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Abstract 

Classifying relations between pairs of medical concepts in clinical texts is a crucial task to acquire empirical 
evidence relevant to patient care. Due to limited labeled data and extremely unbalanced class distributions, medical 
relation classification systems struggle to achieve good performance on less common relation types, which capture 
valuable information that is important to identify. Our research aims to improve relation classification using weakly 
supervised learning. We present two clustering-based instance selection methods that acquire a diverse and 
balanced set of additional training instances from unlabeled data. The first method selects one representative 
instance from each cluster containing only unlabeled data. The second method selects a counterpart for each 
training instance using clusters containing both labeled and unlabeled data. These new instance selection methods 
for weakly supervised learning achieve substantial recall gains for the minority relation classes compared to 
supervised learning, while yielding comparable performance on the majority relation classes. 

Introduction 

Electronic health record (EHR) systems are becoming more prevalent in the U.S.1 This growth has resulted in very 
large quantities of clinical patient data becoming available in electronic format, which holds tremendous potential 
for benefitting clinical research, quality improvement, and surveillance. A substantial proportion of patient-specific 
information in the EHR is only found in narrative, unstructured clinical notes.2 Natural Language Processing (NLP) 
enables fast, scalable, and accurate extraction of structured and coded information from these clinical notes.3 As part 
of this information extraction task, identifying semantic relations between concepts is essential to provide accurate 
and complete information about the concepts and their meaning. For example, extracting relations between mentions 
of a medication and mentions of allergy symptoms enables differentiation between situations when a medication 
causes the symptoms and situations when a medication is prescribed to alleviate symptoms. 

Given a pair of medical concepts found in a sentence, a relation classification system must determine the type of 
relation that exists between the two concepts. Our research focuses on the relation classification task introduced in 
2010 for the i2b2 Challenge Shared Tasks4. This task involves recognizing eight types of relations between pairs of 
three types of medical concepts: problems, treatments, and tests. 

A key challenge of this task is the extremely skewed class distribution across relation types. For example, five types 
of relations are defined between problems and treatments plus a no relation category (None), but two of these 
categories (None and TrAP (treatment administered for problem)) account for 86% of the instances in the i2b2 
Challenge data. Four relation types (TrCP (treatment causes problem), TrIP (treatment improves problem), TrWP 
(treatment worsens problem), and TrNAP (treatment not administered because of problem)) are distributed across 
the remaining 14% of the data. Each of these “minority” relations appears in just 2-6% of the data. Identifying these 
minority relations is extremely important from a practical perspective because they hold valuable information. For 
example, the dominant relations between problems and treatments are TrAP (administration of treatment) and None 
(no relation at all). In contrast, the minority relations (TrCP, TrIP, TrWP, TrNAP) represent situations where a 
treatment causes, improves, worsens, or is contraindicated for a problem, so they are arguably more important types 
of situations to recognize.  

The most successful methods used for relation classification include various supervised machine learning 
algorithms.4 Extremely skewed class distributions pose substantial challenges for supervised machine learning (ML) 
because only a small number of labeled examples are available for training. As a result, ML classifiers can achieve 
high accuracy for the dominant classes but often perform poorly with the minority classes. Manually annotating 
more data is not a viable solution because of the high cost of manual annotation by medical experts. Also, because 
the minority classes are relatively rare, each batch of new annotations would provide only a relatively small number 
of new examples. There is substantial cost for low reward. 



 

  

Our research aims to improve relation classification in clinical texts with an emphasis on minority classes by 
exploiting large amounts of unlabeled clinical texts, which are readily available in abundant quantity. We present 
two new methods to selectively choose unlabeled instances for self-training in an iterative weakly supervised 
learning framework. Both methods apply a clustering algorithm to group instