUC-5 corpus often contain the phrase “joint venture” but do not
mention a specific tie-up between partners. Figure 2.10 shows an example of an irrelevant text.
This text contains the phrase “Joint Venture Committee” and reports on joint investments in
general but does not describe a specific joint venture. Texts that mention a specific joint venture
but name only one of the partners are also considered to be irrelevant. Other common types
of irrelevant texts describe business activities that are similar in nature but do not satisfy the
definition of a tie-up, such as mergers, acquisitions, activities of venture capitalists, etc.

The information extraction task for the joint ventures domain required the ability to extract
several types of information, including the following:'°

10The MUC-5 task also required the ability to extract additional information, such as locations,
dates, etc. See [MUC-5 Proceedings, 1993] for a full description of the MUC-5 task.

2512: March 11, 1981, Wednesday
Copyright (c) 1981 Jiji Press

Japanese and Philippine business leaders at their meeting in this western Japanese city
Tuesday and Wednesday agreed to consider establishing a Joint Investment Fund.

A joint statement of the Eighth Annual Conference of the Japan-Philippine Economic Co-
operation Committee said a small business subcommittee will be set up in each other’s Joint
Venture Committee to promote Japanese small businesses’ investment in the Philippines.

The Joint Fund scheme will be studied by the subcommittees, it said.

The two sides also agreed to hold the Ninth Conference in suburban Manila in March next
year.

Speaking to newsmen after the committee meeting, Noboru Gotoh, Chairman of the
Japanese National Committee for the Joint Body and President of Tokyu Corp., said Japan
and the members of the Association of Southeast Asian Nations (ASEAN) will reach final
agreement to set up ASEAN- Japan Development Corp. (AJDC) at a meeting in Singapore
next Friday.

AJDC, which will be based in Singapore, is designed to promote Japanese firms’ advance-
ment into the ASEAN countries by financing, affording guarantees and extending consulting
services for them.

It will be capitalized at two billion yen (about 10 million dollars), which will be equally put
up by Japan and the ASEAN nations — Thailand, Malaysia, Indonesia, Singapore and The
Philippines.

Gotoh also said AJDC will be formally inaugurated next June and start activities late this
year.

Figure 2.10: An irrelevant MUC-5 joint ventures text

20

21

Entity: name of a partner or the child company.

(a company, government, or person)
Facility Name: physical facility associated with an entity.
Ownership Percent: percent of ownership by an entity.
Total Capitalization: total (cash) capitalization of the tie-up.
Person Name: name of a person associated with an entity.
Product/Service: product or service that will result from the tie-up.
Revenue Rate: expected revenue rate.
Revenue Total: total expected revenue for a period of time.

As in the terrorism domain, the MUC-5 systems had to put the extracted information into
one or more templates. However, the JV templates were object-oriented and included explicit
links between objects. The details of the template structures are not important here (see [MUC-5
Proceedings, 1993)); a simplified version of a JV template is shown in Figure 2.11, corresponding
to the text in Figure 2.9. The template shows a tie-up relationship between the Nippon Fire and
Marine Insurance Co. and the PT Bank Bali. As a result of the tie-up, a child company called
AMB was formed. AMB is an insurance company which is classified as a financial service. AMB
was initially capitalized at 50 million rupiahs (49% owned by Nippon Fire and Marine Insurance)
and then increased its capital to 15 billion rupiahs (49% from Nippon Fire and Marine Insurance).
The template notation is confusing, but it is clear where the numbers come from in the text.

The MUC-5 development corpus for the joint ventures domain contains 999 texts and
corresponding answer keys for each text. The corpus also contains 3 tests sets of 100 texts each
(Tips1, Tips2, and Tips3) that were used for various testing phases during MUC-5.

2.3.2 The Microelectronics Domain

The second domain tested in MUC-5 was microelectronics. In general, microelectronics
is a broad area that involves many different aspects of microchip fabrication. However, only
certain stages and processes are relevant to the MUC-5 task. In particular, only texts that
contain information about layering, lithography, or etching in wafer fabrication, or texts that
mention packaging are considered to be relevant. These four microelectronics activities (layering,
lithography, etching, and packaging) are referred to as processes. In addition, a text is relevant
only if a process is linked to a specific company or research group. Figure 2.12 shows a relevant
microelectronics text from the MUC-5 corpus.

In contrast, Figure 2.13 shows an irrelevant MUC-5 text. This text contains a keyword,
“etching”, that is associated with one of the relevant microelectronics processes. However, this
text describes etching in the context of vehicle glass, so the text is not about microelectronics at
all.

As before, the MUC-5 microelectronics systems had to put the extracted information into
one or more templates. The ME templates were also object-oriented with many links between
objects. A simplified version of an ME template is shown in Figure 2.14 (see [MUC-5 Proceedings,
1993] for details). This template corresponds to the text in Figure 2.12. The template shows a
microelectronics capability involving a company called “General Semiconductor Industries Inc.”.
General Semiconductor is shown as a purchaser or user of a packaging type called DIP (dual in-line
package). The packaging design has P_L_counts (pin or lead counts) of 8 and 16 pins. Finally, the
objects being packaged are “diode arrays” that are classified as ACTIVE_DISCRETE_DEVICES.
Note that “diode arrays” are listed only in a comment slot and do not actually have to be extracted
by the system. The system merely has to classify the packaging object into one of the predefined
categories, in this case, ACTIVE_DISCRETE_DEVICES.

The MUC-5 information extraction systems were required to extract many different kinds
of information about microelectronics activities. However, there is one major difference between
the previous information extraction tasks for terrorism and JV, and the information extraction

22

Template Summary: 0083; 181290; "Jiji Press Ltd"
Tie-up: EXISTING
Entities:
COMPANY: NIPPON FIRE AND MARINE INSURANCE CO;
Aliases: "NIPPON FIRE AND MARINE INSURANCE" / "NIPPON FIRE AND MARINE"
Nationality: Japan (COUNTRY)
Ownership:
Ownership-%: 49
Total-capitalization: 500000000 IDR
Ownership:
Ownership-%: 49
Total-capitalization: 15000000000 IDR
COMPANY: PT BANK BALI
Location: Indonesia (COUNTRY)
Nationality: Indonesia (COUNTRY)
Joint Venture Co:
COMPANY: AMB;
Aliases: "BALI NIPPON INSURANCE"
Location: Jakarta (CITY 1) Jakarta Raya (PROVINCE) Indonesia (COUNTRY)
Activity:
Industry:
Finance: "A JOINT NON LIFE [INSURANCE COMPANY] NAMED BALI NIPPON INSURANCE" /
"A [NON LIFE INSURANCE FIRM] UNDER THE CONTROL OF THE INDONESIAN BAN" /
"A NONLIFE [INSURANCE FIRM]"
Site:
COMPANY: AMNB;
Aliases: "BALI NIPPON INSURANCE"
Location: Jakarta (CITY 1) Jakarta Raya (PROVINCE) Indonesia (COUNTRY)

Figure 2.11: The MUC-5 joint ventures template for text 0083

General Semiconductor Industries, Inc. (GSI), announced production of new 8-pin and
16-pin dual-in-line package diode arrays. The DA series uses TransZorb (R) TVS technology
to provide transient voltage suppression at low clamping voltages for sensitive data lines.
These devices are applicable in the protection of board-level data communications, power
and/or data bus lines. Both the 8-pin and 16-pin DIP diode arrays feature 500 watt peak
pulse power per line for board level transients, standard DIP packaging and common ground
configuration.

Figure 2.12: A relevant MUC-5 microelectronics text

Glass Medic, maker and marketer of service and repair systems for damaged vehicle glass,
will open an operations center in Maulden, UK. Operational: 8/90. The facility will
centralize inventory storage and sales and service for Glass Medic’s UK business as well
as new opportunities in Scandanavia and W Europe. Glass Medic has a theft-prevention
system, SecurEtch, for etching vehicular glass.

Figure 2.13: A irrelevant MUC-5 microelectronics text

23

Template Summary: 2547486; "News Release"
MICROELECTRONICS CAPABILITY:
PROCESS:
PACKAGING:
Type: DIP;
P_L_Count: 8, 16;
DEVICE:
Function: ACTIVE_DISCRETE_DEVICES;
Comment: ‘‘diode arrays’’;
PURCHASER_OR_USER:
ENTITY: Company:

260290;

General Semiconductor Industries Inc.;

Figure 2.14: The MUC-5 joint ventures template for text 0083

task for microelectronics. In terrorism and JV, most of the important information was stored in
the templates as string fills (e.g., “armed guerrillas”). In microelectronics, most of the important
information was stored as set fills (e.g., ACTIVE_DISCRETE_DEVICES). The MUC-5 systems
still had to identify portions of the text that contained relevant information (e.g., “diode arrays”)
but only the general category of the information (ACTIVE_DISCRETE DEVICES) was recorded
in the template.

The work described in this dissertation is concerned with 12 types of information (correspond-
ing to template slots) that need to be extracted from relevant microelectronics texts. Of the 12
slots, only two of them (entity name and equipment name) contain string fills; the remaining slots
contain set fills.

tape automated bonding, laser/wire bonding, flip chip.
the capacity or complexity of the device.

clock frequency, clock speed, or access time.

active discrete, microprocessor, ASIC, gate array,
memory.

a company, government, or person that plays the role
of developer, manufacturer, distributor, purchaser,

or user.

Bonding Type:
Device Size:
Device Speed:
Device Function:

Entity Name:

Equipment Name:

Equipment Type:

Film Type:
Granularity Size:
Material Type:
Pin Count:

Process Type:

name or model number of equipment.

oxidation system, deposition system, epitaxial system,
lithography system, etching system, tape automated
bonder, or modular equipment.

insulators, semiconductors, metal.

line width, resolution, gate size, or feature size.
ceramic, plastic, epoxy, glass, ceramic glass.

the number of pins or leads in the packaging design.
layering, lithography, etching, or packaging.

The microelectronics domain is fundamentally different from the terrorism and joint ventures
domains because it is a technical domain. We will explain some of the differences between technical
domains and event-based domains in Chapter 5 and discuss which types of domains are most
well-suited for our algorithms.

24

2.4 Summary

In this section, we described the following:
e A conceptual sentence analyzer called CIRCUS that performs information extraction.
e The MUC-4 information extraction task for the terrorism domain and the MUC-4 corpus.

e The MUC-5 information extraction tasks for the joint ventures and microelectronics domains
and the MUC-5 corpora.

CHAPTER 3

AUTOMATED DICTIONARY
CONSTRUCTION FOR
INFORMATION EXTRACTION

3.1 Motivation

Knowledge-based natural language processing systems have demonstrated good performance
for information extraction tasks in limited domains [Lehnert and Sundheim, 1991, MUC-3 Proceed-
ings, 1991, MUC-4 Proceedings, 1992, MUC-5 Proceedings, 1993]. But enthusiasm for their success
is often tempered by real-world concerns about portability and scalability. Knowledge-based NLP
systems depend on a domain-specific dictionary that must be carefully constructed for each domain.
Building this dictionary is typically a time-consuming and tedious process that requires many
person-hours of effort by highly-skilled people who have extensive experience with the system.
Dictionary construction is a major knowledge engineering bottleneck that needs to be addressed in
order for information extraction systems to be portable and practical for real-world applications.

We have developed a program called AutoSlog that automatically constructs domain-specific
dictionaries for information extraction. Given a training corpus, AutoSlog proposes a set of
dictionary entries that are capable of extracting specific types of information from the training
texts. If the training corpus is representative of the domain, the dictionary created by AutoSlog
will achieve strong performance for information extraction from novel texts. Given a training
set from the MUC-4 corpus, a dictionary created by AutoSlog for the terrorism domain achieved
98% of the performance of a hand-crafted dictionary on two blind test sets. We estimate that
the hand-crafted dictionary required approximately 1500 person-hours to build. In contrast, the
AutoSlog dictionary was constructed in only 5 person-hours given a training corpus. Furthermore,
constructing a dictionary by hand requires a great deal of training and experience whereas a
dictionary can be constructed using AutoSlog with only minimal training.

In Section 3.2, we describe some key ideas that led to the development of AutoSlog. Section 3.3
explains how AutoSlog generates concept node definitions for a domain using a training corpus.
In Section 3.4, we present examples of both good and bad concept node definitions produced by
AutoSlog for the terrorism domain. Section 3.5 presents empirical results for AutoSlog in three
different domains: terrorism, joint ventures, and microelectronics. Finally, Section 3.6 describes
two experiments with novices which demonstrate that people with no background in text processing
can successfully use AutoSlog.

26

3.2 Behind the Design of AutoSlog

Two observations were central to the design of AutoSlog. The first observation is that news
reports follow certain stylistic conventions. In particular, the most important facts about a news
event are usually reported first. Details and secondary information are described later. It follows
that the first reference to an important object related to an event (e.g., a victim or perpetrator)
usually appears in a sentence that mentions the event. For example, a story about the kidnapping
of a diplomat probably mentions that the diplomat was kidnapped before it provides background
information about the diplomat’s family, etc. To put it another way, the first reference to the
diplomat probably mentions the kidnapping. This observation is key to the design of AutoSlog.
AutoSlog operates under the assumption that the first reference to an important object in an event
is most likely where the relationship between that object and the event is made explicit.!

Once AutoSlog has identified the first sentence that mentions an object involved in an event,
it determines which words or phrases should activate a concept node that can be used to extract
the noun phrase that refers to the object. The second key observation behind AutoSlog is that the
immediate linguistic context surrounding the noun phrase usually contains the words or phrases
that describe the role of the object in the event. For example, consider the sentence “A U.S.
diplomat was kidnapped by FMLN guerrillas today”. This sentence contains two important pieces of
information about the kidnapping: the victim (“U.S. diplomat”) and the perpetrator (“FMLN
guerrillas”). In both cases, the word “kidnapped” is the key word that relates them to the
kidnapping event. In its passive form, we expect the subject of the verb “kidnapped” to refer
to a victim and we expect the prepositional phrase beginning with “by” to contain a noun phrase
that refers to a perpetrator. The word “kidnapped” specifies the roles of these people in the
kidnapping and is therefore the most appropriate word to trigger a concept node.

AutoSlog relies on a small set of heuristics to determine which words and phrases are likely
to activate useful concept nodes. In the next section, we will describe these heuristics and explain
how AutoSlog generates complete concept node definitions.

3.3 The Algorithm

AutoSlog’s job is to automatically build a dictionary of concept node definitions that can be
used to extract certain types of information from text. For example, in the domain of terrorism,
AutoSlog builds a dictionary of concept nodes that can be used to extract the names of perpetrators,
victims, physical targets, and weapons. AutoSlog’s strategy is to look at samples of information
that needs to be extracted and, for each one, propose a concept node that can be used to extract
the information. A set of heuristics is used to generate the concept nodes. The resulting concept
node definitions are general in nature so they are applicable to new texts as well.

For the experiments described in Section 3.5, the input to AutoSlog is a set of texts and answer
keys that contain the desired information that needs to be extracted from the texts. It is important
to emphasize that these answer keys are not a requirement for AutoSlog. The answer keys contain
a lot of additional information that AutoSlog does not need or use. In theory, AutoSlog requires
only an annotated corpus in which the information that needs to be extracted from each text
has been marked and labeled with semantic tags. We will return to this point in Section 5.4.3.
However, for all the experiments described in this chapter, we used the answer keys as training
data.

!The current implementation of AutoSlog is based on this assumption, but we emphasize that
this assumption is not necessary if an annotated corpus is available. Section 5.4.3 describes how
an annotated corpus would contain markings that make this assumption unnecessary.

27

Given a set of training texts and marked noun phrases as input?, AutoSlog proposes a set
of concept node definitions that can be used to extract the noun phrases from the corresponding
texts. Since the concept node definitions are general in nature, we expect that many of them
will be useful for extracting information from novel texts as well. The algorithm for constructing
concept node definitions is as follows. For each targeted noun phrase (represented as a text string),
AutoSlog finds the first sentence in the text that contains the string. This step is based on the
observation noted earlier that the first reference to an object involved in an event is likely to be
the place where the object is explicitly related to the event.?

The sentence is then handed over to CIRCUS which identifies the main syntactic constituents
of the sentence. For example, CIRCUS breaks the sentence into clauses and identifies the subject,
verb, direct object, and prepositional phrases of each clause. Using this information, AutoSlog
identifies the first clause in the sentence that contains the string. Given the appropriate clause,
a set of heuristics is applied to suggest a conceptual anchor point for a concept node definition.
If none of the heuristics is satisfied then AutoSlog searches for the next sentence in the text that
contains the string and the process is repeated. Figure 3.1 shows the general architecture of
AutoSlog.

annotated
source text
corpus or
answer keys vpr|d Trade MEYS "The World Trade Center
Center EEE was bonbed by terrorists."”
Sentence Analyzer
Conceptual
CONCEPT NODET] Anchor S: Wrld Trade Center

DEFINITION: O -— Point <+« V. was bonbed
X> was bonne HeurIStICS y terrorists

Figure 3.1: AutoSlog flowchart

The conceptual anchor point heuristics are the heart of AutoSlog. A conceptual anchor point
is a word that should activate a concept; this is the trigger word of a concept node definition. The
heuristics are divided into three categories depending upon where the targeted string is found in
the clause. The string must be a noun phrase, so there are three possibilities: it could be the

2Either in the form of an annotated corpus or a set of texts and answer keys.

3This step is not necessary if AutoSlog uses an annotated corpus because AutoSlog can
automatically identify which sentences contain the marked noun phrases. However, for the
experiments in this dissertation we used the MUC-4 and MUC-5 answer keys as input and they
did not identify which sentences the noun phrases came from in the source texts.

28

subject, the direct object, or in a prepositional phrase.* AutoSlog uses a different set of heuristics
for each of these three cases.

If the targeted noun phrase is the subject of the clause, then AutoSlog assumes that the verb
should be the conceptual anchor point. That is, AutoSlog assumes that the verb is the word that
relates the object to an event. For example, given the noun phrase “the mayor” and the clause “the
mayor was kidnapped”, AutoSlog assumes that the verb “kidnapped” is the word that relates the
mayor to the kidnapping event. If the targeted noun phrase is the direct object of the clause, then
AutoSlog also assumes that the verb should be the conceptual anchor point. For example, given
the noun phrase “the U.S. embassy” and the clause “terrorist bombed the U.S. embassy”, AutoSlog
assumes that the verb “bombed” is the word that relates the U.S. embassy to the bombing event.

If the targeted noun phrase is in a prepositional phrase, then AutoSlog uses a prepositional
phrase attachment algorithm to identify the conceptual anchor point. In this case, AutoSlog
assumes that the attachment point for the prepositional phrase is the word that relates the noun
phrase to the event. For example, given the noun phrase “armed men” and the clause “five people
died during a robbery yesterday in Bogota by armed men”, a prepositional phrase algorithm should
attach the “armed men” to the word “robbery”.’

The heuristics, however, do more than just identify a trigger word. The heuristics also look for
linguistic patterns. Each heuristic looks for a different linguistic pattern surrounding the trigger
word. For example, verbs come in many forms; a verb can be a passive verb, an active verb, an
auxiliary verb, an infinitive verb, or a gerund. Each of these verb forms represents a different
pattern. If a heuristic successfully finds its pattern in the clause then it generates two things: (1) a
conceptual anchor point and (2) a set of enabling conditions to recognize the pattern. For example,
suppose AutoSlog is working on the clause “the diplomat was kidnapped” with “the diplomat” as the
targeted noun phrase. “The diplomat” is the subject of the clause and is followed by a passive form
of the verb “kidnapped”. One of the heuristics recognizes the pattern <subject> passive-verb.
Given this example, the heuristic fires and returns the word “kidnapped” as the conceptual anchor
point along with enabling conditions that require a passive verb form. The result is a concept node
definition that acts like the following rule: if the expression “X was/were/have been kidnapped”
appears in a text, then extract X as the victim of a kidnapping.

The original version of AutoSlog used 13 heuristics, each designed to recognize a different
linguistic pattern. These patterns are shown in Figure 3.2, along with examples that illustrate
how they might appear in a text. The bracketed item shows the syntactic constituent where the
targeted noun phrase was found. This syntactic constituent is used for the slot expectation. In the
examples on the right, the bracketed item is a slot name that might be associated with the filler
(e.g., the subject is a victim). The underlined word is the conceptual anchor point that is used as
the trigger word.

“Theoretically, there are other possibilities (such as indirect objects) but these are the only
syntactic constituents for noun phrases that are recognized by CIRCUS.

5The prepositional phrase attachment algorithm in AutoSlog is separate from CIRCUS and
is very simple. If the preposition is “of”, “against”, or “on”, then the algorithm attaches
the prepositional phrase to the most recent constituent; otherwise, the algorithm attaches the
prepositional phrase to the most recent verb or noun phrase but skips over intervening prepositional
phrases. This algorithm makes a lot of mistakes and was intended only as a simple attempt to
handle pp-attachment. A (very) slightly more sophisticated pp-attachment algorithm was used for
the joint ventures and microelectronics domains (see Section 3.5.2.2).

6In principle, passive verbs should not have objects. However, we included this pattern because
CIRCUS occasionally confuses active and passive constructions.

29

Linguistic Pattern Example

<subject> passive-verb <victim> was murdered
<subject> active-verb <perpetrator> bombed
<subject> verb infinitive <perpetrator> attempted to kill
<subject> auxiliary noun <victim> was victim
passive-verb <direct-object>® killed <victim>

active-verb <direct-object> bombed <target>

infinitive <direct-object> to kill <victim>

verb infinitive <direct-object> threatened to attack <target>
gerund <direct-object> killing <victim>

noun auxiliary <direct-object> fatality was <victim>

noun preposition <noun-phrase> bomb against <target>
active-verb preposition <noun-phrase> | killed with <instrument>
passive-verb preposition <noun-phrase> | was aimed at <target>

Figure 3.2: AutoSlog heuristics and examples for the terrorism domain

To illustrate the process, consider the case where the targeted noun phrase is the subject of
a clause. In this case, the first four <subject> heuristics in Figure 3.2 are activated. AutoSlog
assumes that the verb is the word that describes the role of the object in the event, but the verb
might be in a passive construction, an active construction, or it could be an auxiliary verb.” If the
verb is in a passive construction, then the first heuristic kicks in and proposes a concept node to
recognize the pattern <subject> passive-verb, such as “<x> was murdered”. If the verb is in
an active construction (and is not an auxiliary verb), then two possible heuristics might apply. If
the verb is immediately followed by another infinitive verb, e.g. “attempted to murder”, then the
third heuristic fires and both verbs are used in the pattern. Both verbs are included to produce a
more specific pattern, e.g. “attempted to kill” is more informative than just “attempted”. In most
cases, the verb is not followed by an infinitive so the active verb is used by itself, e.g., “bombed
<target>". The heuristics are applied in a specific order and the first one that fires (usually the
most specific one) is the one that wins.® Finally, if the verb is an auxiliary verb then AutoSlog
recognizes that the verb does not carry any semantics itself so the head noun of the direct object
is included as part of the pattern, e.g., “X was a victim”.

The heuristics propose a trigger word for a concept node definition and a set of enabling
conditions that must be satisfied to recognize the complete pattern. Concept node definitions
also contain a slot to extract the information.® The heuristics specify which syntactic constituent
should be used for the slot expectation. For example, if the noun phrase is identified as the subject

7An auxiliary verb is any form of “to be” or “to have”. With respect to the AutoSlog heuristics,
the term auxiliary implies that the main verb is a form of “to be” or “to have”.

8The heuristics are ordered in Figure 3.2 for the sake of readability which is not the order in
which they are applied. The most specific patterns are applied first.

In principle, concept nodes can have multiple slots to extract multiple pieces of information.
However, all of the concept nodes generated by AutoSlog have only a single slot.

30

of the clause then the resulting concept node is defined with a slot that expects its filler to be the
subject of the clause. The name of the slot (e.g., victim) comes from the template slot where the
information was originally found. In order to generate domain-dependent concept nodes, AutoSlog
requires three domain specifications. One of these specifications is a set of mappings from template
slots to concept node slots. For example, information found in the human target slot of a template
maps to a victim slot in a concept node.

Several additional parts of a concept node definition must also be specified: hard and soft
constraints for each slot, and an event type. The second set of domain specifications are hard and
soft constraints for each type of concept node slot, for example semantic constraints to specify a
legitimate perpetrator. In the domain of terrorism, perpetrators must have one of four semantic
types: HUMAN, PROPER-NAME, TERRORIST, of ORGANIZATION.

Each concept node also has an event type. For the MUC-4 terrorism domain, in most cases,
a concept node was assigned the event type of the template from which it was generated (e.g.,
bombing, kidnapping, etc.). However, we used special types for some concept nodes. The third set
of domain specifications are mappings from template types to concept node types. In general, if the
targeted information was found in a kidnapping template then AutoSlog uses “kidnapping” as the
concept node type. However, for the terrorism domain we used special types for information from
the perpetrator and instrument template slots because perpetrators and instruments often appear
in sentences that do not describe the nature of the event (e.g., “The FMLN claimed responsibility”
could refer to a bombing, kidnapping, etc.).1?

The concept node definitions produced by AutoSlog are specific to the CIRCUS sentence
analyzer. However, in theory, AutoSlog could be used in conjunction with other sentence analyzers.
The concept nodes produced by AutoSlog are really just patterns for information extraction that
could be adapted for other systems. To generate these patterns, AutoSlog requires a sentence
analyzer that can separate raw text into clauses and identify the major syntactic constituents of
each clause, i.e., subjects, verbs, direct objects, and prepositional phrases. CIRCUS has many
additional functionalities, but only the syntactic recognition components of CIRCUS are used by
AutoSlog.

3.4 Sample Concept Node Definitions

To illustrate how this whole process comes together, this section shows examples of concept
node definitions generated by AutoSlog for the terrorism domain. Figure 3.3 shows a relatively
simple concept node definition that is activated by phrases such as “was bombed”, “were bombed”,
etc. AutoSlog created this definition in response to the input string “public buildings” which was
found in the physical target slot of a bombing template from text DEV-MUC4-0657. Figure 3.3
shows the first sentence in the text that contains the string “public buildings”. When CIRCUS
analyzed the sentence, it identified “public buildings” as the subject of the first clause. The
heuristic for the pattern <subject> passive-verb produced this concept node using the word
“bombed” as the trigger word with enabling conditions that require a passive verb form. The
concept node contains a single variable slot!! which expects its filler to be the subject of the
clause and labels it as a target because the string came from the physical target template slot.

10These domain mappings are an artifact of the templates that we used to get the targeted
information. In a new domain, we would use an annotated corpus (see Section 5.4.3) instead
of templates so these template mappings would be unnecessary. The only domain specifications
required for an annotated corpus are the slot constraints.

11 Variable slots are slots that extract information. Constant slots have predefined values that
are used by AutoSlog to specify the concept node type.

31

The constraints for physical targets are pulled in from the domain specifications (described in the
previous section). Finally, the concept node is given the event type bombing because the input
string came from a bombing template.'?

Id: DEV-MUC4-0657 Slot filler: “public buildings”
Sentence: In La Oroya, Junin department, in the central Peruvian mountain
range, public buildings were bombed and a car-bomb was detonated.

CONCEPT NODE

Name: target-subject-passive-verb-bombed
Trigger: bombed

Variable Slots: (target (*SUBJECT* 1))
Constraints: (class PHYS-TARGET *SUBJECT¥)
Constant Slots: (type bombing)

Enabling Conditions: (passive)

Figure 3.3: Concept Node For “<target> was bombed”

Figure 3.4 shows an example of a good concept node that has more complicated enabling
conditions. In this case, CIRCUS found the targeted string “guerrillas” as the subject of the first
clause and AutoSlog applied a different heuristic than in the previous example. The heuristic
for the pattern <subject> verb infinitive matched the phrase “threatened to murder” and
generated a concept node with the word “murder” as its trigger with enabling conditions that
require the preceding words “threatened to” in an active construction. The concept node has
a slot that expects its filler to be the subject of the clause and expects it to be a perpetrator
(because the slot filler came from a perpetrator template slot). The constraints associated with
perpetrators are incorporated and the concept node is assigned the type “perpetrator” because
the domain specifications map the perpetrator template slots to perpetrator types. Note that this
concept node does not extract the direct object of “threatened to murder” as a victim; a separate
concept node definition is needed to pick up the victim.

Figure 3.5 shows a concept node proposed by AutoSlog that looks a bit strange. The input
to AutoSlog is a group of perpetrators, “3 young individuals”. AutoSlog found the “3 young
individuals” in a prepositional phrase and the pp-attachment algorithm attached it to the verb
“riddled”. The proposed concept node recognizes phrases of the form “riddled by <perpetrator>”.
This expression sounds bizarre because the verb “riddled” is usually used in combination with
ammunition, such as “riddled with bullets” or “riddled with gunfire”. On the other hand, the verb
“riddled” is not very ambiguous and, especially in a constrained corpus, is not likely to occur in
other types of phrases. Therefore, although the pattern “riddled by <perpetrator>” is not the
best possible pattern, it is good enough to reliably extract the appropriate kind of information.

Although the preceding definitions are clearly useful for the domain of terrorism, many of the
definitions that AutoSlog generates are of dubious quality. Figure 3.6 shows an example of a bad
definition. AutoSlog finds the input string, “Gilberto Molasco”, as the direct object of the first
clause and constructs a concept node that is triggered by the word “took” as an active verb. The
concept node expects a victim as the direct object and has the event type kidnapping. Although

2Given an annotated corpus instead of templates, this information would come from the
semantic tags assigned to each string by the user.

Id: DEV-MUC4-0071 Slot filler: “guerrillas”
Sentence: The Salvadoran guerrillas today threatened to murder
individuals involved in 19 March presidential elections if they do not resign
from their posts.

CONCEPT NODE
Name: perpetrator-subject-verb-infinitive-threatened-to-murder

Trigger: murder
Variable Slots: (perpetrator (*SUBJECT* 1))
Constraints: ((class orGcAaNIZATION *SUBJECT¥)

(class TERRORIST *SUBJECT*)
(class HUMAN *SUBJECT*)
(class PROPER-NAME *SUBJECT?*))
Constant Slots: (type perpetrator)
Enabling Conditions: ((active))
(trigger-preceded-by ’threatened ’to))

Figure 3.4: Concept node for “<perpetrator> threatened to murder”

Id: DEV-MUC4-0011 Slot filler: “3 young individuals”
Sentence: Lopez Albujar, former army commander general and defense minister
until May 1989, was riddled with bullets by 3 young individuals as he was getting
out of his car in an open parking lot in a commercial center in the residential
neighborhood of San Isidro.

CONCEPT NODE

Names: perpetrator-pp-passive-verb-riddled-by

Trigger: riddled

Variable Slots: (perpetrator (*PREP-PHRASE* (is-prep? ’by)))
Constraints: (class weaPoN *PREP-PHRASE*)

Constant Slots: (type perpetrator)

Enabling Conditions: (passive)

Figure 3.5: Concept node for “riddled by <perpetrator>”

33

this concept node is appropriate in this sentence because this text does describe a kidnapping, in
general the system should not generate a kidnapping concept node every time it sees the word
“took”. Constraining the direct object to be a person is also not enough because you can take a
friend to the movies, you can take a family member to visit relatives, or you can take a child to
school, etc.

Id: DEV-MUC4-1192 Slot filler: “Gilberto Molasco”
Sentence: They took 2-year-old Gilberto Molasco, son of Patricio
Rodriguez, and 17-year-old Andres Argueta, son of Emimesto Argueta.

CONCEPT NODE

Name: victim-active-verb-dobj-took
Trigger: took

Variable Slots: (victim (*DOBJ* 1))
Constraints: (class vicTiM *DOBJ*)
Constant Slots: (type kidnapping)
Enabling Conditions: (active)

Figure 3.6: Concept node for “took <victim>”

AutoSlog generates poor definitions for many reasons. In the previous example, AutoSlog
generated the best possible pattern for the given sentence but the pattern was not reliable in
general. Sometimes a sentence does contain a reliable expression but AutoSlog does not find
it. Figure 3.7 shows a sentence that mentions a robbery incident where the perpetrators are a
group of “soldiers with their faces painted black”. AutoSlog correctly identified the soldiers as
the subject of the first clause, but CIRCUS interpreted the word “painted” as an active verb.
The resulting concept node represents the pattern “<perpetrator> painted”; every time the verb
“painted” appears in a text the concept node will extract its subject as a perpetrator. This is
clearly not a useful expression for the terrorism domain. This sentence is difficult for AutoSlog for
several reasons. The second verb in the sentence, “arrived”, is not useful for triggering a terrorism
concept node either. Ideally, we would like AutoSlog to propose the pattern “<perpetrator>
looted”, “<perpetrator> burned”, or perhaps even “<perpetrator> broke down”. To get these
patterns, however, AutoSlog would have to skip over both the verbs “painted” and “arrived”.
Without semantic information, AutoSlog cannot always locate the most appropriate phrases.

Figure 3.8 shows another example of a concept node definition that represents a bad pattern.
AutoSlog found the targeted information, “machineguns”, in a prepositional phrase and incorrectly
attached it to the noun “priests”. The resulting concept node definition will look for expressions
of the form “priests with X” and extract X as a weapon. This pattern is amusing, but it is not
reliable. If the pp-attachment algorithm had correctly attached the machineguns to the word
“killing” then AutoSlog would have produced a good definition to recognize patterns of the form
“killing with <weapon>".

AutoSlog generates bad definitions for many reasons, such as (a) when a sentence contains
the targeted noun phrase but does not describe the event (i.e., the assumption mentioned in
Section 3.2 does not hold), (b) when a heuristic proposes the wrong conceptual anchor point, for
example when the pp-attachment algorithm makes a mistake, or (¢) when CIRCUS incorrectly
analyzes the sentence. These dubious definitions prompted us to include a human in the loop to

Id: DEV-MUC4-0058 Slot filler: “soldiers with their faces painted black”
Sentence: According to the report, soldiers with their faces painted black
arrived in Cayara last Saturday and broke down doors, looted stores, and
burned several houses.

CONCEPT NODE

Name: perpetrator-subject-active-verb-painted
Trigger: painted

Variable Slots: (perpetrator (*SUBJECT* 1))
Constraints: (class orRGANIZATION *SUBJECT¥)

class TERRORIST *SUBJECT¥)
class PROPER-NAME *SUBJECT*)
class HUMAN *SUBJECT¥)

type PERPETRATOR)

active)

Constant Slots:
Enabling Conditions:

o~ o~~~ p—

Figure 3.7: Concept node for “<perpetrator> painted”

Id: DEV-MUC4-0826 Slot filler: “machineguns”
Sentence: Ambassador William Walker, if you still have any shame, tell the
world and answer this question: if the armed forces general staff did not kill the
jesuit priests, how could the murderers — as this international dispatch says

— remain in the residence for 1 hour after the heavy shooting, after killing

the priests with machineguns in tripods, as the cable says?

CONCEPT NODE

Name: instrument-pp-noun-priests-with

Trigger: priests

Variable Slots: (instrument (*PREP-PHRASE* (pp-check ’with)))
Constraints: (class weaPoN *PREP-PHRASE*)

Constant Slots: (type weapon)

Enabling Conditions: (noun-triggered)

Figure 3.8: Concept node for “priests with <instrument>”

34

35

weed out bad concept node definitions.'® In the next section, we explain the evaluation procedure
and present empirical results for AutoSlog in three domains.

3.5 Experimental Results

3.5.1 The Terrorism Domain

To evaluate AutoSlog, we used AutoSlog to create a dictionary for the MUC-4 domain of
terrorism and compared it with the concept node dictionary that that was hand-crafted for MUC-
4. As training data, we used the 1500 texts and their associated answer keys from the MUC-4
development corpus, which contained 772 relevant texts. AutoSlog only uses the relevant texts.
The input to AutoSlog was the set of slot fillers from six MUC-4 template slots that contained
string fills because these noun phrases could be easily mapped back to the source text. These six
slots contained the following types of information:

Table 3.1: Targeted information for the terrorism domain

Slot Name Description Example

human target description description of victim “a security guard”
human target name name of victim “Ricardo Castellar”
instrument id weapon “car-bomb”

perpetrator individual name or description of people “a group of subversives”
perpetrator organization name of organization “the FMLN"

physical target id description of physical target “car dealership”

The 1258 answer keys for these 772 texts contained 4780 string fills which were given to
AutoSlog as input along with their corresponding texts.!* In response to these strings, AutoSlog
generated 1237 unique concept node definitions. AutoSlog does not necessarily generate a definition
for every input string, for example when no heuristic applies or when sentence analysis goes awry.
Also, AutoSlog is smart enough to refrain from generating duplicate definitions. For example,
many texts contain expressions of the form “X was kidnapped” so AutoSlog proposed a concept
node definition for this pattern in response to many different input strings. AutoSlog keeps track
of the definitions that it proposes and will not generate the same definition twice. Instead, it keeps
a count associated with each definition that indicates how many times the definition was proposed
by AutoSlog. For example, AutoSlog proposed a concept node to recognize the pattern “X was
kidnapped” 46 times in response to the 4780 input strings. Table 3.2 shows the patterns that are
recognized by concept nodes that were proposed at least 25 times by AutoSlog.

Not surprisingly, the patterns shown in Table 3.2 represent expressions that are common in
texts describing terrorism. The patterns most frequently proposed by AutoSlog are likely to be

13In Section 3.6.1 we show that an unfiltered dictionary for the terrorism domain performs
substantially worse than filtered dictionaries.

4Many of the slots contained several possible strings (“disjuncts”), any one of which is a
legitimate filler. In this case, AutoSlog identified the first sentence that contained any of the
strings.

36

Table 3.2: Frequently proposed patterns for terrorism

Linguistic Pattern Number of Times Proposed
<victim> was killed 121
murder of <victim> 111
assassination of <victim> 95
<victim> was wounded 50
<victim> was kidnapped 46
<weapon> exploded 43
killed <victim> 42
death of <victim> 40
murdered <victim> 36
<victim> died 35
<victim> was murdered 34
<perpetrator> attacked 32
<victim> was injured 29
<victim> was assassinated 29
kidnapped <victim> 29
killing <victim> 28
members of <perpetrator> 25

the ones that are most important for the domain. However, note that the patterns most frequently
proposed by AutoSlog are usually important for the domain but not always ezclusive to the domain.
For example, the concept node most frequently proposed by AutoSlog represents the expression
“<victim> was killed”. This concept node is crucial for the domain of terrorism because people
are often killed in terrorist incidents. If this expression was not in the dictionary, the system would
fail to extract many victims of terrorism. However, people are also killed in many ways that have
nothing to do with terrorism. Therefore this expression will also appear in many texts that do
not mention terrorism. AutoSlog’s job is not necessarily to find patterns that are exclusive to the
domain but to find patterns that are useful for the domain.

AutoSlog does not make use of the frequency counts associated with the concept nodes, but
Section 3.6.2 describes how they were used in an experiment with government analysts. To give
some idea of the magnitude of duplicate suppression, consider that, if we include duplicates,
AutoSlog actually proposed 3860 concept node definitions in response to the 4780 input strings.
This implies that, on average, AutoSlog proposed each definition three times. However, the
distribution is highly skewed. Figure 3.9 displays a histogram showing the frequency distribution
of the concept node definitions for the terrorism domain. For example, 680 different concept nodes
were proposed exactly once. At the other end of the spectrum, one concept node was proposed
121 times (“<victim> was killed”).

As we mentioned in Section 3.4, not all of the concept node definitions proposed by AutoSlog
are good ones. Therefore we put a human in the loop to filter out definitions that might cause
trouble. For this experiment, the user was a second-year graduate student who had some experience
with the MUC-4 system and AutoSlog but was not one of the original system developers.!> An
interface displayed each dictionary definition proposed by AutoSlog and asked him to put each

15Tn Section 3.6 we show that novice users can also achieve good results with AutoSlog.

37

700

650

600
550

500

450
400

350

300

250

200+

Number of Distinct Concept Nodes

150

100
50
0]
ANNOANT N ANOLLNODOLTMHMANTAODOMNOINSSMANTOOOONOL S MmN
S:OULOVQ‘<rWMMMWMNNNNNNNNHHHHHHHHH\—I
Number of Times Concept Node Proposed

Figure 3.9: Histogram of concept node frequencies in the terrorism domain

definition into one of two piles: the “keeps” or the “rejects”. The “keeps” were good definitions
that could be added to the permanent terrorism dictionary without alteration.'® The “rejects”
were definitions that required additional editing to be salvaged, were obviously bad, or were of
questionable value. It took the user 5 hours to sift through the 1237 unique definitions proposed
by AutoSlog. The filtered dictionary contained 450 definitions (only the “keeps”), which we used
as our final concept node dictionary. The number of definitions kept by the user for each of the
six types of concept nodes is shown in Table 3.3.

The percentage of definitions that were kept differs widely across the different slots. For
example, 72% of the instrument definitions were retained by the user but only 18% of the human
target description definitions were kept. To explain why the slots have different retention rates,
we must describe some of the issues that are involved in the filtering process.

1. Is the concept node likely to appear in relevant texts?

Ideally, a good concept node definition represents an expression that is common in relevant
texts and but uncommon in irrelevant texts. However, many expressions that are common
in relevant texts are also common in irrelevant texts. Therefore the user must only focus on

whether the pattern is likely to appear in relevant texts. The crucial question is the following:
if this expression is not in the dictionary, will the system miss a lot of relevant information?
If so, then the user should keep the concept node. As we just explained, a good example of

16The only exception is that the user could change the event type if that was the only revision
needed.

38

Table 3.3: AutoSlog dictionary for terrorism

Slot Name #CNs | #CNs | %CNs
Kept | Proposed | Kept
human target description 34 191 18%
human target name 51 169 30%
instrument id 93 129 2%
perpetrator individual 102 303 34%
perpetrator organization 31 165 19%
physical target id 139 280 50%
TOTAL 450 1237 36%

this phenomenon occurs with the expression “<victim> was killed”. In the MUC-4 corpus,
many people are killed in military incidents that are not relevant to the terrorism domain.
However, many people are also killed in terrorist events. If this expression is not in the
dictionary, the system will fail to extract many victims of terrorism. Therefore the user
should keep this concept node even though it will also extract many irrelevant victims.'”

2. Does this concept node represent an event type?

Some concept node patterns represent event types but others do not. For example, the
pattern “<victim> was kidnapped” refers to a kidnapping event and the pattern “<target>
was bombed” refers to a bombing event. In the MUC-4 corpus, we found that many of the
expressions that refer to victims and targets identify the type of event. However, instruments
and perpetrators often appear in expressions that do not identify the event type. For example,
the phrase “three men were arrested” does not indicate whether the men were arrested for
a bombing, murder, kidnapping, or shoplifting incident. Similarly, the phrase “an M-16 rifle
was seized” does not indicate whether the rifle was seized during an attack or a drug raid.
Victims and targets are usually reported in the first few sentences of a news article, but
instruments and perpetrators are often reported later in the article where the event is not
mentioned explicitly but is only evident from context.

Because of this phenomenon, the victim and physical target concept nodes were labeled
with event types'® (if applicable) but the instrument and perpetrator concept nodes were
not. The event type labels were used by the UMass/MUC-4 discourse analyzer to determine
whether a template should be generated for a text. If none of the concept nodes generated
by a text had event type labels, then the discourse analyzer assumed that the story did
not mention a relevant event so did not generate a template. The human-in-the-loop who
filtered the terrorism dictionary knew how the discourse analyzer worked, so he was more
liberal about keeping the instrument and perpetrator concept nodes. That is, he knew
that spurious instrument and perpetrator concept nodes would not cause a template to be

7In a real application, the job of sifting through the relevant and irrelevant information extracted
by the system is usually handled later by a discourse analysis module.

18 Assigned automatically from the key template, although the user could modify it.

39

generated unless there was other evidence in the text that identified a relevant event.!® The
fact that the user kept 72% of the instrument definitions implies that he took advantage of
this knowledge and adopted a liberal filtering strategy for the instrument definitions.?°

3. Ordering effects

AutoSlog created concept nodes based on six different types of information from the templates
(shown in Table 3.1). However, AutoSlog created only four classes of concept nodes. Since
the human target description slot and the human target name slot both contained references
to victims, we set up the domain mappings so that AutoSlog created a general human target
concept node for both types of input. Similarly, the perpetrator individual slot and the
perpetrator organization slot both contained references to perpetrators so we set up the
domain mappings so that AutoSlog created a general perpetrator concept node for both.
Since AutoSlog will not generate duplicate concept node definitions, it generally proposes
fewer new definitions as it processes more data. The most common patterns are encountered
first so AutoSlog proposes many definitions initially, but as AutoSlog processes more data it
repeatedly encounters many of the same patterns so few new definitions are produced. We
presented AutoSlog with the human target name data before the human target description
data (and likewise the perpetrator individual data before the perpetrator organization data),
so the most common patterns for victims were found during the acquisition phase for the
human target name. By the time AutoSlog got to the human target description, most of
the common patterns had already been acquired. Therefore we expect a greater proportion
of the human target description definitions to represent bad patterns that will be rejected
during the human-in-the-loop filtering process. As you can see in Table 3.3, both the human
target description data and the perpetrator organization data produced a lower percentage of
good definitions than the others.

Finally, we compared the filtered AutoSlog concept node dictionary?! with the hand-crafted
MUC-4 dictionary. To ensure a clean comparison, we tested the AutoSlog dictionary using the offi-
cial UMass/MUC-4 system. The resulting “AutoSlog” system was identical to the UMass/MUC-4
system except that we replaced the hand-crafted concept node dictionary with the AutoSlog
dictionary. We evaluated both systems on the basis of two blind test sets of 100 texts each.
These were the TST3 and TST4 texts that were used in the final MUC-4 evaluation. We then

9 However, these concept nodes may extract irrelevant perpetrators and instruments in relevant
texts which can cause confusion during discourse analysis.

20In this case, the human-in-the-loop had knowledge about how the concept nodes would
ultimately be used by the information extraction system. To be fair, we also gave this information
to the students and analysts who filtered terrorism dictionaries in the experiments described in
Sections 3.6.1 and 3.6.2. In general, any knowledge about how the concept nodes will be used can
be exploited during the filtering process.

21We augmented the AutoSlog dictionary with 4 meta-level concept nodes from the hand-crafted
dictionary before the final evaluation. These are special concept nodes that just recognize textual
cues for discourse analysis and do not extract any slot fillers. These concept nodes are truly a
separate species and we knew a priori that AutoSlog was not designed to create concept nodes for
discourse cues.

40

scored the output generated by both systems using the MUC-4 scoring program. The results for
the two systems are shown in Table 3.4.22

Recallrefers to the percentage of the correct answers that the system successfully extracted and
precision refers to the percentage of answers extracted by the system that were actually correct.
The F-measure is a single measure that combines recall and precision, in this case with equal
weighting. The formula for the F-measure is:

24 1.0 P xR
F(8) = C A2

where P is precision and R is recall. These are all standard measures used in the information
retrieval community that were adopted for the final MUC-4 evaluation [MUC-4 Proceedings, 1992].

Table 3.4: Comparative results

System/Test Set | Recall | Precision | F-measure
MUC-4/TST3 46 56 50.51
AutoSlog/TST3 43 56 48.65
MUC-4/TST4 44 40 41.90
AutoSlog/TST4 39 45 41.79

The UMass/MUC-4 system was among the top-performing systems in MUC-4 [Lehnert et
al., 1992b] so the results in Table 3.4 were roughly state-of-the-art. Table 3.4 shows that the
AutoSlog dictionary achieved almost the same level of performance as the hand-crafted dictionary
on both test sets. Comparing F-measures, we see that the AutoSlog dictionary achieved 96.3%
of the performance of our hand-crafted dictionary on TST3, and 99.7% of the performance of the
official MUC-4 system on TST4. For TST4, the F-measures were virtually indistinguishable and
the AutoSlog dictionary achieved better precision than the original hand-crafted dictionary. We
should also mention that we augmented the hand-crafted dictionary with 76 concept nodes created
by AutoSlog before the final MUC-4 evaluation. These definitions improved the performance of our
official system by filling gaps in its coverage. Without these additional concept nodes, the AutoSlog
dictionary would likely have shown even better performance relative to the MUC-4 dictionary.

So far, we have shown that AutoSlog can generate useful definitions for the domain of
terrorism. But will AutoSlog’s heuristics generalize to other domains? Are additional heuristics
needed? To answer these questions, we used AutoSlog to construct dictionaries for two additional
domains: joint ventures and microelectronics. The next two sections describe our experience with
AutoSlog in these domains.

3.5.2 The Joint Ventures Domain

For the second set of experiments, we used AutoSlog to build a dictionary for the MUC-5
domain of joint venture activities, which is described in detail in Section 2.3.1. For the JV domain,
AutoSlog created concept nodes to extract eight different types of information, shown in Table 3.5.

22The results in Table 3.4 do not correspond to our official MUC-4 results because we used
“batch” scoring and an improved version of the scoring program for the experiments described
here.

41

Table 3.5: Targeted information for the joint ventures domain

Slot Name Description Example

entity name company, govt., or person “Toyota Motor Corp.”
facility name name of facility “Beijing jeep plant”
ownership percent percent of ownership “51%"

ownership total capitalization total capitalization amount “$46,000,000"

person name name of person “Paul Phillips”
product/service industry product or service “V2500 jet engine”
revenue rate expected revenue rate “$80,000,000 per year”
revenue total total expected revenue “$80,000,000"

Although these information types are general in nature, the MUC-5 systems were only
supposed to extract information pertaining to joint venture activities. For example, the systems
were supposed to extract the names of companies participating in a joint venture, facilities used

by a joint venture company, ownership percents associated with a joint venture company, etc.
The joint venture domain is similar to the terrorism domain in the sense that they are

both event-driven. The terrorism texts revolve around incidents such as bombings, murders, and
kidnappings. The JV texts revolve around joint venture activities, such as two companies forming
or dissolving a joint venture. Because of the similar nature of the domains, we expected AutoSlog

to do well with the JV domain.
The goals for this experiment were twofold. The first goal was to evaluate the generality of

AutoSlog across different domains. In particular, we wanted to determine whether AutoSlog’s
heuristics were general enough to produce useful concept node definitions for domains other than
terrorism. The second goal was to learn something about what types of domains are appropriate
for AutoSlog and what types of domains are not. However, it is important to keep in mind that
we also relied on AutoSlog to create a JV dictionary for MUC-5; we did not have a hand-crafted
dictionary to fall back on. So we first applied the original set of AutoSlog heuristics to the joint
venture texts, but we were willing to revise, delete, or add new heuristics if we saw the need to do
so.

3.5.2.1 Moving AutoSlog to a New Domain

During the months preceding MUC-5, we made several changes to AutoSlog. In the end,
however, we were surprised by how little had actually changed. The original set of heuristics
remained largely intact and most of the changes to AutoSlog were small. The final set of AutoSlog

heuristics used for the joint ventures domain are shown in Table 3.10.
We made three changes to the original set of AutoSlog heuristics. We added two new patterns,

<subject> verb direct-object and infinitive preposition <noun-phrase>, and we removed
one heuristic, passive-verb <dobj>. We added the infinitive preposition <noun-phrase>
heuristic to represent patterns such as “to collaborate on a project”. We simply hadn’t seen this
pattern very often in the terrorism domain, probably because terrorist events are usually reported
in the past tense whereas joint venture activities are often reported in the future tense (e.g.,
“Companies X and Y will be cooperating ...”). Second, we dropped the passive-verb <dobj>
heuristic. This heuristic was in the terrorism system only because, in its early stages, CIRCUS
had trouble distinguishing active and passive verb form. In principle, this heuristic should never

have fired anyway unless CIRCUS made a mistake.
Therefore, the only major change to the set of heuristics is the new pattern, <subject>

verb direct-object, which represents expressions such as “Toyota and Nissan formed a joint

42

Linguistic Pattern

Example

<subject> passive-verb
<subject> active-verb
<subject> verb direct-object
<subject> verb infinitive
<subject> auxiliary noun

active-verb <dobj>
infinitive <dobj>

verb infinitive <dobj>
gerund <dobj>

noun auxiliary <dobj>

<entity> was formed

<entity> linked

<entity> completed acquisition
<entity> agreed to form
<entity> is conglomerate

acquire <entity>

to acquire <entity>

agreed to establish <entity>
producing <product-service>
partner is <entity>

noun preposition <noun-phrase> partnership between <entity>
active-verb preposition <noun-phrase> | buy into <entity>

passive-verb preposition <noun-phrase> | was signed between <entity>
infinitive preposition <noun-phrase> to collaborate on <product-service>

Figure 3.10: AutoSlog patterns for the joint ventures domain

venture”. We found an important difference between the language typically used to describe
terrorist events and the language used to describe joint venture activities. In the terrorism domain,
verbs usually represent the semantics describing the event. For example, the words “bombed,
“murdered”, and “kidnapped”, carry the semantic information corresponding to the event types.
In the joint ventures domain, verbs are much weaker. Even though it is an event-driven domain,
the nouns typically contain the most important semantic information. For example, joint ventures
are often reported using expressions such as “X and Y formed a joint venture”, “X completed an
acquisition”, “X signed an agreement”, etc. The verbs alone (“formed”, “completed”, and “signed”)
do not necessarily describe joint venture activities. The verbs in combination with the nouns (e.g.,
“venture”, “acquisition”, and “agreement”) describe specific joint venture activities.

The original <subject> active-verb heuristic would have proposed concept nodes to rec-
ognize expressions such as “X formed”, “X completed’, and “X signed”. Since these expressions
are too general for the JV domain, we added the new heuristic that includes the head noun of
the direct object when one is available. This heuristic takes precedence over the old one, so if a
direct object is present then its head noun is used in the concept node pattern. If a direct object
is not present, then the new heuristic fails and AutoSlog falls back on the original heuristic. The
new heuristic produced many useful concept nodes that recognized expressions such as “X formed
venture”, “X completed acquisition”, and “X signed agreement”.

We made a few other changes to AutoSlog as well. In the JV domain, particles occur in
many important expressions, for example: “set up venture”, teamed up with”, “linked up with”, and
“carrying out study”. The terrorism domain also includes important expressions involving particles
(such as “blew up”, “blown up”, “carried out”). We used a manually crafted phrasal lexicon to
recognize these expressions in the UMass/MUC-4 terrorism system so they were treated as single
verbs, such as “blew_up”, “blown_up”, “carried_out”.

Since particles are important in the JV domain, we gave AutoSlog the ability to recognize
particles. For all of the heuristics involving verbs, the new version of AutoSlog looks for particles
immediately following the verb. If a particle is found, then it is included in the pattern. For
example, given the sentence “Company X was set up by ...”, the <subject> passive-verb heuristic

43

fires, AutoSlog finds the particle “up” following the verb “set”, so the proposed concept node
represents the pattern “<entity> was set up”. In contrast, the old version would have proposed the
pattern “<entity> was set”, which is not as reliable. In retrospect, including particle recognition
would have been useful in the terrorism domain as well. The improved heuristics would have
automatically created patterns for many of the phrases that we manually encoded in the phrasal
lexicon for terrorism.

Numerical values are also important in the JV domain, whereas they are not relevant to ter-
rorism. In particular, ownership percentages and monetary values are crucial. The UMass/MUC-5
system includes special-purpose functions (“specialists”) to recognize percentages and monetary
objects, e.g., 51% and $50,000,000. When we ran the original AutoSlog heuristics through the JV
corpus, AutoSlog proposed concept nodes for overly specific patterns, such as “<entity> controls
51%”, “<entity> owns 49%”, “<entity> invested $50000000”. There is nothing wrong with these
patterns except that they provide no generality. For example, if a company controls 50% or 52%
in a future text, then the company will not be extracted.

To allow AutoSlog to generalize over specific values, we gave AutoSlog access to the specialists.
In the new version of AutoSlog, the heuristics check to see whether a noun is a percentage or
monetary object. If so, then AutoSlog generalizes the pattern to represent all objects of the same
type. For example, given the sentence “IBM controls 51% of ...”, the <subject> verb direct-
object heuristic fires, AutoSlog finds a percentage object as the head noun of the direct object and
proposes a concept node that recognizes the pattern “<entity> controls PERCENT-OBJECT". This
concept node will be activated by all expressions of the form “<entity> controls X%". Similarly,
the new version of AutoSlog created a concept node to recognize expressions of the form “<entity>
will invest MONETARY-OBJECT”.

For the sake of completeness, we will briefly mention a few other improvements that were added
to AutoSlog. We replaced the pp-attachment algorithm with a new frequency-based pp-attachment
algorithm, which is described in the next section. We divided the heuristics involving auxiliary
verbs (<subject> auxiliary noun and noun auxiliary <dobj>) into separate heuristics
that distinguish between forms of the verb “to be” and “to have”. And we decided to treat
communication verbs, such as “said”, “reported” and “announced”, as a special case. These verbs
are meta-level verbs that do not carry any semantic content on their own so the new version of
AutoSlog skips over clauses containing these verbs. These changes to AutoSlog were all general
improvements that would probably have improved the terrorism system as well.?3

3.5.2.2 A Frequency-Based PP-attachment algorithm

As we described in Section 3.3, the original version of AutoSlog used a simple pp-attachment
algorithm that made a lot of mistakes. When a prepositional phrase is attached incorrectly, the
resulting concept node definition usually doesn’t make much sense and is eventually thrown away
during manual filtering. Consequently, errors by the pp-attachment algorithm cause two problems:

1. An incorrect attachment is usually a missed opportunity for a good concept node. This is
not necessarily a major problem because common patterns occur many times in a corpus so
AutoSlog has multiple opportunities to create concept nodes for them. However, AutoSlog
may miss opportunities to create good concept nodes for less common patterns that occur
only once or twice.

2. Most incorrect attachments result in poor concept nodes that need to be filtered by a human.
Each bad concept node increases the amount of time required for the human-in-the-loop to
filter the dictionary.

Z3However, treating communication verbs as a special case might not generalize to genres other
than news reports.

44

We did not formally evaluate the original pp-attachment algorithm, but a lot of the bad concept
nodes produced by AutoSlog were the result of incorrect attachments. So we replaced the original
pp-attachment algorithm with a new frequency-based algorithm that uses collocation data derived
from a training corpus to make prepositional phrase attachment decisions.?*

The motivation for this algorithm comes from the tendency of prepositional phrases toward
right association; that is, prepositional phrases often attach to the most recent noun phrase or
verb phrase. Although this is not always the case, the idea behind our approach is that some
attachment preferences will become apparent from collocation data collected over a training corpus.
For example, in the MUC-5 joint ventures corpus the word “venture” immediately precedes the
preposition “with” 270 times. This high frequency collocation implies that the word “venture” is
strongly associated with the word “with”. It follows that a prepositional phrase beginning with
the word “with” is likely to attach to a preceding noun phrase with the head noun “venture”.

The statistical pp-attachment algorithm involves three steps:

1. Preprocess the Corpus: Preprocess the texts to identify separate sentences, normalize
date expressions, etc.

2. Collect Collocation Data: For each preposition, determine which words immediately
precede the preposition in the corpus and how often each word precedes the preposition.

3. Resolve Attachment: Given a prepositional phrase that needs to be attached, generate all
possible attachment points.2® For each possible attachment point, find the frequency of the
collocation between the verb or head noun of the constituent and the preposition. Choose
the constituent with the highest frequency collocation as the attachment point. If there is a
tie then break the tie by choosing the closest constituent.?®

As an example, consider the following sentence:
Last month Sime entered into joint ventures with the Singapore-based Sembawang Shipyard for a

fabrication plant in Johore and with Nikkon Kokkan of Japan to tender for oil and gas engineering
projects.

To attach the prepositional phrase “with Nikkon Kokkan”, the following collocation profile of
possible attachment points was generated:

entered (0), ventures (26), Shipyard (0), plant (16), Johore (0)

The words “entered”, “Shipyard”, and “Johore” never immediately preceded the preposition “with”
in the training corpus. The statistical approach has a tendency to eliminate proper nouns, numbers,
and very specific words from consideration because each one appears infrequently (if at all) in the
training corpus. The words “ventures” and “plant” were collocated with the preposition “with” 26

24Theoretically, we believe that semantic information is necessary to make many pp-attachment
decisions correctly. However, for practical purposes, we wanted AutoSlog to remain domain-
independent so we did not want the pp-attachment algorithm to depend on any additional
resources.

25We included the previous verb, direct object, and intervening prepositional phrases if they
were present.

26If all frequency collocations are zero then we apply the original pp-attachment algorithm
instead of choosing the closest constituent.

45

times and 16 times, respectively. Even though “ventures” is farther away, the algorithm chooses
“ventures” as the most likely attachment point because it has a higher collocation value.

We generated collocation data for nine prepositions (at, between, by, for, from, in, on, to,
with)27 for both the joint ventures corpus and the microelectronics corpus. Appendix 7.3 shows
the words with highest collocation frequencies for four prepositions in each domain. We compared
the new pp-attachment algorithm with the old one on a small set of 100 pp-attachment decisions
in the joint ventures domain.?® In 85 of the 100 cases, both algorithms chose the same attachment
point, primarily because many attachments are unambiguous or involve the preposition “of”,
which almost always attaches to its closest constituent. Of the 15 cases where they differed, the
new algorithm was correct 12 times and the old algorithm was correct three times, although only
one of the three cases was compelling.?°

The strength of the frequency-based pp-attachment algorithm is its ability to find “heavy
hitters” that have strong preferences for certain prepositions. For example, if the word “venture”
is among the possible attachment points for a prepositional phrase with the preposition “with”
then the algorithm will skip over anything in the middle and use “venture” as the attachment.
This strategy works particularly well for domain-specific preferences. Since the collocation data
was generated from a domain-specific corpus, many words that are important to the domain
occur with high frequency. Since AutoSlog applies the pp-attachment algorithm only to sentences
that contain domain-specific information, the algorithm is especially well-suited for identifying
appropriate attachments in these sentences.

Originally, we intended to use a frequency threshold so that this algorithm would not be
applied if all of the possible attachment points had low frequencies, under the assumption that
low frequencies would not be reliable. However, we found that the algorithm often made good
decisions even with relatively low frequencies. In particular, proper names, geographic locations,
and numbers often have very low frequencies because each individual name, location, or number
may occur only once or twice (if at all) in the training corpus. Therefore, the algorithm has a
tendency to prefer almost any other word as an attachment point as long as its frequency is at
least a little bit higher. In practice, names, locations and numbers are rarely good attachment
points so the algorithm is almost always correct to rule these out. The algorithm also works well
in the face of errors by the sentence analyzer. When CIRCUS incorrectly tags a word as a noun or
verb, that word often has a very low or zero collocation frequency so the pp-attachment algorithm
usually chooses another attachment point with at least a slightly higher frequency. In short, it was
impressive to see the algorithm automatically skipping over proper nouns, numbers, and errors
produced by CIRCUS. Therefore, although low collocation frequencies are generally not reliable,
the algorithm performed surprisingly well with low frequencies so we decided not to bother picking
an arbitrary frequency cutoff.

This pp-attachment algorithm is far from perfect and has several problems. In particular,
verbs that always take direct objects will never be adjacent to prepositions and the collocation
statistics for the preposition “to” are confounded by the cases where “to” is an infinitive. However,
this statistical approach represents a domain-independent algorithm for making pp-attachment

2"We specifically did not apply this algorithm to the preposition “of” because “of” almost always
attaches to its closest preceding constituent.

28We used the first 100 pp-attachment decisions that AutoSlog made while generating concept
node definitions. Remember that the pp-attachment algorithm is applied only when AutoSlog
needs to decide which word should trigger a concept node.

29PP-attachment is a somewhat artificial task and there is not always one attachment that is
obviously the best.

46

decisions using a training corpus. Furthermore, this algorithm is particularly well-suited for
domain-specific applications where the algorithm is not required to attach every prepositional
phrase in a text but only the ones that appear in domain-specific contexts.

3.5.2.3 Sample Concept Node Definitions for JV

Before we present the results for the JV dictionary, we must discuss the concept node
specifications for JV (described in Section 2.1). Ideally, the dictionary definitions should extract
information only in the context of a joint venture. However, this is not always possible. Most
of the information described in Table 3.5 frequently appears in sentences that do not explicitly
mention a joint venture. Therefore the concept node patterns are usually general and will appear
in irrelevant as well as relevant texts. In fact, only the entities commonly appear in phrases that
explicitly mention a joint venture, such as “Toyota Motor Corp. formed a joint venture with Nissan.”.
The remaining types of information typically appear in subsequent phrases or sentences that do
not explicitly mention the joint venture, e.g., “The factory will produce cars” or “Sales are projected
at $4000000.”. Many of the entities also appear in sentences that do not mention a joint venture,
e.g., “The company will be called ABC Corp.”.

To distinguish expressions that refer to joint venture activities from those that do not, the
JV entity concept node definitions had a relationship slot (similar to the event-type slot in the
terrorism concept nodes). Concept nodes that represent expressions referring to joint venture
activities (e.g., “<entity> formed venture” or “tie-up with <entity>") were given one of three
relationship values: jv-parent, jv-child, or jv. Jv-parent indicates that the pattern extracts one of
the partner entities (e.g., <entity> formed venture), juv-child indicates that the pattern extracts
the entity formed by the joint venture, and jv indicates that the pattern refers to a joint venture
but could extract either a partner or child entity.

Some entity concept nodes represent general patterns that extract company names but do
not necessarily refer to a joint venture (e.g. “executives from <entity>”) . In this case, the
relationship slot was left blank. An empty relationship slot indicates that the concept node will
extract entities but the entities may or may not be involved in a joint venture. Similarly, the other
types of information (facilities, revenue amounts, ownership percentages, etc.) rarely occur in
direct reference to a joint venture so the expressions that are useful for extracting this information
usually do not refer to a joint venture. Therefore the concept nodes will pick up this information
regardless of the surrounding context.3°

The relationship slot is initially filled with a value that comes from the answer key. For
example, if Company X was found in a JV template as a partner company, then the concept
node definition that is proposed by AutoSlog to extract Company X is given the relationship value
juv-partner. During the human-in-the-loop filtering process, however, the user can change this value.

Figure 3.11 shows an example of a good concept node definition proposed by AutoSlog for the
joint ventures domain. The targeted information is a company, “Berliner Bank”, which AutoSlog
finds as the subject of the first clause. The new <subject> verb direct-object heuristic kicks in
and AutoSlog generates a concept node that recognizes the pattern “<entity> formed venture”. In
the future, whenever a text contains the verb “formed” followed by a direct-object with “venture”
as its head noun, this concept node will fire and extract the subject of “formed” as a jv-entity.
In this example, the original AutoSlog heuristic <subject> active-verb would have created a
concept node that was too general (i.e., “<entity> formed”). Note that the concept node has a
type slot which specifies that the extracted noun phrase is probably a company, and a relationship
slot which specifies that the extracted noun phrase is probably a partner. In general, this pattern

30In a larger application, subsequent processing modules (i.e., discourse analysis) are responsible
for determining whether the extracted information relates to a relevant joint venture or not.

47

could also extract governments and people involved in a joint venture, not just companies, so the
human-in-the-loop should change the type slot so that it does not predict only a company.

Id: 0225 Slot filler: “Berliner Bank”
Sentence: Berliner Bank last year formed a joint venture with KFTCIC to channel
investment into medium-sized German companies.

CONCEPT NODE

Names: jv-entity-subject-verb-and-dobj-formed-venture
Trigger: venture

Variable Slots: (name (*SUBJECT* 1))

Constraints: (class 3v-ENTITY *SUBJECT*)

Constant Slots: (type jv-entity

subtype company
relationship jv-parent)
Enabling Conditions: (dobj-preceded-by-verb ’formed ’venture)

Figure 3.11: Concept node for “<entity> formed venture”

Figure 3.12 shows another good concept node definition generated by AutoSlog. AutoSlog
found a company called “Saft S.A.” in a prepositional phrase and attached it to the verb “teamed”.
The resulting concept node recognizes patterns of the form “teamed up with <entity>”. This
definition shows how particles are included in patterns; the pattern “teamed with <entity>”
would have been reasonable but “teamed up with <entity> is better.

Id: 0016 Slot filler: “Saft S.A.”
Sentence: Japan Storage Battery Co. announced it has teamed up with a leading
French battery maker, Saft S.A., to set up a joint venture in Japan to market small
batteries.

CONCEPT NODE

Names: jv-entity-pp-active-verb-teamed-up-with
Trigger: teamed

Variable Slots: (name (*PREP-PHRASE* (is-prep? ’(with))))
Constraints: (class 1V-ENTITY *PREP-PHRASE¥)
Constant Slots: (type jv-entity

subtype company
relationship jv-parent)
Enabling Conditions: ((active)

(particle-follows-verb 'teamed 'up))

Figure 3.12: Concept node for “teamed up with <entity>”

Figure 3.13 shows a concept node that represents the pattern “PERCENT-OBJECT by
<entity>”. This concept node is activated by all percentage objects and extracts an entity from

48

prepositional phrases that follow the percentage with the preposition “by”, for example “51% by
Toyota”, “49% by Disney”, etc. Intuitively, this pattern seems too general because it extracts
information following percentages without regard to preceding context. However, in a constrained
domain, this pattern is reasonably reliable. Many joint venture texts contain sentences of the form:
“51% of the new company is owned by X, 25% by Y, and 24% by Z”. Since this pattern is very
common in the JV domain, the human-in-the-loop chose to keep this definition in the dictionary.
However, the type slot should be changed because this pattern could also extract companies and
governments, not just people; “person” was used as the default because the targeted information
that produced this definition, “Winaryo Sulistyo”, was a person.

Id: 0143 Slot filler: “Winaryo Sulistyo”
Sentence: Capitalized at $3000000, the first overseas manufacturing foothold of
Achilles will be 40% owned by Achilles, 40% by Winaryo Sulistyo, the local
investor, and 20% by Mitsubishi.

CONCEPT NODE

Name: jv-entity-pp-noun-PERCENT-OBIECT-by
Trigger: PERCENT-OBJECT

Variable Slots: (entity (*PREP-PHRASE* (pp-check ’(by))))
Constraints: (class 3v-ENTITY *PREP-PHRASE*)
Constant Slots: (type jv-entity

subtype person
relationship jv-parent)
Enabling Conditions: (noun-triggered)

Figure 3.13: Concept node for “PERCENT-OBIECT by <entity>”

Figure 3.14 shows a concept node that represents the pattern “to make <product>". Given
the string “glycol” as input for a product description, AutoSlog identified “glycol” as the direct
object of the verb “make”. The pattern “to make <product>” seems like a good one, but the verb
“make” is very general and is likely to appear in relevant as well as irrelevant texts. Even so the
pattern is likely to appear in many relevant texts. Therefore we must keep it in the dictionary or
the system will fail to extract important product names. The subtype slot is filled with the value
“production” to denote that the concept node will usually extract objects that are produced. The
relationship and subtype slots for the joint ventures domain appear in Appendix 7.3.

Finally, as we explained in Section 3.4, sometimes AutoSlog generates definitions that are
bizarre and have no relevance to the domain. In Figure 3.15, AutoSlog generated a definition
to recognize the pattern “<entity> thrown hat”. This example shows how metaphor (“ICI has
thrown its hat into the ring”) can result in strange definitions. In general, it is difficult to avoid
extracting information from sentences that contain metaphorical expressions because context is
needed to reliably identify the metaphor.

Figure 3.16 shows a strange concept node that represents patterns of the form “fins with
<entity>”. This is another example of a mistake by the pp-attachment algorithm. AutoSlog
found the targeted information, “Aluminium Co. of Malaysia Bhd.”, in a prepositional phrase and
attached it to the noun “fins”. The pp-attachment algorithm should have attached it to the noun
“yenture” which would have produced a more sensible definition for the pattern “venture with
<entity>”. This is a tricky attachment because “venture” is far away from “with” and there are
several other intervening verbs and nouns.

Id: 0138 Slot filler: “glycol”
Sentence: Mitsui and Co. said Tuesday it has reached an agreement with
Union Carbide Chemicals and Plastics Co. of United States and two Taiwanese
firms to set up a new firm in Canada to make ethylene glycol, a major material
for polyester fibers.

CONCEPT NODE

Name: jv-prod_serv-description-dobj-infinitive-to-make
Trigger: make

Variable Slots: (description (*DOBJ* 1))

Constraints: (class 7v-PROD_SERV *DOBJ*)

Constant Slots: (type jv-prod_serv

subtype production)
Enabling Conditions: ((active)

(trigger-preceded-by 'make ’to))

Figure 3.14: Concept node for “to make <entity>”

Id: 0238 Slot filler: “ICI”
Sentence: In addition to Japanese, Taiwanese and South Korean firms,
ICI has thrown its hat into the ring with 350000 ton a year PTA plants in
Taiwan and Thailand.

CONCEPT NODE

Names: jv-entity-subject-verb-and-dobj-thrown-hat
Trigger: hat

Variable Slots: (entity (*SUBJECT* 1))

Constraints: (class IV-ENTITY *SUBJECT*)

Constant Slots: (type jv-entity

subtype company
relationship jv-parent)
Enabling Conditions: (dobj-preceded-by-verb 'thrown ’hat)

Figure 3.15: Concept node for “<entity> thrown hat”

49

50

But this example illustrates an important point about AutoSlog. Even if AutoSlog misses a
chance to generate an important definition, such as “venture with <entity>", there will usually be
other opportunities. The most common expressions appear multiple times in a training corpus so
AutoSlog has many opportunities to produce definitions for the most important patterns. Therefore
AutoSlog is very robust in the sense that it only needs to successfully generate each definition once
and, the more common the expression, the more opportunities it has to do so.

Idiosyncratic expressions, however, may occur only once or twice. If AutoSlog misses an
opportunity to create a definition for an idiosyncratic expression, then it may not get another
chance. On the other hand, if an expression is not very common in the training corpus then it is
not likely to be common in future texts.3! Consequently, the absence of the definition will probably
not have much impact on the final performance of the system.

Id: 0105 Slot filler: “Aluminium Co. of Malaysia Bhd.”
Sentence: Nippon Light Metal Co. has launched a joint venture in Malaysia

to produce and sell aluminum precoated fins, with Aluminium Co. of Malaysia Bhd.
(ALCOM), a subsidiary of Alcan Aluminum Ltd. of Canada, Nippon Light Metal
announced Wednesday.

CONCEPT NODE

Names: jv-entity-pp-noun-fins-with

Trigger: fins

Variable Slots: (name (*PREP-PHRASE* 1))
Constraints: (class 17v-ENTITY *PREP-PHRASE¥)
Constant Slots: (type jv-entity

subtype company
relationship jv-partner)
Enabling Conditions: (noun-triggered)

Figure 3.16: Concept node for “fins with <entity>”

3.5.2.4 Changes to the AutoSlog Interface

For MUC-5, we added a new feature to the AutoSlog interface that automatically proposes

morphological variations of the original concept node definitions. We call it the generalization

module and refer to the concept nodes created by the module as “generalized concept nodes”.3?

31Although this depends on the size of the corpus. If the training corpus is very small then even
the most common words for the domain may appear only a few times in the corpus.

32This module was partly motivated by the fact that UMass/MUC-4 system contained a
morphological analyzer but the UMass/MUC-5 system did not. The concept nodes created by
AutoSlog for MUC-4 were attached to root words and CIRCUS automatically applied them to all
morphological variations of the root words. Since the MUC-5 system did not do morphological
analysis, AutoSlog created a separate concept node for each morphological variant that occurred
during training. Omne could argue that morphological variants that do not occur in the training

51

The new concept nodes are not necessarily more general than the original ones, but they are created
by generalizing from the originals. The list of possible generalizations is shown below:

1. singular noun — plural noun

2. plural noun — singular noun

3. passive verb — active verb

4. active verb — passive verb, additional active verb tenses
5

. verb direct-obj — verb alone, direct object alone

When a user accepts a concept node definition, the generalization module tries to create
morphological variations of the original. For example, if the user accepts the definition for the
pattern “venture with <entity>” then the interface dynamically creates a definition for the plural
form,“ventures”. The user is then shown the definition for “ventures with <entity>" and asked
whether the new definition should also be added to the dictionary. If so, then both definitions are
added to the dictionary; if not, then only the original is saved. None of the generalized concept
nodes are added to the dictionary without confirmation from the user!

The verb generalizations are slightly more complicated. Passive verb forms are converted to
active verb forms, for example “<entity> was formed” is converted to “formed <entity>”. And
passive verbs followed by a prepositional phrase with “by” (e.g., “was formed by <entity>") are
converted to the active form (e.g., “<entity> formed”). Given an active verb form, the interface
also automatically generates definitions for four different verb tenses: present singular, present
plural, simple past, present participle. For example, given the pattern “<entity> formed” (simple
past), the interface automatically generates definitions for the variations “<entity> forms” (present
singular), “<entity> form” (present plural), and “<entity> forming” (present participle). Simple
morphology routines are used to generate the appropriate verb forms.33

In addition, two special generalization routines are used with the definitions created by
the <subject> verb direct-object heuristic. Before the user begins filtering the dictionary,
AutoSlog collects all of the <subject> verb direct-object definitions that share the same verb
or the same noun. For example, if AutoSlog created definitions for the patterns “<entity> formed
venture” and “<entity> formed company” then these definitions are put into one pile, and if
AutoSlog created definitions for the patterns “<entity> formed venture” and “<entity> joined
venture” then these are put into another pile. If AutoSlog created more than one3* <subject>
verb direct-object definition with the same verb then the interface generates a new definition
that drops the noun, e.g. “<entity> formed”. The rationale behind this rule is that, if AutoSlog
proposed multiple patterns for the same verb with different direct objects, then the verb itself is
often enough. The new pattern is more general than the old ones because it is activated by the
verb regardless of what the direct object is. Again, the user is given the option of keeping the new
definition or rejecting it.

corpus may be missing for a reason; that is, the variants have a different meaning that is not
relevant to the domain. This is an interesting question, although the answer depends on the size
of the training corpus as well.

33The morphology routines do not always generate the correct verb forms so the user can correct
them if necessary.

3%A constant can be set to control how many different instances need to be seen before the
generalization is applied. We set the constant to 2 for these experiments.

52

Similarly, if AutoSlog created more than one <subject> verb direct-object definition
with the same noun then the interface generates a new definition that drops the verb, e.g,
“<entity> <verb> venture”. This pattern is triggered by all occurrences of the noun “venture”
that are preceded by a verb and extracts the subject of the verb as an entity. Concept nodes
produced by this generalization routine are risky because they can be activated by many different
expressions. They are useful, however, when the direct object carries the relevant semantic
information and the preceding verbs are typically weak. For example, in the joint ventures
domain AutoSlog proposed many different concept nodes for various expressions involving the
noun “venture”, such as “<entity> formed venture”, “<entity> join venture”, “<entity> started
venture”, “<entity> studying venture”, “<entity> discussing venture”, etc. In the MUC-5 corpus,
almost any verb appearing before the noun “venture” produces a relevant expression for the joint
venture domain; even negative expressions such as “IBM canceled the venture” are indicators
of joint venture activity. The more general pattern may occasionally extract information from
misleading expressions, such as “Honda hoped the venture between Nissan and Toyota would
not be successful” but, in this case, the human-in-the-loop decided that the additional coverage
provided by the generalized pattern was probably worth the risks associated with it.

3.5.2.5 Results for JV

We evaluated AutoSlog in the joint ventures domain using the MUC-5 corpus. The input to
AutoSlog consisted of 10,684 string fills that came from 924 texts.3® Table 3.6 shows the breakdown
of string fills by slot. As Table 3.6 shows, some slots contained more fills than others. The majority
of string fills came from the entity and product/service slots. As a result, most of the concept
node definitions proposed by AutoSlog were for entities and product/service descriptions. Table 3.7
shows the breakdown by slot for the number of definitions proposed by AutoSlog, the number of
definitions kept by the human-in-the-loop, and the percentage of definitions kept.

Table 3.6: Number of input strings by slot

Slot Name F#String Fills
entity name 3456
entity aliases 1233
facility name 97
ownership percent 814
ownership total capitalization 139
person name 554
product /service 4296
revenue rate 50
revenue total 45
TOTAL 10,684

350me of these texts was reclassified as irrelevant during the course of MUC-5. Therefore only
923 of these texts were considered to be relevant for the text classification experiments described
in Section 4.6.3.

Table 3.7: Core AutoSlog dictionary for joint ventures

Slot Name #CNs | #CNs | %CNs
Proposed | Kept Kept
entity name 1562 527 18%
facility name 80 20 34%
ownership percent 174 90 52%
ownership total capitalization 25 14 56%
person name 243 119 49%
product /service 1034 138 13%
revenue rate 19 14 4%
revenue total 30 22 73%
TOTAL 3167 944 30%

53

As in the terrorism domain, the percentage of definitions kept by the user varies across
the different slots. In particular, the slots corresponding to monetary amounts (ownership total
capitalization, revenue rate, revenue total) and percentages (ownership percent) have over a 50%
retention rate. The expressions relating to these figures are often self-contained (e.g., “capitalized
at <capitalization>") and these values can be easily mapped back to the source text. Many of
the bad ownership percent definitions came from constructions such as “... formed a 50-50 joint
venture”, where the percentage is buried in a noun phrase. AutoSlog does not distinguish between
cases where the targeted information is a noun modifier as opposed to the head noun. In general,
when the targeted information is a noun modifier, AutoSlog proposes a pattern that is usually not
useful. A possible modification to AutoSlog would be to inhibit AutoSlog from creating definitions
when the targeted information does not include the head noun.

AutoSlog had the most difficulty with the product/service descriptions and entities. The
product service descriptions were often long and included verbs and prepositional phrases (e.g.,
“materials used for civil engineering projects” or “providing a broad range of research investment
consulting”). AutoSlog was designed to search for simple noun phrases and cannot currently
handle input strings that include verbs. Although the most important noun in the product/service
descriptions was usually marked (e.g., “materials” and “research” in the preceding examples), these
nouns were often too general by themselves and AutoSlog either found the wrong reference to the
noun or created a pattern that was overly general.

The low percentage associated with the entity slot was partially the result of entity aliases (e.g.,
“IBM”) and governments (“Chinese”). In news articles, the full name of a company usually appears
first (e.g., “International Business Machines Corp.”) and an alias (e.g., IBM) is used for subsequent
references. Therefore, the alias often appeared in sentences that did not explicitly mention the
joint venture (violating the first AutoSlog assumption described in Section 3.2). Governments are
often referred to implicitly using adjectives (e.g., “a Chinese- American joint venture”) so AutoSlog
often had trouble finding the references to governments in the original source text.

Table 3.8 shows the final statistics for the JV dictionary created by AutoSlog, including the
generalized concept node definitions produced dynamically by the interface. The human-in-the-
loop took 20 hours to review the 3167 concept nodes proposed by AutoSlog.3¢ This is substantially

36The human-in-the-loop for the JV dictionary was the author, who was not the human-in-the-
loop for the terrorism dictionary.

54

more time than it took the human-in-the-loop to review the terrorism definitions (5 hours).37 The
increased time is due to two factors. First, AutoSlog proposed 2.6 times as many definitions for
the JV domain (3167) as for the terrorism domain (1237), primarily because AutoSlog received 2.2
times as many input strings for the JV domain (10,684) as for the terrorism domain (4780).

Second, a lot of the increased filtering time is due to the overhead associated with the new
generalization module. The interface dynamically created one or more generalized definitions for
the user to review each time the user accepted one of the originals. This substantially increased
the number of definitions displayed to the user. In addition, some of the generalization routines
required human interaction (e.g., the morphology routines often generated bogus verb forms that
the user had to correct) which added many keystrokes to the filtering process. Consequently, the
filtering processes for JV and terrorism were substantially different and therefore not comparable.

The statistics for the final JV dictionary are shown in Table 3.8. The first column shows
the number of definitions originally proposed by AutoSlog. The second column shows the number
of original definitions kept by the user. The third column shows the total number of definitions
kept by the user, including the generalized definitions created by the interface. The generalized
definitions increased the size of the dictionary by a factor of 2.7. This implies that, on average,
each original definition spawned 1.5 generalized definitions.

Table 3.8: Generalized AutoSlog dictionary for joint ventures

Slot Name #CNs | ##CNs | #CNs Kept with

Proposed | Kept Generalizations
entity 1562 527 1570
facility name 80 20 38
ownership percent 174 90 184
ownership total capitalization 25 14 16
person name 243 119 355
product/service 1034 138 273
revenue rate 19 14 22
revenue total 30 22 57
TOTAL 3167 944 2515

AutoSlog created definitions for many expressions commonly associated with joint ventures
and expressions that were not necessarily common but appropriate for the domain. The concept
nodes proposed most frequently by AutoSlog (see Section 3.5.1) represented important expressions
relating to joint venture activities. For example, AutoSlog proposed many definitions involving
the noun “venture” (e.g., “venture with X”, “venture between X”, “X formed venture”, “X set up
venture”), and the word “agree” (e.g., “agreement with X”, “X agreed”, “X signed an agreement”,

37Tt is possible that some of the time difference can be attributed to the different users. However,
the human-in-the-loop for JV was probably at least as fast as the human-in-the-loop for terrorism
because she had extensive experience with AutoSlog. Therefore, if anything, the disparity between
the filtering time for JV and terrorism is likely even more pronounced.

L)

“X agreed to form”).?® AutoSlog also identified many expressions that are somewhat idiosyncratic
but relevant, such as “tie-up with X” or “X linked up”.

Table 3.9: Frequently proposed patterns for JV

Linguistic Pattern Number of Times Proposed
venture with <entity> 230
agreement with <entity> 54
venture between <entity> 51
<entity> formed venture 45
was owned by <entity> 39
<entity> agreed 38
<entity> set up venture 37
<entity> was capitalized 35
subsidiary of <entity> 34
<entity> signed agreement 34
unit of <entity> 34
PERCENT-OBIECT by <entity> 29
<entity> agreed to form 27

We did not have a hand-crafted dictionary with which to compare the AutoSlog dictionary
for the joint ventures domain so it is difficult to assess the performance of the dictionary in a
quantitative manner.3° Therefore, we judged the quality of the dictionary by manually inspecting
the definitions proposed by AutoSlog and by observing the performance of the system as a
whole. During the course of MUC-5, we watched CIRCUS process many texts using the AutoSlog
dictionary and felt satisfied that the dictionary extracted the majority of relevant information.
Although the final scores for the UMass/MUC-5 system in the JV domain were not as high as the
UMass/MUC-4 terrorism scores, we did not attribute the lower performance to poor dictionary

38Many of these expressions are often used with conjunctions, e.g., “venture between Toyota and
Nissan” or “Toyota and Nissan agreed”; if a concept node finds a conjunction in the text then it
extracts all of the conjuncts.

391n principle, one would like to determine how many correct and incorrect fillers were extracted
by the concept nodes. However there are several factors that make this difficult to determine
automatically. The main complication involves coreference. For example, the president of a
company may be referred to multiple times in a text as “CEO Mr. Stanley Bingham”, “Mr.
Bingham”, “the CEO”, “the president”, “he”, etc. If a concept node extracts any of these references
then it did the right thing. However, only one of the references, usually the most specific one, will
appear in the key template. This makes it difficult to assess the false hit rate of the concept nodes
automatically.

56

coverage.*’ Our final assessment of the UMass/MUC-5 system was that the AutoSlog dictionary
provided us with excellent coverage for the joint ventures domain.

3.5.83 The Microelectronics Domain

We also used AutoSlog to create a concept node dictionary for the MUC-5 domain of
microelectronics. We focused on 12 specific types of information found in the ME templates.
Examples of legitimate fillers for each slot are shown in Table 3.10.

Table 3.10: Targeted information for microelectronics

Slot Name Description Example

bonding type set fill LASER_BONDING

device function set fill MICROPROCESSOR

device size number & set fill unit 64 MBIT

device speed number & set fill unit 70 MHZ

entity name company, person, or govt. “Material Research Corp.”
equipment name mname or model number “Precision 8000
equipment type set fill CVD_SYSTEM

film type set fill SILICON_DIOXIDE
granularity size number & set fill unit LINE WIDTH 0.25M1
material type set fill CERAMIC

pin count number 408

process type set fill CHEMICAL VAPOR DEPOSITION

As we discussed in Section 2.3.2, most of the information in the microelectronics templates is
in the form of set fills, not strings. Only two of the twelve slot types (entity names and equipment
names) contain string fills. AutoSlog expects string fills as input because they can be easily mapped
back to the source text using a simple string search. Set fills are a problem because a set fill is a
symbol that refers to a class name, but is not part of the original source text. That is, the set fills
do not identify which parts of the text are relevant.*!

To work around this problem, we exploited the MUC-5 microelectronics domain guidelines.
The guidelines included a list of common terms and phrases that are relevant to each of the
set fill classes. For example, the guidelines state that the set fill ACTIVE DISCRETE DEVICE
applies to transistors, josephson junctions, quantum structures, bipolar devices, diodes, and
opto-electronic devices. The guidelines were written to help the MUC-5 participants understand

40See [MUC-5 Proceedings, 1993] for a detailed assessment of the UMass/MUC-5 system. We
believe that the weak link was the discourse analysis component which is responsible for mapping
the extracted information into the final templates. Most, or even all, of the relevant information
can be extracted from a sentence but the system will receive no credit for the information if the
discourse analyzer does not put it into the correct template slot.

41 Again, this is only a problem because we used the key templates as input to AutoSlog. An
annotated corpus, such as the one proposed in Section 5.4.3, would contain markings to indicate
which pieces of information are relevant.

LY

the microelectronics domain and how to fill templates. For AutoSlog’s purposes, we used these
lists to develop special procedures that automatically map the set fills back to the original source
text. For each set fill found in a template, AutoSlog searched the source text for any of the terms
associated with the set fill in the guidelines. For example, given ACTIVE_DISCRETE DEVICE as
input AutoSlog searched the source text for the first reference to transistors, josephson junctions,
quantum structures, bipolar devices, diodes, or opto-electronic devices. We also augmented the
original lists to include singular and plural forms of the same term and different hyphenated
variations.

The microelectronics domain is fundamentally different from the terrorism and joint venture
domains because it is a technical domain. Terrorism and joint ventures revolve around actions
(e.g., bombings in terrorism and forming companies in JV) so they are best characterized as event-
driven domains. In contrast, the microelectronics domain revolves around objects and processes.
Although there are some events in the ME world (e.g., a company develops an ME technique),
most of the information that needs to be extracted is technical in nature and does not depend on
events. The distinction between event-driven domains and technical domains is discussed in more
detail in Chapter 5.

3.5.3.1 Sample Concept Node Definitions for ME

We created a dictionary for the microelectronics domain using the exact same version of
AutoSlog that we used for the joint ventures domain. Because of the technical nature of the ME
domain, AutoSlog did not generate many useful patterns for some types of information. We will
illustrate the issues associated with technical domains by looking at some examples of concept
nodes generated for microelectronics.

AutoSlog was most successful at generating concept node definitions to extract entities. The
reason is that entities are where the action is. According to the MUC-5 domain guidelines,
a relevant entity must be a company, government, or person that plays the role of developer,
manufacturer, distributor, purchaser, or user. AutoSlog was designed specifically to extract role
objects, i.e. objects that play a specific role in an event. Microelectronics entities must be involved
in specific types of events (developing, manufacturing, distributing, purchasing, or using) to be
relevant.

As an example, Figure 3.17 shows a concept node produced by AutoSlog to extract entities.
This concept node is activated by the pattern “<X> developed technology” and extracts X. This
pattern is a useful because it represents one of the five relevant actions associated with entities
(i-e., developing).

Figure 3.18 shows another good concept node proposed by AutoSlog for the microelectronics
domain which recognizes the pattern “researchers at <X>”. Although this pattern does not
explicitly refer to one of the relevant actions associated with entities, it is useful because the
pattern is likely to extract the names of companies and organizations that are relevant. Of course,
some of the entities extracted by this pattern will not be involved in microelectronics activities.
But many of them will. As we explained in Section 3.5.1, concept nodes are useful if they are
likely to extract a lot of relevant information for the domain even if they also extract irrelevant
information sometimes.

Figure 3.19 shows a concept node produced by AutoSlog to extract microelectronics processes,
such as layering, lithography, etching, or packaging. The relevant process in the text is MBE,
which stands for “molecular beam epitaxy”. AutoSlog identified “MBE” as the direct object of
the verb “using” and created a concept node for the pattern “using <X>” to extract process
types. Although the pattern works in this particular text, it is too general to reliably pick up
microelectronics processes in future texts. The verb “using” is vague and can appear in many
different contexts.

Id: 2533698

CONCEPT NODE
Name:

Trigger:

Variable Slots:
Constraints:
Constant Slots:

Enabling Conditions:

Sentence: Fujitsu Laboratories has developed a technology to selectively form
a two-dimensional electron gas layer on top of an electron donor layer.

Slot filler: “Fujitsu Laboratories”

me-entity-subject-verb-and-dobj-developed-technology
technology

(name (*SUBJECT* 1))

(class ME-ENTITY *SUBJECT?*)

(type me-entity

subtype company

relationship (developer))

(dobj-preceded-by-verb 'developed ’technology)

Figure 3.17: Concept node for “<entity> developed technology”

58

Id: 2527636

Slot filler: “Tokyo Institute Of Technology’s”

Sentence: Researchers at the Tokyo Institute of Technology’s Research Laboratory
for Engineering Materials have reportedly developed a process to form a bi-based

superconducting thin film

which involves processing temperatures of 300 to 380

deg C, and uses an MBE (molecular beam epitaxy) method.

CONCEPT NODE
Name:

Trigger:

Variable Slots:
Constraints:
Constant Slots:

Enabling Conditions:

me-entity-pp-noun-researchers-at

researchers

(name (*PREP-PHRASE* (pp-check ’(at))))
(class ME-ENTITY *SUBJECT?*)

(type me-entity

subtype company

relationship (developer))

(noun-triggered)

Figure 3.18:

Concept node for “researchers at <entity>”

59

Id: 2533698 Slot filler: “MBE”
Sentence: To form the layer, the laboratory developed a continuous process

for growing crystals in an ultra-high vacuum environment using MBE, a method of
selectively implanting impurities with an FIB (focused ion beam) method, and
adopted a high-speed heat treating process.

CONCEPT NODE

Names: me-process-type-dobj-verb-using
Trigger: using

Variable Slots: (name (*DOBJ* 1))
Constraints: (class ME-PROCESS *DOBJ*)
Constant Slots: (type me-process

subtype layering)
Enabling Conditions: (active)

Figure 3.19: Concept node for “using <process>"

This example illustrates why technical domains are not well-suited for AutoSlog. Technical
information is often wholly contained in noun phrases and does not rely on surrounding linguistic
cues. For example, molecular beam epitaxy (MBE) refers to a specific microelectronics process; its
meaning is unambiguous and will not change in different contexts. For the purposes of information
extraction, technical jargon can usually be reliably extracted using simple keyword matching. In
most cases, the surrounding context does not provide any additional help in identifying the relevant
information.

However, sometimes it is important to identify the events associated with technical informa-
tion. For example, in the MUC-5 domain, microelectronics processes are relevant only if they are
being developed, manufactured, distributed, purchased, or used by an entity. Keyword matching
alone would not be able to distinguish between texts that just mention a microelectronics process
from texts that describe how a microelectronics process is being used or developed by a specific
company. In short, if the information extraction task only involves finding technical information
then keyword matching is appropriate. However, if the information extraction task also involves
identifying roles associated with the technical information then additional linguistic context must
be used. In Chapter 5, we characterize domains and tasks in more detail and explain which types
are appropriate for AutoSlog.

Since microelectronics is a technical domain, the AutoSlog definitions were not very useful
for identifying technical concepts. However, because the relationship between microelectronics
processes and entities is important for the MUC-5 domain, keyword recognition by itself is not
sufficient to identify the entities and the roles that they play. Therefore we adopted a two-stage
approach that combined keyword recognition with the AutoSlog dictionary. First, we used
AutoSlog to generate a concept node dictionary for the microelectronics domain just as we did
for terrorism and joint ventures. However, we added a filter to the information extraction system
to ensure that each instantiated concept node extracted a phrase related to microelectronics. For
example, the AutoSlog dictionary contains a concept node for the pattern “using <X>”. This
concept node is activated by all occurrences of the word “using”, but the filter throws away
all instantiations that do not extract a microelectronics term such “molecular beam epitaxy”
or “chemical vapor deposition”. The keywords act as constraints to prevent the system from
extracting irrelevant information, while the concept nodes allow the system to identify the role of
the microelectronics process (e.g., whether it was used, developed, etc.).

60

This two-phase approach involves a tradeoff with respect to portability. On one hand, the
system requires a predefined set of keywords for the domain; for the microelectronics domain,
we provided the system with a set of terms that refer to relevant microelectronics processes and
devices. On the other hand, this approach potentially reduces the amount of time required for a
person to manually filter the dictionary. The primary reason that the AutoSlog dictionary needs
to be filtered is to remove concept nodes that are likely to extract mainly irrelevant information.
The keyword filtering process, however, guarantees that the system will only output relevant
information. There are other reasons why the AutoSlog dictionary may need to be filtered (e.g.,
to eliminate concept nodes that represent irrelevant event types) but they typically represent only
a small fraction of the dictionary.

For the microelectronics domain, we applied the two-phase keyword filtering to the concept
nodes for 10 of the 12 slots (the setfill slots) and did not manually filter these definitions at all.
However, for the 2 slots that can be filled with arbitrary strings (the entity name and equipment
name slots), we put people in the loop to manually filter the concept nodes just as we did for the
terrorism and joint ventures domains.

3.5.3.2 Results for ME

We applied AutoSlog to 787 relevant texts from the MUC-5 development corpus.*? We
targeted the 12 slots types outlined in Section 3.5.3, which consist of 2 slots that accept string fills
(entity names and equipment names) and 10 slots that accept set fills. As we just explained, the
concept nodes produced by AutoSlog for the set fill slots were too general so we used keyword
filtering as a postprocessing step in the information extraction system. Since the keywords
extracted by the concept nodes uniquely determine which template slot should be filled, there
was no need to distinguish the concept nodes by slot type. Therefore we merged all of the concept
nodes generated for the 10 set fill slots and renamed them all as setfill types. In practice, merging
them has two side effects: (1) it reduces the size of the dictionary because many of the different
set fill types produced identical concept node patterns (e.g., “using <X>") and (2) it increases
the coverage of the dictionary because concept nodes generated by one slot are now capable of
extracting information for another slot.

Table 3.11 shows the statistics for the microelectronics dictionary. AutoSlog proposed 2952
concept node definitions for the microelectronics domain; 2275 of these definitions were saved in
the final dictionary. As we just mentioned, the entity name and equipment name concept nodes
were manually filtered*® because they extract arbitrary strings, but the setfill concepts nodes
were not filtered by a human.** The total filtering time for the ME dictionary was 15.5 hours,
which consisted of 10.5 hours to manually filter the entity name and equipment name concept
nodes plus 5 hours to “automatically” filter the setfill concept nodes. Even though we kept all of

420ne of these texts was classified as relevant when we did these experiments but was reclas-
sified as irrelevant by the MUC-5 organizers before the final evaluation. Therefore the MUC-5
microelectronics corpus officially contains only 786 relevant texts.

43Two people split up the task of filtering the microelectronics dictionary: one was a second-year
graduate student who had some but not extensive experience with AutoSlog and the other was
a third-year graduate student who had previously filtered the terrorism dictionary (but he was
a second-year graduate student at that time). The third-year student did most of the filtering
because he was more familiar with the microelectronics domain.

44Table 3.11 shows that only 1728 of the 1732 setfill definitions were actually kept. This is
because one of the users inadvertently threw away four of the bad setfill definitions.

61

the setfill definitions, we needed the generalization module in the AutoSlog interface to generate
morphological variations so someone actually needed to accept each definition manually.*®

Table 3.11: Core AutoSlog dictionary for microelectronics

Slot Name #Proposed | #Kept | %Kept
entity name 971 451 46%
equipment name 249 96 39%
setfill type 1732 1728 100%
TOTAL 2952 2275 %

We also applied the generalization module in the AutoSlog interface to the microelectronics
dictionary. Table 3.12 shows the size of the dictionary when the generalized concept nodes are
included. Notice that we included the generalized definitions for the set fill concept nodes even
though they weren’t manually filtered by a user. The generalized concept nodes substantially
increase the size of the dictionary. The final microelectronics dictionary contained 4220 concept
node definitions.

Table 3.12: Generalized AutoSlog dictionary for microelectronics

Slot Name #Proposed | #Kept #Kept with
Generalizations

entity name 971 451 1445

equipment name 249 96 209

setfill type 1732 1728 2566

TOTAL 2952 2275 4220

As with the joint ventures domain, there was no hand-crafted dictionary with which to compare
the AutoSlog dictionary for the microelectronics domain. In general, however, we felt that the
AutoSlog dictionary provided adequate coverage for the entity and equipment slots. Table 3.13
shows the ten most frequently proposed concept nodes for these slots. The patterns are not as
specific as those for the joint ventures domain, but most of them are likely to extract relevant
information for the ME domain.

However, most of the domain-specific terms for microelectronics came from the keywords that
were used to filter the setfill concept nodes. In theory, the concept node patterns are necessary in
order to understand the relationship between the microelectronics objects and the entities (e.g.,
whether a particular device was developed or used by a company). It is not clear how much the
UMass/MUC-5 system actually benefited from the concept nodes themselves. It is possible that
the keywords alone would have worked nearly as well. The answer to this question rests with the
discourse analyzer, which is the component of the UMass/MUC-5 system that used the concept

45Theoretically, this could be fully automated but we were operating under strict time constraints
and did not have time to automate this process.

62

Table 3.13: Frequently proposed patterns for microelectronics

Linguistic Pattern Number of Times Proposed
agreement with <entity> 18
researchers at <entity> 17
order from <entity> 14
manager at <entity> 14
includes <equipment-name> 13
<entity> developed technology 12
was developed by <entity> 12
order for <equipment-name> 11
introduced <equipment-name> 11
include <entity> 10

nodes. However, the discourse analyzer was not developed at UMass*® and it would be difficult for
us to delve into it to analyze the effect of the dictionary on its performance. Ideally, one would like
to evaluate the system without the setfill concept nodes at all but this would require developing a

new discourse module.
In summary, we believe that the AutoSlog dictionary provided good coverage for the string fill

slots in microelectronics. On the other hand, technical information such as the names of specific
microelectronics devices and processes are best handled by keywords. However, AutoSlog can
generate concept nodes that may be useful for determining the roles that these objects play in
events.

3.6 Experiments with Novice Users

In order for information extraction systems to be portable across domains, tools for automated
knowledge acquisition and rapid prototyping are essential. However, it is important to remember
that the ultimate users of these tools will be domain experts, not natural language processing
researchers. Domain experts have extensive knowledge about the task, but have little or no
background in linguistics or text processing. Tools that are accessible only to fellow researchers

will be of limited use in real-world scenarios.
With this in mind, we conducted two experiments to see whether people with little or no

background in natural language processing could use AutoSlog effectively. Our goals were to find
out whether:

1. Anyone with knowledge of the domain can use AutoSlog to create a concept node dictionary,
with minimal training.

2. Dictionaries created by novices can achieve good performance.

Furthermore, we were interested to see how well dictionaries created by different people would
perform, and how consistent they would be with each other. The first experiment involved ten
students with some background in natural language processing, who used AutoSlog to create
dictionaries for the terrorism domain. The second experiment involved two government analysts
who had no background in natural language processing but were domain experts for the joint
ventures domain.

46The discourse analyzer (TTG) was developed by our collaborators at Hughes Research Labs
(see [Lehnert et al., 1993a, Lehnert et al., 1993b)).

63

3.6.1 An Ezperiment with Students

The first experiment with novice users involved ten students in the introductory natural
language processing course at the University of Massachusetts. The class consisted of both
undergraduates and graduate students. During the course, the students received some exposure to
CIRCUS, including 2 lectures, 1 paper to read, and 2 programming assignments. They also had
some exposure to the information extraction task for terrorism, including 1 lecture and 1 paper.
So the students had some background in natural language processing and CIRCUS in general, but
no experience with the UMass/MUC-4 system (with the exception of one student in the class who
was also in our lab; we will refer to him as Student X).

Before the experiment began, the students were given 1 hour of instruction explaining how to
use the AutoSlog interface. They were given two weeks to build their own dictionaries for terrorism
using the interface. The experiment was a requirement for the course but no grades were given so
the students were not evaluated on the quality of their dictionaries.

Once the experiment was completed, we compared the performance of the students’ dictio-
naries with the performance of the hand-crafted MUC-4 dictionary. For each student dictionary,
we took the official UMass/MUC-4 system, replaced the hand-crafted dictionary with the student
dictionary, and scored the resulting system using the MUC-4 scoring program. We scored each
system on both TST3 and TST4. The results are shown in Table 3.14.

Two of these data points are somewhat anomalous. Student X was a member of our lab so he
had some knowledge about the UMass/MUC-4 system, but he did not have extensive experience
with the system. Nevertheless, his results should not be interpreted as those of a novice.*” The
second anomalous data point is Student I. Student I was not a native speaker of English and he
apparently did not understand the instructions. When the experiment was over, we found that
he had kept every concept node proposed by AutoSlog; he did not throw any of them away! As
a result, the scores generated by Student I’s dictionary represent a baseline; his scores reflect the
performance of the system with an unfiltered AutoSlog dictionary.

If we disregard the data points associated with Student X and Student I, we see fairly consistent
results across the different dictionaries. For TST3, the scores range from 70-87% of the performance
of the hand-crafted MUC-4 dictionary (based on the F-measure). For TST4, the scores range from
67-94% of those for the MUC-4 dictionary. Although there is quite a range of performance, the
majority of the dictionaries achieve about 75-85% of the performance of the MUC-4 dictionary.
Figure 3.20 shows the scatterplots for the recall and precision scores.

To put these numbers in perspective, consider how the scores of the student dictionaries
compare with the scores of the MUC-4 participants. Once again, we will disregard the scores
for the dictionaries produced by Student X and Student I. The best of the student dictionaries
achieved an F-measure of 43.82 on TST3, which would have placed it fifth in the MUC-4 rankings.
That is, only four of the seventeen MUC-4 systems achieved higher scores on TST3. At the other
end of the spectrum, the student dictionary that obtained the lowest score of 35.57 would have
ranked eighth in MUC-4. So all of the student dictionaries achieved scores better than half of the
MUC-4 participants on TST3. On TST4, the student dictionary with the highest score would have
ranked seventh and the dictionary with the lowest score would have ranked eleventh. In general,
we conclude that the concept node dictionaries generated by students achieved scores that were
comparable or better than many of the other MUC-4 systems.

One explanation for the relatively consistent results across different dictionaries is that some
definitions are more important than others; a subset of the definitions are used more frequently
than the rest. In other words, there is probably something like an 80/20 rule in effect where 20%

4"The AutoSlog results presented in Section 3.5.1 were based on Student X’s dictionary. We
used his dictionary as a basis for comparison against the hand-crafted dictionary because the
hand-crafted dictionary was created by an experienced system developer.

Table 3.14: Student dictionary scores on TST3 and TST4

TST3
System Recall | Precision | F-measure
MUC-4 46 56 50.51
Student X 43 56 48.65
Student A 39 50 43.82
Student B 38 44 40.78
Student C 33 52 40.38
Student D 38 43 40.35
Student E 36 42 38.77
Student F 37 38 37.49
Student G 34 39 36.33
Student H 31 42 35.57
Student I 31 17 21.96
TST4
System Recall | Precision | F-measure
MUC-4 44 40 41.90
Student X 39 45 41.79
Student A 37 42 39.34
Student C 30 41 34.65
Student D 35 34 34.49
Student H 31 38 34.14
Student B 33 34 33.49
Student E 31 36 33.31
Student G 32 32 32.00
Student F 28 28 28.00
Student I 35 15 21.00

64

65

TST3 TST4
100 100
90 90
80 80
70 70
5 60 - T — S 60
[%2] 9q
2 59 X x student dictionaries 2 £
£ 40 X M MUC-4 dictionary £ 40 <,
30 30 %
20 < 20
X
10 10
0 0
0 1020 30 40 50 60 70 80 90100 0 1020 3040 50 60 70 80 90100
Recall Recall

Figure 3.20: Recall and precision scores for the student dictionaries

of the concept nodes are doing 80% of the work.*® Consequently, as long as a user retains the most
important definitions, their dictionary will probably achieve relatively good performance. Notice
that even Student I, who retained every definition, achieved recall levels that were comparable to
the others.

We also tried to determine whether there were any correlations between dictionary size and
performance. In general, one might assume that larger dictionaries will produce high recall and

Table 3.15: Student dictionary sizes

Dictionary | # of Definitions
Student C 304
MUC-4 389
Student A 390
Student H 399
Student B 422
Student X 450
Student E 478
Student D 567
Student G 619
Student F 645
Student I 1237

low precision but smaller dictionaries will produce low recall and high precision. But this is not
necessarily the case. Figure 3.21 shows that the relationship between recall and dictionary size

“8For the MUC-4 dictionary, we found that 18% of the definitions accounted for 80% of the
instantiated concept nodes when processing the MUC-4 corpus (all 1700 texts). 28% of the
definitions accounted for 90% of the instantiated concept nodes. Of the 365 definitions that fired
at least once, nearly half (48%) fired < 10 times.

66

and does not reveal any consistent patterns. Some of the smallest dictionaries produce the highest
recall and some of the biggest dictionaries produce the lowest recall.

To understand this, one must remember that discourse analysis plays a major role in the
UMass/MUC-4 system. The discourse analyzer handled problems such as co-reference resolution
(i.e., determining when two items refer to the same object) and event recognition (i.e., determining
the number of distinct events and mapping each object to the appropriate event). Discourse
analysis becomes more complicated as the number of extracted items increases and becomes increas-
ingly difficult when spurious information is introduced. When a concept node extracts spurious
information, the discourse module may create spurious events to account for the information. The
mapping procedures may also become confused and relevant pieces of information may be mapped
to the wrong event. Consequently, even though a piece of information was correctly extracted, the
MUC-4 scoring program will not give the system credit for it because the information was placed
in the wrong template.

TST3 TST4
1300 1300
1200 1200 X
»n 1100 @ 1100
S 1000 5 1000
2 900 £ 900
% 800 % 800
o 700 < x student dictionaries 8 700 <
S 600 X - S 600 X
g 500 XX ; M MUC-4 dictionary g 500 |
£ 400 ¥ £ 400 i
g 300 % é’ 300
200 200
100 100
0 0
0 1020 3040 50 60 70 80 90100 0 10 20 304050 60 70 80 90100
Recall Recall

Figure 3.21: Recall vs. number of definitions

Figure 3.22 shows the relationship between precision and dictionary size. Although there is
not a perfect correlation, the graph suggests that smaller dictionaries produce higher precision
than bigger dictionaries. This makes sense if we assume that the smaller dictionaries represent
conservative filtering strategies. Students using a conservative strategy probably retained the most
reliable concept node definitions and rejected all definitions that might be prone to false hits.
Therefore the smaller dictionaries contain concept nodes that are less likely to extract spurious
information.

We also scored the student dictionaries on a different task called “text filtering”. In MUC-4,
text filtering refers to the problem of distinguishing the relevant texts (i.e., the ones that contain
a relevant event description) from the irrelevant texts (i.e., the ones that do not contain a relevant
event description). This is identical to the binary text classification task described in Chapter 4.
The MUC-4 scoring program computes recall and precision scores for the text filtering task as well
as the information extraction task. Figure 3.23 shows the text filtering scores for the dictionaries.

The results in Figure 3.23 are interesting for several reasons. First, there is less variation in
scores across the different dictionaries. On TSTS3, all of the dictionaries achieved at least 80%
recall and 78% precision. Many of them achieved > 85% recall and > 90% precision. On TST4,
we see a few anomalous data points but most of the dictionaries achieve > 84% recall and > 74%
precision. Second, the text filtering scores for the student dictionaries are very close to the text
filtering scores for the hand-crafted dictionary, which obtained 91% recall and 94% precision on

67

TST3 TST4
1300 1300
1200 1200 X
»n 1100 n 1100
S 1000 S 1000
Z 900 £ 900
% 800 x student dictionaries © 800
QO 700 L O 700
5 600 M MUC-4 dictionary S 600 Xxx
& 500 . & 500 xx
€ 400 o € 400 X e
= 300 X g 300 i
< 200 200
100 100
0 0
0 1020 304050 60 70 80 90100 0 102030405060 708090100
Precision Precision
Figure 3.22: Precision vs. number of definitions
TST3 TST4
100 100
90 ol 90
80 X 80 %
X ;W
70 70
c X
& 60 ——— S 60 x
{7 x student dictionaries ‘B
S 50 4 dic g 50
& 40 M MUC-4 dictionary 5 40
30 30
20 20
10 10

0
0 102030405060 708090100

Recall

0
0 1020 30405060 7080 90100

Recall

Figure 3.23: Recall and precision scores for text filtering

68

TST3 and 90% recall with 78% precision on TST4. If we view these scores as an upper bound,
then the results for the student dictionaries are impressive because they did nearly as well.

To summarize, this experiment demonstrated that students with only minimal background in
natural language processing can use AutoSlog effectively. Many of the dictionaries created by the
students achieved performance levels only slightly lower than that of a hand-crafted dictionary. In
general, conservative filtering strategies tend to produce dictionaries with relatively high precision,
but sometimes at the expense of recall. Finally, dictionaries produced by different people achieved
text filtering scores that were comparable to those for the hand-crafted dictionary and were
generally consistent across different users.

3.6.2 An Ezperiment with Domain Experts
The goals of this experiment were:

1. to determine whether people with no background in text processing could use AutoSlog
effectively.

2. to see what levels of performance could be obtained from dictionaries created by domain
experts.

Two government analysts agreed to be the subjects of the experiment. The analysts were experts
with the the JV domain and the template-filling task. Neither analyst had any background in
linguistics or text processing or had any previous experience with the UMass/MUC-5 system.
Before they began, we gave them a 1.5 hour tutorial to explain how AutoSlog works and how
to use the interface. The tutorial included general decision-making advice and some examples to
highlight important issues.

We did not give the analysts all of the concept node definitions proposed by AutoSlog for
the JV domain. AutoSlog proposed 3167 concept node definitions, but the analysts were only
available for two days and we did not expect them to be able to review 3167 definitions in this
limited time frame. So we created an “abridged” version of the dictionary by eliminating entity
and product/service definitions that were proposed infrequently by AutoSlog.*® The resulting
“abridged” dictionary contained 1575 concept node definitions.

We compared the analysts’ dictionaries with the MUC-5 dictionary generated by a UMass
researcher using AutoSlog. However, the UMass dictionary was based on the complete set of 3167
definitions originally proposed by AutoSlog as well as definitions that were spawned by AutoSlog’s
generalization module. We did not use the generalization modules in this experiment because of
time constraints. To create a comparable UMass dictionary, we started with the MUC-5 dictionary
that had been manually filtered by a UMass researcher and removed all of the “generalized”
definitions as well as the definitions that were not among the 1575 given to the analysts. In
other words, any concept node that was not given to the analysts was removed from the UMass
dictionary. This process produced a much smaller subset of the UMass dictionary that was based on
exactly the same set of inputs as the analysts’ dictionaries but was filtered by a UMass researcher.
Analyst A took approximately 12.0 hours and Analyst B took approximately 10.6 hours to filter
their respective dictionaries. Table 3.16 shows the number of definitions that each analyst kept.
For comparison’s sake, we also show the breakdown for the abridged UMass dictionary.

49This was based on the frequency counts described in Section 3.5.1. We removed all entity
definitions that were proposed < 2 times and all product/service definitions that were proposed
< 3 times. We chose to eliminate entity and product/service definitions only because the sheer
number of these definitions overwhelmed the others.

50The abridged version.

69

Table 3.16: Comparative dictionary sizes

CN Type #proposed #kept #kept #kept
by AutoSlog | (UMass®®) | (Analyst A) | (Analyst B)
entity 688 311 357 423
facility 80 20 16 55
ownership percent 174 91 117 91
person 243 119 149 52
product/service 316 76 152 44
revenue rate 19 14 12 16
revenue total 30 22 15 26
total capitalization 25 14 13 22
TOTAL 1575 667 831 729

To compare the dictionaries, we took the UMass/MUC-5 system, removed the official UMass
dictionary, and replaced it with a new dictionary (an analysts dictionary or the abridged UMass
dictionary).5! Finally, we scored each new version of the UMass/MUC-5 system on the Tips3 test
set that was used for the MUC-5 evaluation. Table 3.17 shows the results for each dictionary.

Table 3.17: Comparative scores for Tips3

TIPS3 Recall | Precision | F-measure | ERR
UMass/Hughes 18 51 27.06 83
Analyst A 19 47 27.39 83
Analyst B 20 47 27.89 83

The F-measures were extremely close across all 3 dictionaries. In fact, both analysts’
dictionaries achieved slightly higher F-measures than the UMass dictionary. The error rates (ERR)
for all three dictionaries were identical®?, but there is some variation in the recall and precision
scores. We see more variation when we score the three parts of Tips3 separately3 (see Table 3.18).

Overall, the analysts dictionaries achieved slightly higher recall but lower precision than the
UMass dictionary. We hypothesize that this is because the UMass researcher was not very familiar
with the corpus and was therefore somewhat conservative about keeping definitions. The analysts

510One complication is that the UMass/MUC-5 system includes two modules, TTG and Maytag,
that use the concept node dictionary for training. Ideally, we should retrain these components
using the new dictionary. We did retrain the template generator (TTG), but we did not have
time to retrain Maytag. We expect that this should not have a significant impact on the relative
performances of the dictionaries, but we are not certain of its exact impact.

52Gee [MUC-5 Proceedings, 1993] for a description of the error rate measure.

53The Tips3 test collection consisted of three separate sets of texts.

70

Table 3.18: Comparative scores for Partl, Part2, and Part3

TIPS3/Partl Recall | Precision | P&R | ERR

UMass/Hughes 18 51 27.04 | 83
Analyst A 20 48 28.00 | 82
Analyst B 22 47 29.69 | 81

TIPS3/Part2 Recall | Precision | P&R | ERR

UMass/Hughes 17 52 26.03 | 84
Analyst A 18 48 25.92 | 84
Analyst B 20 47 27.75 | 83
TIPS3/Part3 Recall | Precision | P&R | ERR
UMass/Hughes 20 50 28.12 | 82
Analyst A 20 46 27.96 | 82
Analyst B 17 48 25.25 | 84

were much more familiar with the corpus and were probably more willing to keep definitions for
patterns that were familiar to them. In general, there is a trade-off involved in making these
decisions: a liberal filtering strategy often results in higher recall but lower precision whereas a
conservative strategy results in lower recall but higher precision.

It is interesting to note that even though there was a lot of variation in the composition of the
dictionaries (see Table 3.16), the resulting scores were very similar. As we explained in the previous
section, we are probably seeing an 80/20 rule in effect where a core subset of the definitions, shared
by all of the dictionaries, were exercised more than the others. This has important implications
for system development: different dictionaries may achieve similar levels of performance as long
as they share the same core set of important definitions. Consequently, if we could identify these
core definitions a priori then we could significantly reduce the time needed for the human in the
loop.

3.7 Summary
In this chapter, we presented:

e A system called AutoSlog that automatically constructs domain-specific dictionaries for
information extraction given an appropriate training corpus.

e Results in the terrorism domain which showed that a dictionary constructed by AutoSlog
achieved 98% of the performance of a hand-crafted dictionary. Furthermore, the hand-crafted
dictionary required approximately 1500 person-hours to build but the AutoSlog dictionary
required only 5 person-hours of effort and a training corpus.

e Results in the joint ventures and microelectronics domain which suggested that dictionaries
created by AutoSlog provided good coverage in these domains. However, AutoSlog is not
particularly well-suited for extracting technical information.

e An experiment with students which demonstrated that people with only minimal background
in text processing can use AutoSlog effectively.

71

e An experiment which demonstrated that domain experts with no background in text process-
ing can use AutoSlog effectively. The analysts’ dictionaries produced scores that were better
than a dictionary constructed by an NLP researcher, supporting the claim that AutoSlog is
an effective tool for domain experts.

CHAPTER 4

INFORMATION EXTRACTION AS A
BASIS FOR TEXT CLASSIFICATION

4.1 Text Classification

As storage capacities grow and memory becomes cheaper, we will soon have more information
at our fingertips than we ever could have imagined. Already, we have databases that contain
hundreds of thousands of documents. Intelligent information retrieval is essential to cope with
such vast amounts of text. A central problem in information retrieval is tezt classification (or
text categorization). The task is to automatically classify texts into one or more pre-defined
categories. There are many applications that can take advantage of the classifications. For
example, tezt routing applications automatically route texts to users who have a specific in-
formation need. Tezt fillering applications filter out texts that are classified as irrelevant so
that only the relevant documents are passed on to the user (e.g., [Foltz and Dumais, 1992,
Liddy et al., 1993]). Text routing, text filtering, and text classification are all closely related
areas of information retrieval [Belkin and Croft, 1992].

Traditional approaches to information retrieval use keyword searches and statistical techniques
to retrieve relevant documents (e.g., [Turtle and Croft, 1991, Salton, 1989]). Statistical techniques
take advantage of large document collections to automatically identify words that are useful
indexing terms. These techniques are popular because they can be fully automated and can sift
through large volumes of documents with relative ease. In general, however, word-based techniques
have several limitations:

Synonymy: Different words and phrases can express the same concept. For example, the words
“make”, “manufacture”, and “produce” all refer to the concept of production.

Polysemy: Words can have multiple meanings. For example, the word “post” can refer to the
name of a newspaper, a vertical support in carpentry, entering a transaction in accounting,
or sending a message in computing.!

Phrases: Some words are good indexing terms only in specific phrases. For example, the
phrase “passed away” means that someone died but the words “passed” and “away”, used
independently, are not associated with dying.

Local context: Some words and phrases are good indexing terms only in specific local contexts.
For example, to retrieve texts about bank robberies, the word “robbery” alone is not enough;
the object of the robbery must be a bank.

IThis example is from [Mauldin, 1991].

73

Global context: Some documents do not contain any words or phrases that are good indexing
terms. The relevance of a document may depend on the entire context of a sentence,
paragraph, or even the whole text. For example, the sentence “an armed man took the
money and fled” clearly refers to a robbery even though none of the words are good indexing
terms individually.

Synonymy is a well-known limitation of word-based techniques that can make it difficult to find
relevant documents. Some IR systems access a thesaurus or an on-line dictionary to alleviate this
problem (e.g., [Crouch, 1988, Crouch and Yang, 1992, Mauldin, 1991]). Word-sense disambiguation
techniques have been used to investigate the issue of polysemy (e.g., [Krovetz and Croft, 1989]).
The last three points address issues of linguistic context. Some IR systems have tried automatic
phrase indexing methods that use multiple words together as indexing terms, for example [Croft et
al., 1991, Dillon, 1983, Fagan, 1989]. But these approaches only approximate phrasal recognition
and provide a weak sense of context. By using multiple words or phrases to index a document,
IR systems capture some global context but typically do not represent the relationships between
words beyond co-occurrence statistics.

As an alternative to traditional IR systems, there has been a lot of work recently on knowledge-
based information retrieval systems (e.g., [Goodman, 1991, Hayes and Weinstein, 1991, Mauldin,
1991, Rau and Jacobs, 1991]). Knowledge-based IR systems rely on an explicit knowledge base,
such as a rule base [Hayes and Weinstein, 1991], semantic network [Goodman, 1991], patterns [Rau
and Jacobs, 1991], or case frames [Mauldin, 1991]. Many of these systems have achieved good
success in limited domains. However, knowledge-based approaches typically require an extensive
manual knowledge engineering effort to create the knowledge base. Manual knowledge engineering
is a time-consuming and tedious process that may require several person-years of effort by experts
who are highly experienced with the domain and the task. To achieve similar success in a new
domain, the entire knowledge engineering process must be repeated.

Both traditional IR techniques and knowledge-based techniques have been applied to the
problem of text classification (e.g., see [Maron, 1961, Borko and Bernick, 1963, Hoyle, 1973] for
traditional IR approaches and [Goodman, 1991, Hayes and Weinstein, 1991, Rau and Jacobs, 1991]
for knowledge-based approaches). Text classification is an information retrieval task in which one
or more category labels is assigned to a document. This task assumes a pre-defined, long-term set
of user interests (categories) which is different from the standard information retrieval task that
assumes dynamically changing user needs (queries) [Belkin and Croft, 1992]. However, both tasks
share many of the same problems because they are primarily concerned with identifying relevant
documents from large collections of raw text.

Our approach to text classification is a departure from standard IR techniques in several
ways. First, we use a natural language processing task called information eztraction as a basis for
text classification. Although in-depth natural language processing can be prohibitively expensive
and brittle, information extraction is a more tractable and robust technology. Using natural
language processing, we can overcome many of the limitations imposed by word-based techniques.
In particular, we consistently achieve high precision because our approach is sensitive to context.
Linguistic phrases and context surrounding the phrases are recognized easily and handled naturally.
In addition, the system can classify texts that would be inaccessible to some word-based techniques
because they do not contain any key words or phrases.

Second, our approach is knowledge-based because it relies on a domain-specific dictionary
to drive the information extraction system. However, the text classification algorithms are
domain-independent and the domain-specific dictionary can be acquired automatically, given an
appropriate training corpus. Therefore the complete text classification system is fully trainable
and can be easily scaled up or ported to new domains. By automating the construction of a
knowledge-based text classification system, we have greatly reduced the knowledge engineering
bottleneck typically required for such systems while benefiting from a knowledge-based approach.

74

Finally, the emphasis of this research is on high precision text classification. In many real-world
applications, users are satisfied to receive a small number of relevant documents, as long as they
can be reasonably confident that the documents have been classified accurately. The algorithms
that we will describe allow the user to specify how conservative or liberal the algorithms should
be about assigning categories. In general, there is usually a tradeoff between retrieving as many
relevant texts as possible and retrieving relevant texts accurately. Liberal algorithms are more
eager to classify texts as relevant but may misclassify many texts. Conservative algorithms are
more reluctant to classify texts as relevant so they generally produce fewer false hits but may fail
to recognize many relevant documents. Although our text classification algorithms can achieve
a broad range of results, our approach is particularly well-suited for applications in which the
accuracy of the classifications is more important than recognizing every relevant document.

In this chapter, we describe three algorithms that use information extraction as a basis for text
classification: the relevancy signatures algorithm, the augmented relevancy signatures algorithm,
and a case-based text classification algorithm. We will refer to this general approach as IE-based
text classification, where IE-based is shorthand for information extraction based. We present
empirical results for all three algorithms in three different domains: terrorism, joint ventures, and
microelectronics.

4.2 Motivation

Our work on text classification was motivated by three observations about how humans classify
documents:

1. Human readers usually find some texts difficult to classify because they fall into gray
areas with respect to the domain specifications. On the other hand, many documents are
straightforward to classify because they fall squarely within the domain guidelines. A human
can quickly and easily pick out these texts.? Owur goal is to simulate this human process
of recognizing the texts that are most likely to be relevant. By focusing on the relatively
straightforward texts instead of the borderline cases, we are willing to miss some relevant
texts in exchange for good accuracy on the ones that we do classify as relevant.

2. A single relevant sentence is often enough to classify a text as relevant. In some cases, as soon
as an important expression is identified, a text can be accurately classified. For example, in
the domain of terrorism, the expression “was shot to death” is a strong indicator of relevance.
If a text in the MUC-4 corpus contains this expression, then we can quickly and confidently
classify the text as relevant.

3. Once a relevant sentence is identified, the remainder of the text can be ignored. As soon
as we find a relevant sentence, the text should be classified as relevant regardless of what
appears in the remainder of the text.3

2In an informal experiment, we asked two graduate students to scan 100 MUC-4 texts and pick
out any texts that they could quickly and confidently identify as relevant. The first student took

15 minutes to go through all 100 texts and achieved 83% recall and 96% precision. The second
student took 30 minutes and achieved 86% recall and 94% precision. In this small amount of time,
the students could not possibly have read all of the documents. Their good results support our
claim that, in this domain at least, many documents can be accurately classified by text skimming.

3Points 2 and 3 are not always true, especially when the domain description contains many
exceptions. Our algorithms assume that these exceptional cases are relatively infrequent in the
corpus.

75

With these observations in mind, we developed three algorithms that use information extrac-
tion as a basis for classifying texts. For each algorithm, a document is first processed by CIRCUS
which generates a set of instantiated concept nodes as the representation of the text. These concept
nodes are then given as input to the text classification algorithm.

4.3 The Relevancy Signatures Algorithm

Although keywords are useful as a first approximation for discriminating between relevant and
irrelevant texts, they do not capture natural language context surrounding a word. Although some
words are good indicators of relevance in almost any context, other words are good indicators of
relevance only in specific contexts. For example, the word “dead” is a common word in the MUC-4
corpus but it is not used exclusively in relevant texts. Many texts in the MUC-4 corpus describe
military incidents that are not terrorist in nature. For example, phrases involving the word “dead”
frequently refer to military casualties such as: “the attack left 15 dead”, or “there were 49 dead
and 50 wounded”. On the other hand, certain expressions involving the word “dead” are highly
indicative of terrorism in the MUC-4 corpus. For example, the expression “was found dead” has an
implicit connotation of foul play which often implies terrorist activity, especially in Latin American
countries. In fact, every occurrence of “was found dead” in the MUC-4 corpus appears in a relevant
text. Therefore the word “dead” is not a good keyword by itself, but it zs useful for recognizing
relevant texts when it appears in certain expressions.

We see a similar phenomena associated with the word “casualties”. The word “casualties”
is often used in military event descriptions and is therefore not a good keyword for terrorism.
However, certain linguistic expressions involving the word “casualties” are good indicators of
relevance for terrorism. For example, the phrase “no casualties” is often used in terrorist event
descriptions to inform the reader that there were no civilian casualties in an attack. When we
collect statistics for these two expressions in the MUC-4 corpus, we find that only 41% of the
texts that contain the word “casualties” alone are relevant, but 81% of the texts that contain
the expression “no casualties” are relevant. Clearly, the word “casualties” by itself is not a good
keyword for terrorism but the phrase “no casualties” is useful for identifying relevant texts.

IR researchers have experimented with phrase-based indexing approaches that use word
proximity, text structure, syntactic information and frequency data to approximately recognize
phrases (e.g., [Dillon, 1983, Fagan, 1989]). But natural language processing capabilities can
recognize phrases in a more robust fashion by recognizing syntactic relationships, such as active and
passive verb constructions, conjunctions, prepositional phrases, etc. Fagan [Fagan, 1989] concluded
that syntactic analysis would have allowed his system to produce better quality phrase descriptors
than those produced by frequency and cooccurrence information alone.

The relevancy signatures algorithm [Riloff and Lehnert, 1992] was our first attempt to use
natural language processing to classify texts on the basis of linguistic expressions instead of
isolated keywords. This algorithm represents linguistic expressions as “signatures”, uses statistical
techniques to identify signatures that are highly correlated with relevant documents, and then uses
these signatures to classify new texts.

4.3.1 Relevancy Signatures

A signature is a pair consisting of a word and a concept node that it triggers, which together
represent a set of linguistic expressions. For example, consider the signature <murdered, $murder-
passive$>. The word “murdered” triggers the concept node $murder-passive$ which is activated
only when the verb “murdered” appears in a passive construction. Together, the pair represents
all passive constructions of the verb “murdered”, such as “was murdered”’, “were murdered”, “have
been murdered”, etc. Using this representation, we can distinguish between different linguistic
expressions involving the same word. For example, the signature <dead, $found-dead-passive$>

76

represents expressions such as “was found dead” but the signature <dead, $left-dead$> represents
expressions such as “left 23 dead”.

A relevancy signature is a signature that is highly correlated with relevance for a domain. If
a new text contains a relevancy signature then, by definition, it contains a linguistic expression
that is highly correlated with relevance for the domain. In the next section, we describe how to
generate a good set of relevancy signatures using a training corpus and how to use them to classify
new texts.

4.3.2 The Algorithm

The relevancy signatures algorithm has two parts: a training phase and a classification phase.
During training, we generate a set of relevancy signatures based on a training corpus. During
classification, we use the relevancy signatures as indices to classify new texts. Figure 4.1 shows
the steps involved in the training phase.

TRAINING

training concept ; compute statistics relevancy
texts P (CIRCUS) = “rodes —» SIgnatures—- | g apply thresholds —® signatures

TESTING

, es

new concept _—y, ionatures—pp ¢ CONtAINS relevan y relevant(]

texts % (CIRCUS) —® nodes g signature? ?: irrelevant
Figure 4.1: Flowchart for the relevancy signatures algorithm

Each text in the training set is first processed by CIRCUS which produces a set of instantiated
concept nodes. For each instantiated concept node, a signature is created by pairing the concept
node with the word that triggered it. Then statistics are compiled for each signature to determine
how often it appeared in a relevant text; for each signature we estimate the conditional probability
that a text is relevant given that it contains the signature. The formula is:

PI‘(text is relevant) _ NsigisREL—TEXTS
text contains sig;/ ~— Niig,

where N,;,, is the number of occurrences of the signature sig; in the training set and
Nig.crEL-TEXTSs is the number of occurrences of the signature sig; in relevant texts in the
training set. The epsilon is used loosely to denote the occurrences of the signature that “appeared
in” relevant texts. Table 4.1 shows twelve signatures, their estimated conditional probabilities
based on a training set of 1500 texts, and examples of sentences that generate the signatures.
The probabilities in Table 4.1 are not always intuitive. For example, 84% of the texts
containing the word “assassination” were relevant but only 49% of the texts containing the word
“assassinations” were relevant. On the surface, it would seem that singular and plural forms of
the same word should be equally useful as indexing terms. However, this is not necessarily the
case. In the MUC-4 domain, a text is relevant only if it describes a specific terrorist incident. The

(s

Table 4.1: Sample signatures and conditional probabilities

Signature Prob. | Examples

<assassination, $murder$> .84 the assassination of Hector Oqueli
< assassinations, $murder$> .49 there were 2,978 assassinations in 1988
<bombed, $bombing-passive$> .80 public buildings were bombed
<bombed, $bombing-active$> .51 terrorists bombed two facilities
<casualties, $no-injury$> .81 the attack resulted in no casualties
<casualties, $injury$> 41 the officer reported 17 casualties
<dead, $found-dead-passive$> 1.00 | the mayor was found dead

<dead, $left-dead$> .61 the attack left 9 people dead
<dead, $number-dead$> AT the army sustained 9 dead

<fire, $arson$> 1.00 | terrorists set a restaurant on fire
<fire, $shooting$> .87 the guerrillas opened fire

<fire, $weapon$> .59 two helicopters were hit by rifle fire

singular form, “assassination”, often reports a specific assassination of a person or group of people.
But the plural form, “assassinations”, is often refers to assassinations in general, e.g., “The FMLN
has claimed responsibility for many kidnappings and assassinations”.

Table 4.1 also shows a surprising result for the word “bombed”. The passive form of the
verb “bombed” is more highly correlated with relevant texts than the active form. When we look
through the MUC-4 corpus for an explanation, we find that the active verb form is often used in
military event descriptions but the passive form is more common in terrorist event descriptions.
These distinctions would be difficult if not impossible for a person to anticipate. One of the main
advantages of the corpus-based approach is that these distinctions are identified automatically
using statistics from a training corpus.

To select a set of relevancy signatures, we use two thresholds: R and M. A relevancy signature
is defined as a signature that appears at least M times in the training corpus and has conditional
probability > R. The relevancy threshold R ensures that a signature is selected as a relevancy
signature only if it is highly correlated with relevance. For example, R = .85 specifies that at least
85% of the occurrences of the signature in the training set came from relevant texts. Consequently,
if the signature appears in a new text then the new text is likely to be relevant. The frequency
threshold M ensures a signature is not considered to be “reliable” unless it has been seen it at least
M times. For example, if a signature appears only once in the training set then we do not have
enough evidence to make any assumptions (positive or negative) about its general utility.

Both thresholds are inputs specified by a user. By adjusting the thresholds, the user can
manipulate a tradeoff. Increasing R and M tightens the criteria for reliability and fewer signatures
will be labeled as relevancy signatures. As a result, fewer texts will be classified as relevant.
However, the relevancy signatures are presumably very dependable so the resulting classifications
are likely to be accurate. On the other hand, decreasing R and M loosens the criteria for reliability
and more signatures will be labeled as relevancy signatures. Although more texts will be classified
as relevant, more false hits are also likely.

The second step of the algorithm is the classification phase shown in Figure 4.1. Given a
new text to classify, CIRCUS processes the text and generates a set of instantiated concept nodes.
Then signatures are created by pairing the concept nodes with their trigger words. If any of the
signatures is a relevancy signature then the text is classified as relevant. Otherwise, the text is
classified as irrelevant. An important aspect of this algorithm is that the presence of a single
relevancy signature is enough to classify a text as relevant.

78

4.3.8 FEzxperimental Results

To evaluate the performance of the relevancy signatures algorithm, we used the 1500 texts
from the MUC-4 development corpus for training* and set aside the remaining 200 texts for testing.
These 200 texts consist of two sets of 100 texts each, TST3 and TST4, which were used for the final
MUC-4 evaluation and were therefore blind with respect to both the UMass/MUC-4 system and
the text classification algorithms. First, each text in the training set was processed by CIRCUS
and statistics were compiled for each signature. Next, the algorithm was tested on the two test
sets, TST3 and TST4. Since the relevancy signatures algorithm depends on two thresholds, R and
M, we tried a variety of threshold settings. We varied R from .70 to .95 in increments of .05, and
we varied M from 0 to 20 in increments of 1.° Therefore we ran the algorithm 126 times on each
test set. In Section 4.6.2 we describe a more comprehensive set of experiments that addresses the
problem of how to find good threshold values empirically.

Figure 4.2 shows the scatterplots for TST3 and TST4. Each data point represents one
application of the algorithm using a specific set of threshold values. Each scatterplot therefore
contains 126 data points, but different threshold settings often produce the same results so many
of the data points collapsed into a single point on the graph. We evaluated the algorithm on the

basis of recall and precision. In general, the data points toward the right side of the graphs
TST3 TST4
100 B 100
90 x X X % 90- XX ﬂi(Y;&
] g X
§ “X
80 S - 801 LT
70 704 x Y
S 60 S 60
3 501 3 50
(] 1 [0]
g 40 S 407
30- 30
20 20
101 10
o} A N R M S e O ———,—e—e_el
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
recall recall

Test Set | Recall | F(2) | F(1) | F(.5) | F(.3) | F(.2) | Precision
TST3 91 79 | 91 79 | 90 83 | 77 90 | 67 94 | 67 94 30 100
TST4 95 63 | 93 67 | 85 73 | 76 79 | 58 84 | 36 91 24 93

Figure 4.2: Relevancy signatures results on TST3 and TST4

4These were the DEV, TST1, and TST?2 texts.

5The range of threshold values was based on our experience with the algorithm and the corpus,
but the values are admittedly arbitrary.

79

correspond to threshold settings with lower values of R and M. The most obvious pattern in these
graphs is the recall/precision tradeoff. As R and M increase, we sacrifice recall in exchange for
better precision. With lower thresholds, we get high recall of over 90% but only modest precision
(79% at the highest recall setting for TST3 and 63% at the highest recall setting for TST4). But
it is important to interpret the precision results with respect to the number of relevant texts in
each test set. Although each test set contains 100 texts, TST3 contains 69 relevant texts and
TST4 contains only 55 relevant texts. These numbers represent a baseline against which precision
should be assessed. For example, a constant algorithm that classifies every text as relevant will

achieve 69% precision on TST3 and 55% precision on TST4. Consequently, the precision levels at
the high recall end are not terribly impressive since they are only slightly above this baseline. On
the left side of the graphs, the data points correspond to higher threshold values and higher levels
of precision. The algorithm achieves 100% precision with 30% recall for TST3 and 93% precision
with 24% recall for TST4. In between these extremes, both graphs show many data points that
achieve over 80% precision with up to 50% recall.

Figure 4.2 shows a table with some of the “highlights” from the graphs. The columns display
the best recall and precision scores with respect to different metrics. The column labeled Recall
shows the scores corresponding to the data point that achieved the highest recall. Similarly, the
column labeled Precision contains the scores for the data point that achieved the highest precision.
The Recall and Precision columns represent the extreme ends of the spectrum, but it is also
interesting to look at data points in between. The F-measure combines recall and precision into
a single measure and accepts a (-value to adjust the relative weighting of recall and precision
(the formula for the F-measure appears in Section 3.5.1). For example, 8=1.0 gives recall and
precision equal weighting, #=0.5 makes recall half as important as precision, and $=2.0 makes
recall twice as important as precision. For each of the test sets, we identified the data points that
produced the best F-measures using 5 different values of 5: 2.0, 1.0, 0.5, 0.3, 0.2. These beta
values cover a spectrum from highly weighted recall (3 = 2.0) to strongly weighted precision (5 =
0.2). Since the algorithms focus on high precision, we are mostly interested in the latter end of the
spectrum. Figure 4.2 shows that relevancy signatures achieve good performance on TST3 across
the board. The algorithm achieved 100% precision on TST3 with 30% recall and still achieved 94%
precision at 67% recall. Relevancy signatures also get high precision (> 90%) on TST4, but only at
lower recall values. These results imply that relevancy signatures can be effective at high-precision
text classification but the thresholds may have to be set fairly high to consistently achieve good
precision across different test sets. As a result, consistent high precision may be possible only at
relatively low recall levels.

4.3.4 A Simple Word-Based Algorithm

Relevancy signatures performed well on TST3 and TST4, but it is possible that a word-based
approach would do just as well, or perhaps better. To address this question, we tested a simple
algorithm that uses single words to classify texts. This algorithm is similar to the relevancy
signatures algorithm except that the statistics are compiled for individual words instead of
signatures. For each word® that appears in the training set, the algorithm counts how many
times it appears in the training set and how often it appears in relevant texts in the training set.
Then it estimates the conditional probability that a text is relevant given that it contains the word.
The formula is:

6To give this algorithm the same advantages that the relevancy signatures algorithm had, we ran
each text through CIRCUS’ preprocessor first. Among other things, the preprocessor normalizes
date expressions and incorporates a small phrasal lexicon so that lexicalized expressions are treated
as single words.

80

PI‘(text is relevant) _ Nuyord;eREL-TEXTS
text contains word; Nyord;

where Nyorg; is the number of times that word; appears in the training set and
Nuyord;eREL-TEXxTs 1s the number of times that word; appears in relevant texts in the training
set. Two thresholds, R and M, are used to identify the words that are most highly correlated with
relevance. A word is considered to be a relevant word if its conditional probability is > R and
it appeared at least M times in the training set. Finally, a new text is classified as relevant if it
contains any of the relevant words. Note that a text will be classified as relevant even if it contains
only a single word that is highly correlated with relevance.

TST3 TST4
100 pRasx
] LS 1OQH
90 X ¥ % 90 X
1] X
80- X 801—x Xx X
70 70 X Rx
c] X c 1X | X R
S 604 S 60 Jk
g 50, g 50
S 401 & 40
30 30
20 20
10 10-
0 102030405060 708090100 0 102030405060 708090100
recall recall

Test Set | Recall | F(2) | F(1) | F(.5) | F(.3) | F(.2) | Precision
TST3 100 74 | 100 74 | 94 80 | 72 91 | 57 95 | 57 95 16 100
TST4 100 57 | 100 57 | 95 61 | 58 74 | 40 85 | 40 85 13 100

Figure 4.3: Simple keyword algorithm on TST3 and TST4

We tested this algorithm using the same training and test sets as before. We varied R from
.70 to .95 in increments of .05, and varied M from 0 to 50 in increments of 5. Figure 4.3 shows the
results of this algorithm on TST3 and TST4. The relevant words algorithm performs quite well
on TST3, particularly at the high precision end where it consistently achieves > 90% precision for
recall levels under 50%. However, precision falls quickly at the high recall end, down to 69% at
100% recall” and even below 69% at other points. Remember that 69% precision is the baseline
for TST3, so the algorithm is classifying every text as relevant for the data point at 100% recall,

69% precision.
On TST4, the word-based algorithm has much more difficulty. Precision levels are low across

the board except at the extreme low recall end. In fact, there are data points at the low recall

TThere are multiple data points at 100% recall.

81

end with both high and low precision. The data points are so scattered because the algorithm is
classifying very few texts as relevant. For example, the leftmost data point toward the bottom of
the TST4 graph corresponds to 3.6% recall and 67% precision. But 3.6% recall of 55 relevant texts
means that the algorithm correctly classified only 2 relevant texts. Since the precision is 67%, the
algorithm must have classified a total of 3 texts as relevant. When this single misclassified text is
correctly classified the precision jumps to 100%. At low recall levels, changing the classification
of a single text can have a dramatic impact on precision and, as a result, precision is extremely
volatile. We conclude that this simple word-based algorithm can achieve good performance on
some texts but cannot consistently obtain high precision. The difference between this word-based
approach and the IE-based approaches will become more pronounced in the next two sections.

4.4 The Augmented Relevancy Signatures Algorithm

Relevancy signatures identify key phrases and expressions that are strongly associated with
relevance for a domain. However, they are susceptible to false hits when a key phrase occurs in an
irrelevant context. For example, consider the following two sentences:

(a) A car bomb exploded.
(b) The foreign debt crisis exploded.

Both of these sentences are represented by the signature <exploded, $explosion$>. But (a)
describes a terrorist event and (b) does not. Metaphorical expressions are pervasive in language
and can cause false hits during text classification. Expressions like “killing the agreement”, “death
to communism”, and “an attack on freedom” are prevalent in the MUC-4 corpus.

Relevancy signatures can fail when a correct classification depends on additional context
surrounding a phrase. Even without metaphorical language, contextual distinctions can be a
common source of false hits. For example, consider these two sentences:

(a) The peasants were attacked by the rebels.
(b) Kent Jr. was attacked by three other Pavon Prison inmates.

Once again, both sentences are represented by the same signature <attacked, $attack-
passive$> but (a) describes a terrorist incident and (b) does not. The identity of the perpetrator
(rebels vs. inmates) is critical in distinguishing a terrorist event from a non-terrorist event.
To address these problems, we extended the relevancy signatures algorithm to include slot filler
information. By augmenting the signatures with slot fillers, we capture local context surrounding
the key phrase which can improve the accuracy of the resulting classifications.

4.4.1 Augmented Relevancy Signatures

A relevancy signature represents the presence of a key phrase in a text. By representing
only the exzistence of a concept node, it ignores the surrounding context that is available inside
the concept node. Augmented relevancy signatures [Riloff and Lehnert, 1992] use the information
extracted by the concept nodes in combination with the signatures to classify texts. Relevancy
signatures represent the ezistence of concept mnodes; augmented relevancy signatures represent
concept node instantiations.

Each slot filler is represented as a triple of the form: (concept node type, slot name, semantic
feature). For example, suppose a kidnapping concept node successfully extracts the victim “the
mayor of Achi”’. The victim yields the following slot ¢riple: (kidnapping, victim, GOVERNMENT-
OFFICIAL), because the word “mayor” is tagged with the semantic feature GOVERNMENT OFFICIAL

82

in the dictionary.® This slot triple represents the fact that a government official was identified as
the victim of a kidnapping event. We use semantic features instead of lexical items to generalize
over the specific words that appeared in the text.

An augmented relevancy signature is the combination of a signature and a slot triple that are
both highly correlated with relevance for a domain, independently. If a text contains an augmented
relevancy signature then it contains both a highly relevant key phrase and a highly relevant piece
of information surrounding the key phrase. The criteria for augmented relevancy signatures are
strict because both sources of information must be highly correlated with relevance independently.
As a result, augmented relevancy signatures are very effective at classifying texts accurately.

4.4.2 The Algorithm

The augmented relevancy signatures algorithm is the same as the relevancy signatures algo-
rithm except that statistics are collected for slot triples as well as signatures. For each concept
node produced by CIRCUS, a signature and a set of slot triples are created. For each slot triple,
the algorithm estimates the conditional probability that a text is relevant given that the slot triple
appears in the text. Finally, “reliable” slot triples are identified by using two thresholds that are
analogous to the relevancy signature thresholds: R, and M. A slot triple is judged to be
“reliable” if it appears at least M,;,; times in the training corpus and if its conditional probability
is > Rgyp. Figure 4.4 illustrates the training procedure.

TRAINING

training concept__ signatures & compute statisti I [
o (CIRCUD —» L, i pute statistic relevancy signatures
texts (CIRCUY nodes — slot triples > [& apply threshold$ & relevancy triples

CLASSIFICATION

contains rel. signatuke yes

new concept__ signatures & : relevantl]
texts > (CIRCUS = " 0des = oot triples & rel. triple from same» <T i clevant
concept node? no

Figure 4.4: Flowchart for the augmented relevancy signatures algorithm

To classify a new text, CIRCUS processes the text and generates a signature and set of slot
triples for each concept node. If any concept node yields both a relevancy signature and a reliable
slot triple then the text is classified as relevant. Otherwise, the text is classified as irrelevant.

4.4.83 FEzperimental Results

We evaluated the augmented relevancy signatures algorithm on the basis of the same test sets,
TST3 and TST4. First, we used the training set of 1500 texts to generate signature and slot triple
statistics. Once again, we tested the algorithm with a variety of threshold settings. We varied

8Some words have multiple semantic features assigned to them. In this case, we create multiple
slot triples for a filler, one for each semantic feature.

83

each of R and R, from .70 to .95 in increments of .05, and each of M and M;;,; from 0 to 20 in
increments of 5.°

Figure 4.5 shows the scatterplots for the augmented relevancy signatures algorithm on TST3
and TST4. Each data point represents the application of the algorithm using one set of threshold
values. As before, many different threshold settings produce identical results so we see far fewer
than 900 data points. The recall/precision tradeoff is still apparent in these graphs but is more
difficult to see because the combinations of the thresholds are more complex. The tails on the
left side of the graph are caused by low recall which makes precision especially volatile. As we
noted in Section 4.3.4, at very low recall values changing the classification of a single text can
have a dramatic impact on precision. The augmented relevancy signatures algorithm is especially
susceptible to these effects because its strict criteria for relevance can result in relatively few
relevant classifications.

TST3
100 100
90 ‘ 90
801 80
70 70]
S 601 S 601
§ 50 § 50
5 40 5 40
301 301
201 201
10- 10-
ottt o+ttt
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
recall recall

Test Set | Recall | F(2) | F(1) | F(.5) | F(.3) F(.2) | Precision
TST3 81 93 | 81 93 | 81 93 | 81 93 | 62 100 | 62 100 62 100
TST4 89 74 |89 T4 | 89 T4 | 67 84 | 56 89 | 27 100 27 100

Figure 4.5: Augmented relevancy signatures results on TST3 and TST4

We see several differences between these results and the results for the relevancy signatures
algorithm. The most striking difference is that augmented relevancy signatures achieve better
performance on TST3. Augmented relevancy signatures reach 100% precision at 62% recall, but
relevancy signatures reach 100% precision at only 30% recall. The augmented relevancy signatures
algorithm also achieves 100% precision with 27% recall on TST4 where relevancy signatures alone
could achieve only 93% precision with 24% recall on TST4.

9We used bigger increments for M than in the previous experiments because the combinatorics
of varying four thresholds can quickly get out of hand. Even with the larger increments of 5, we
ran the algorithm 900 times on each test set.

84

On the surface, it might seem counterintuitive that the algorithm with stricter criteria for
relevance produces better recall (at 100% precision) than the algorithm with less strict criteria.
The reason is subtle. The relevancy signatures algorithm classifies a text as relevant if it contains
a single key phrase that is highly correlated with relevance. As a result, it may be able to attain
high precision only with high threshold values. The augmented relevancy signatures algorithm
classifies a text as relevant if it contains a key phrase and a piece of extracted information that
are both highly correlated with relevance. Therefore, it can often sustain high precision levels
with lower threshold values. The low threshold values enable the algorithm to achieve better recall

levels while maintaining strong precision.
It is also worth noting that augmented relevancy signatures perform well on TST3 at the

high recall end, achieving 93% precision with 81% recall. Both algorithms have difficulty on TST4
at the high recall end, but augmented relevancy signatures obtain better precision (74%) than
relevancy signatures alone (63%) without sacrificing much recall.

4.5 Case-based Text Classification

As we noted earlier, keyword approaches in general and relevancy signatures in particular are
prone to false hits when the correct classification of a text depends on the context surrounding a
word or phrase. Augmented relevancy signatures were the first attempt to go beyond keywords
and phrases and take advantage of local context. Augmented relevancy signatures demonstrated

good success with high-precision text classification, but sometimes only with moderate recall.
Many texts clearly describe a relevant terrorist incident even though they do not contain

any specific words or phrases that are strongly associated with relevance. Some sentences contain
multiple pieces of information that are relevant together but are not necessarily relevant indepen-
dently. For example, the word “killed” is not highly correlated with terrorism because people are
killed in many situations that are not terrorist in nature. However, if a MUC-4 text mentions that
a government official was killed then the text probably is describing a terrorist incident because
government officials are frequently the victims of terrorist attacks in Latin America. Even so,
many texts that mention a government official are not relevant. To reliably classify texts, we need
to consider both pieces of information together. In this situation, a weak key phrase (“was killed")
identifies a potentially relevant event and a strong slot filler (government official victim) provides

additional evidence that the event is probably terrorist.
A strong key phrase combined with a weak slot filler can be equally effective. For example,

the word “assassination” is an important word in the domain of terrorism, but is not always reliable
because many irrelevant texts in the MUC-4 corpus refer to assassination in general. The presence
of a known victim often distinguishes a general reference to assassination from a specific one. Since
the word “assassination” is such a strong cue for terrorism, just about any reference to a victim will
do. For example, if a text describes the assassination of an individual then it probably describes a
specific terrorist attack. Once again, the key phrase and the slot filler are not highly correlated with
relevance independently so both pieces of information are needed to make a reliable classification.
The presence of a strong key phrase (“assassination”) identifies a potentially relevant event and the

slot filler (any victim) serves as an additional source of evidence that the text is relevant.
However, some relevant texts do not contain any strong key phrases or strong slot fillers.

Sometimes, a text merely contains an abundance of information that, in total, describes a relevant
incident. In these texts, the whole is more compelling than the parts. For example, consider the
following sentences:

Police sources have confirmed that a guerrilla was killed and two civilians were wounded
this morning during an attack by urban guerrillas.

The mayor reiterated his position when he commented on the attack in which 20 persons
were killed and approximately 100 were injured, which was perpetrated yesterday by
terrorists on the drug cartel’s payroll near Itagui municipality.

85

Two vehicles were destroyed and an unidentified office of the agriculture and livestock
ministry was heavily damaged following the explosion of two bombs yesterday afternoon.

Each of these sentences clearly describes a specific terrorist incident. However, none of the words or
phrases are necessarily relevant on their own. In the first sentence, the words “killed”, “wounded”,
and “attack” all describe a violent incident but could easily refer to a military incident. The phrase
“urban guerrillas” is certainly associated with terrorism but guerrillas are mentioned in many texts
that describe military incidents or do not mention any specific incidents at all. The bottom line
is that sometimes we need multiple pieces of information to conclude that a text is relevant. For
the terrorism domain, there must be evidence of a violent act (e.g., “attack”) perpetrated by
terrorists (e.g., “by urban guerrillas”) against civilian targets (e.g., “two civilians were wounded”).
This information is compelling collectively and we need all of it to confidently classify the text as
relevant.

In this section, we describe a text classification algorithm that uses case-based reasoning to
classify texts. Case-based reasoning techniques use the solutions to previous problems (called
“cases”) to solve new ones (e.g., [Ashley, 1990, Hammond, 1986, Kolodner and Simpson, 1989]).
By representing natural language contexts as cases, information that spans multiple clauses is used
collectively to classify texts.

4.5.1 The Case Representation

Ideally, a text should be classified as relevant or irrelevant on the basis of the entire
document. However, to avoid the problems of discourse analysis'®, we used single sentences as
a first approximation toward larger contexts. Each case represents the natural language context
associated with a single sentence.

To create a set of cases for a document, for each sentence we collect all of the concept nodes
produced by CIRCUS and merge them into a case. A case is represented as a structure with
five slots: signatures, perpetrators, victims, targets, and instruments. The signatures slot contains
the signatures associated with each concept node generated by the sentence. The remaining four
slots contain the information corresponding to the fillers that were extracted by these concept
nodes.!! The concept nodes extract specific strings from the text (e.g., “the mayor”), but only the
semantic features associated with the strings are stored in the case (e.g., GOVERNMENT-OFFICIAL).
Figure 4.6 shows a sample sentence, the concept nodes produced by CIRCUS for the sentence, and
the resulting case representation.

Note that the case representation does not preserve the associations between concept nodes
and their fillers. For example, the case in Figure 4.6 does not specify whether the GOVT-OFFICE-OR-
RESIDENCE was destroyed and the TRANSPORT-VEHICLE was damaged or vice versa. We purposely
disassociated the slot fillers from the concept nodes that extracted them so that the algorithm can
search for relationships between any signature and filler.

4.5.2 The Case Base

Each document is represented as a set of cases, one for each sentence that produced at least
one concept node. During training, each text in the training corpus is converted into a set of

0For the MUC task, discourse analysis refers to the problem of tracking multiple event
descriptions in a single text. Discourse analysis was one of the most difficult problems encountered
in MUC-3 [Iwanska et al., 1991].

11The concept nodes in the MUC-4 dictionary extract only four classes of information. In general,
a case should have one slot for each concept node slot defined for the domain.

86

SENTENCE: Two vehicles were destroyed and an unidentified office of the agricul-
ture and livestock ministry was heavily damaged following the explosion of two bombs
yesterday afternoon.

CONCEPT NODES
$destruction-passive$ (triggered by “destroyed”)
target = two vehicles

$damage-passive$ (triggered by “damaged”)
target — an unidentified office of the agriculture and livestock ministry

$weapon-bomb$ (triggered by “bombs”)

CASE
Signatures: (<destroyed, $destruction-passive$>,
<damaged, $damage-passive$>,
<bombs, $weapon-bomb$>)
Perpetrators: nil
Victims: nil
Targets: (GOVT-OFFICE-OR-RESIDENCE TRANSPORT-VEHICLE)
Instruments: (BOMB)

Figure 4.6: A sample sentence, concept nodes, and resulting case

cases which are stored in a case base. The resulting case base contains thousands of natural
language contexts from hundreds of texts. It is important to note that the case base is constructed
automatically as a side effect of natural language processing.

To classify a new text, the text is converted into cases and the algorithm determines whether
any of its cases are relevant to the domain. The heart of the algorithm is its ability to accurately
judge the relevancy of new cases. If any of the cases are deemed to be relevant then the text is
classified as relevant, otherwise it is classified as irrelevant.

To determine the relevancy of a new case, the most obvious approach would be to retrieve
the most similar case from the case base and apply its classification to the new case. Most
case-based reasoning (CBR) systems retrieve one or a few similar cases and apply them directly
to the current case (e.g., [Ashley, 1990, Hammond, 1986]). We cannot do this, however, because
the MUC-4 corpus provides us with the correct classifications for each document but not for each
case. If a document is irrelevant, then the text does not contain any relevant information so all
of its cases must be irrelevant. However, if a document is relevant then some of the sentences in
the text describe a relevant incident but we do not know which ones. This is a classic example
of the credit assignment problem.'? We do not know which cases contain the information that is
responsible for the relevant classification of the document.

To get around this problem, the algorithm relies on statistics to sift through the case base and
identify cases that probably contain relevant information. The general approach is similar to that
of the previous algorithms. The algorithm probes the case base with a set of features, retrieves
cases that share these features, and looks at the statistical properties of the retrieved cases. If a

12The credit assignment problem is a well-known term used by artificial intelligence researchers.
It refers to the difficulty of determining which part of a system deserves credit (blame) for a correct
(incorrect) result.

87

high percentage of the retrieved cases come from relevant documents then it assumes that this is
not a coincidence. The retrieved cases must share something in common that makes them relevant.
Since the cases all share the probe features, these features probably represent relevant information.
It follows that new cases containing these features are also likely to be relevant.

Ideally, we would like to retrieve all cases from the case base that share exactly the same
features as the new case. However, the case representation is rich enough and the training corpus
is not large enough for the case base to contain many exact matches. Since the algorithm relies on
the statistical properties of the retrieved cases to determine whether the cases are truly relevant,
it must retrieve a reasonably large number of cases. So instead of looking for exact matches, it
uses relevancy indices to retrieve cases that share a few specific features. In the next section, we

introduce the notion of a relevency indez, describe its representation, and explain how it is used
to retrieve cases.

4.5.83 Relevancy Indices

A relevancy indez is a collection of features that, together, reliably predict a relevant event
description. To make things less abstract, we first describe the representation and then justify it
with examples. A relevancy index is a triple of the form: (signature, slot filler, case outline). As
we have already explained, a signature represents a set of linguistic expressions. A slot filler is a
pair consisting of the name of a slot and a semantic feature representing the information extracted
by the slot, such as: (perpetrators, TERRORIST).!3 The third part of a relevancy index is the case
outline. An outline is a list of slots that contain fillers. For example, the outline (perpetrators,
victims) represents a case that contains information in the perpetrator and victim slots but not in
the target or instrument slots. The signature slot is always filled so it is not included as part of
the outline. The case outline represents the types of information that appear in a sentence.

By combining a signature, slot filler, and case outline into a single indez, the algorithm
retrieves cases that share similar key phrases, at least one piece of similar eziracted information,
and that contain roughly the same amount and types of information. By indexing simultaneously
on a signature and a slot filler, it retrieves cases that are strongly associated with terrorism because
the combination of a key phrase and slot filler is compelling. The relevancy index may represent a
weak key phrase and a strong slot filler, a strong slot filler and a weak key phrase, or a weak key
phrase and a weak slot filler. However, a high percentage of the cases retrieved by the index will
be relevant only if the two items together are highly associated with terrorism.

The case outline captures the amount of information in a sentence and the types of information.
Intuitively, we included the case outline because different signatures and slot fillers require different
amounts and types of supporting information in order to be reliable. For example, consider the
three relevancy indices in Table 4.2.

The first index retrieves cases that contain the word “assassination”, a civilian victim, and no
additional information. We retrieved all cases in a case base derived from 1500 texts that share
this index: 100% of the retrieved cases came from relevant texts. This is not surprising since
the word “assassination” is a strong keyword for terrorism, especially when paired with a specific
victim. However, when we probed the same case base using the second relevancy index, we find
that only 68% of the retrieved cases came from relevant texts. The only difference between these
indices is the signature. Once again, this is not surprising since the word “killed” is not a good
keyword for terrorism in the MUC-4 corpus. In particular, the corpus contains many texts that

13Note that these are different from the slot triples used for augmented relevancy signatures. In
the augmented relevancy signatures algorithm, the statistics for slot triples are computed separately
from the signatures. We dropped the event type (e.g., murder) from the relevancy indices because
they already include a signature (which represents a concept node and therefore an event type).

88

Table 4.2: The power of the case outline

Rel.
Relevancy Index Cases
(<assassination, $murder$>, (victims, CIVILIAN), (victims)) 100%
(<killed, $murder-passive$>, (victims, CIVILIAN), (victims)) 68%
(<killed, $murder-passive$>, (victims, CIVILIAN), (victims perpetrators)) | 100%

contain summary descriptions of terrorist activity over a period of time, such as: many people have
been killed since 1980.

However, these summary descriptions can be distinguished from specific event descriptions
merely by changing the case outline. When we probed the case base using the third relevancy
index, we found that 100% of the retrieved cases came from relevant texts. The difference between
the last two indices is the case outline. The second index dictates that the retrieved cases must
contain only victims but the third index dictates that the retrieved cases must contain victims and
perpetrators. General summary descriptions usually do not mention a perpetrator, but specific
event descriptions typically do mention a perpetrator. The presence of a perpetrator can be
critical in distinguishing between specific and general event descriptions. Of course, this particular
distinction does not always hold. For example, a summary event description may blame a particular
terrorist organization for a wave of attacks, or a specific event description may fail to identify a
perpetrator. These are merely patterns that generally hold in the MUC-4 corpus. The emphasis is
not on this particular example, but on the role of the case outline as a feature for exploiting these
types of contextual distinctions.

4.5.4 The Algorithm
Finally, we explain how relevancy indices are used to classify new documents. The case-based

text classification algorithm [Riloff, 1993b] is illustrated in Figure 4.7.

TRAINING

trainin
texts.—* (CIRCU9 —» cr?ggggt:’ case base

TESTING
new concept tains relevaht LSS - relevantl]
— (CIRCUS cases contains releval

Figure 4.7: Flowchart for the case-based text classification algorithm

To classify a new document, the concept nodes produced by CIRCUS are converted into cases.
If any of the cases are judged to be relevant then the text is classified as relevant, otherwise it is
classified as irrelevant. A case is judged to be relevant if the following three conditions are satisfied:

89

Condition 1: The case contains a strong relevancy indez.
Condition 2: The case does not contain any “bad” signatures.
Condition 3: The case does not contain any “bad” slot fillers.

Condition 1 is the most important part of the algorithm. Conditions 2 and 3 are merely secondary
checks to make sure that the case does not contain any information that might negate otherwise
relevant information. We will show examples of these situations later.

To determine whether a case contains a strong relevancy index, the algorithm generates
all possible relevancy indices for the case. Most cases have multiple signatures and slot fillers
so there are often many possible relevancy indices for a case.!* For each relevancy index, the
algorithm retrieves all cases from the case base that share the same index and estimates the
conditional probability that a case is relevant given that it shares the index. The formula is:

Pl_(ca,se s releva.nt) _ NCrisREL—CASES
case matches r; N¢

T

where r; is relevancy index i, NCTi is the number of retrieved cases, and NCTieREL—CASES is the
number of retrieved cases that come from relevant texts. If this probability is high then we assume
that the relevancy index is responsible for the high correlation with relevant texts. In other words,
we assume that the relevancy index represents information that is relevant to the domain. It
follows that the new case, which shares the index, also contains information that is relevant to the
domain and should be classified as relevant.

Two thresholds are used to determine whether the probability is high enough: a relevancy
threshold, R ;ses, and a frequency threshold, M ,,.s. If the conditional probability is > R gses
and NCTi > M gses then the relevancy index is deemed to be “strong” and Condition 1 is satisfied.

Conditions 2 and 3 look for “bad” signatures and slot fillers that might be negative indicators
for the domain. The presence of a particular signature or slot filler may warrant an irrelevant
classification even though the rest of the information seems relevant. As we mentioned earlier, the
MUC-4 domain guidelines specify that a document is relevant only if it describes a specific terrorist
incident. Summary event descriptions are not considered to be relevant, for example:

More than 100 people have died in Peru since 1980, when the Maoist Shining Path
organization began its attacks and its wave of political violence.

This sentence yields the following case:

Case

Signatures: (<died, die>,<wave, $generic-event-marker$>,<attacks, $attack-noun$>)
Perpetrators: (TERRORIST ORGANIZATION)

Victims: (HUMAN)

Targets: nil

Instruments: nil

However a similar sentence describes a specific, relevant incident:

More than 100 people have died in Peru during 2 attacks by the Maoist Shining
Path organization yesterday.

14This is potentially expensive but, in practice, we are constrained by the nature of language.
Most sentences contain only a relatively small amount of information.

90

This sentence yields the following case:

Case

Signatures: (<died, die>,<attacks, $attack-noun$>)
Perpetrators: (TERRORIST ORGANIZATION)

Victims: (HUMAN)

Targets: nil

Instruments: nil

The cases for these two sentences are almost identical. The only difference is that the first sentence
produces a concept node called $generic-event-marker$ in response to the phrase “wave of”. The
UMass/MUC-4 system used a small number of special concept nodes to recognize textual cues
that signal summary event descriptions. The presence of this single concept node indicates that
the sentence is describing a summary event description and is therefore irrelevant, even though the
rest of the information appears to be relevant.

Similarly, a “bad” slot filler can indicate that a case is irrelevant, despite otherwise good
information. For example, a terrorist attack must involve a terrorist perpetrator. If a civilian
commits a crime, then it is not considered to be terrorist in nature. As a result, the sentence “A
guerrilla killed the mayor” is relevant but the sentence “A burglar killed the mayor” is not.

Two additional “irrelevance” thresholds, I,;; and I, are used to identify “bad” signatures
and slot fillers. Given a case, each signature is checked by retrieving all cases from the case base
that contain the signature estimating the conditional probability that a case is relevant given that
it contains the signature. That is,

Nc, iy cREL-CASES

(case 1s relevant) _

case contains sig; NC“-g.
(3

where N¢ . is the total number of retrieved cases that contain sizg; and NC,igiEREL—CASES is the

sigg
number of retrieved cases that contain sig; that come from relevant texts. If the probability < I,
and Nc“.gi > Mcgses, then the signature does not satisfy Condition 2. The procedure for slot fillers
is analogous. Given a case, each slot filler is checked by retrieving all cases from the case base that
contain the slot filler and the same case outline and estimating the conditional probability that a

case is relevant given that it contains the slot filler and outline. That is,

. N _
(case is relevant) _ 'Cslot;;sREL-CASES

case contains filler; and outline; Nc

sloti]-

where N¢ is the total number of retrieved cases that contain filler; and outline; and

sloty;
Nc“ﬂtijEREL_CASES is the number of retrieved cases that come from relevant texts. If the
probability is < I, and Nc“ctij > Mcgses, then Condition 3 is not satisfied.

These four thresholds allow the user to tailor the performance of the algorithm for the domain.
By increasing I,;4 and I,;,; the user can adjust the sensitivity of the algorithm to irrelevance cues.
The user can also adjust Mgscs based on the size of the training corpus. For a large corpus, the
user may want to give M 4., a large value to get more accurate probability estimates. For a smaller
corpus, the user may give M 4.5 a small value because the case base contains relatively few cases.
We address the issue of selecting appropriate threshold values automatically in Section 4.6.1.

91

4.5.5 FEzperimental Results

We evaluated the case-based text classification algorithm using the same training and test sets
as in the previous experiments. First, we created a case base from the 1500 texts in the training
set. The final case base contained 6868 cases. Next, we tested the algorithm on both TST3 and
TST4 with a variety of threshold settings. We varied R;45¢s from .70 to .95 in increments of .05,

Mcases from 0 to 20 in increments of 2, and gave each of I;;, and I, the values {.50, .60, .70}.
Figure 4.8 shows the results for TST3 and TST4. Once again, the data points are somewhat

scattered and we see the familiar tails on the low recall side. The most notable improvement is on
TST4. The case-based algorithm achieved 44% recall with 100% precision where the augmented
relevancy signatures algorithm reached only 27% recall with 100% precision. These results support
our claim that using natural language contexts allows the algorithm to correctly classify texts that
were inaccessible to the word and phrase-based algorithms. On TST3, the results are very similar
to the augmented relevancy signatures algorithm, although the case-based algorithm produces a
strong data point in the F(.5) column (68% recall with 98% precision).

TST3 TST4
100 100, XX-%
90 { 901 g(
80- 80 &R
70] 70| R
S 601 S 601 T
§ 501 § 501
5 40 S 40
301 301
20 20
10 10
o+ttt N T N S N
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
recall recall

Test Set | Recall | F(2) | F(1) | F(.5) | F(.3) F(.2) | Precision
TST3 81 85 | 81 85 | 77 91 | 68 98 | 61 100 | 61 100 61 100
TST4 89 72 | 89 72 |89 72| 75 85 | 44 100 | 44 100 44 100

Figure 4.8: Case-based text classification results

Figure 4.8 shows many data points with relatively low precision on TST4. This is because
using larger natural language contexts for classification can work against you when using low
threshold values. Omne of the main strengths of the case-based approach is that it can classify a
text as relevant based on context even if the text does not contain any reliable key words or phrases.
With high threshold values, a case is classified as relevant when its context is highly correlated
with relevance. However, with low threshold values, a case is classified as relevant even when its
context is weakly correlated with relevance. This means that the text may not contain any relevant

words, phrases, or information! As a result, the case-based approach is not particularly effective
with low threshold values.

92

Fortunately, the case-based algorithm produces similar, or better, recall levels than the other
algorithms, even with higher threshold values. However, to get the best performance from the
algorithm, the user needs to choose appropriate threshold settings. In the next section, we describe
a procedure that allows the user to find good threshold values empirically.

4.6 Comparative Analysis in Multiple Domains

In the previous sections, we presented three text classification algorithms and showed that
performance improves as additional context is used to classify texts. However, the experiments so
far were based on two blind test sets of 100 texts each. It would be premature to come to any
conclusions about the relative merit of the algorithms based solely on these 200 texts. With such
a small number of texts, effects can be magnified (in a positive or negative light) and the texts
may not be representative of the corpus in general.

Furthermore, we applied the algorithms only to the MUC-4 domain of terrorism. To make
general claims about the effectiveness of the algorithms and their relative merits, we must apply
them to additional domains. We also must address the issue of how to find appropriate threshold
settings. In the previous experiments, we tested the algorithms using many different threshold
values and presented the best results. However, in a real-world scenario, a user must choose a
specific set of threshold values.

In this section, we address these issues by:

1. presenting a procedure for deriving appropriate threshold values empirically.

2. applying the text classification algorithms to a larger test set for terrorism using a cross-
validation design.

3. applying the text classification algorithms to two additional domains: joint ventures and
microelectronics.

4.6.1 Deriving Threshold Values Empirically

The text classification algorithms that we presented require several thresholds to select
the most “reliable” indexing terms. However, we have not addressed the issue of how to find
appropriate threshold values. In a new domain or corpus, a user would not know what threshold
values to use. The “best” threshold settings depend on the size and nature of the corpus and, most
importantly, the needs of the user. The algorithms all support a recall/precision tradeoff that can
be manipulated by adjusting the thresholds. In general, a user who wants high recall should choose
low threshold values and a user who demands high precision should choose high threshold values.

Before we present the procedure for identifying good threshold values, we must describe the
cross-validation design that we will use to evaluate the text classification algorithms. Ideally,
we would like to evaluate the algorithms on the basis of a large number of texts, but they also
require a large training set and our available corpora are relatively small. Instead, we use a 10-fold
cross-validation design that allows us to use all of the texts in the corpus for testing.

The cross-validation design uses all of the texts for testing by rotating different subsets of the
corpus for training. First, we randomly divide the entire corpus of 1700 texts into 10 partitions of
170 texts each. Then we evaluate each “fold” independently. For the first fold, we use partition
#1 as the test set and the remaining 9 partitions as the training set. For the second fold, we use
partition #2 as the test set and the other 9 partitions as the training set, and so on. Each fold
therefore has a unique test set of 170 texts and a training set of 1530 texts (the training sets will
overlap).

Figure 4.9 illustrates the process for a single fold. We use the training set to generate statistical
training data (in the form of signatures, slot triples, or a case base) and then apply the algorithm

93

to the corresponding test set. Finally, we combine (sum) the results over all 10 folds. For example,
in a 2-fold cross-validation design, if fold #1 correctly classified 24 of 50 texts and fold #2 correctly
classified 16 of 50 texts then the combined results would be 40 out of 100 texts. The combined
results reflect the performance of the algorithm on all 1700 texts, albeit with different training
sets.

test set .
ALGORITHM text classification

training set results
\ Threshold %le values

Experiments

Figure 4.9: One fold of cross-validation

Since the effectiveness of the thresholds is entirely dependent on the corpus, we devised a
procedure that allows the user to derive the “best” threshold settings empirically. The procedure
recommends threshold settings that are appropriate for a variety of metrics. By using multiple
metrics, we create a recall/precision “knob”. A user can look at the results obtained on the training
set under each metric and choose threshold settings that achieved the desired behavior. In this
manner, users can automatically identify the most appropriate threshold values for their needs
based on the corpus. The suggested threshold settings are not guaranteed to produce the best
possible results but they achieved the desired behavior on training texts.

We used seven metrics to represent a spectrum that gradually shifts importance from recall
to precision. At the two ends of the spectrum, the metrics represent the absolute importance
of recall (i.e., the highest recall regardless of precision) and the absolute importance of precision
(i-e., the highest precision regardless of recall). In between these endpoints, we use the F-measure
to gradually vary the relative importance of recall and precision by using different 3-values. As
before, we chose five values of 8: 2.0, 1.0, 0.5, 0.3, 0.2. Note that several of the B-values give
extra weighting to precision because our algorithms were specifically designed for high-precision
text classification.

Figure 4.10 shows the procedure for automatically deriving good threshold values. This design
mimics the 10-fold cross-validation experiment. Using the same training set of 1530 texts that were
used to generate statistical data, we randomly divide the training set into 10 partitions of 153 texts
each. For the first fold, we use partition #1 as the test set and the remaining 9 partitions as the
training set. For the second fold, we use partition #2 as the test set and the other 9 partitions as
the training set, etc. For each fold, we use the training set to generate statistical data and then
run the algorithm on the test set with a variety of different threshold settings.'® Then we sum

15We tested the algorithms with the same variety of threshold settings as before, with a few
exceptions: we varied M from 0-20 in increments of 2 for the relevancy signatures algorithm,
we varied M and M;;,; from 0-15 in increments of 5 for the augmented relevancy signatures
algorithm, and we varied Mgs¢s from 0-15 in increments of 5 for the case-based algorithm.
The larger increments were necessary to keep the total number of runs under control during the
cross-validation and threshold experiments.

94

(o) Garren (i) Qo

test training test training test training
set set set set set set
| ALGORITHM ALGORITHM | - - - | ALGORITHM |

text classification
results

threshold values

Figure 4.10: Threshold experiments

the results of all the folds for each set of thresholds values. For example, we would sum all of the
classification results for the relevancy signatures algorithm with threshold values: {.85, 10}. This
sum reflects the performance of the algorithm on all 1530 texts using threshold values {.85, 10}.
Finally, we determine which threshold settings achieved the best performance under each metric
and return these seven sets of threshold values.

It is important to remember that we derive a different set of threshold values for each fold!
Figure 4.9 shows that the training set for each fold is also input to the threshold experiments. The
resulting threshold settings are then applied only to the test set for the same fold. Therefore, each
fold may use a different set of “best” threshold values.

The motivation for this design is that it demonstrates how a user might go about finding good
threshold settings in a real-world scenario. Given a training set (which is necessary to generate
statistical data anyway), a user can use the same training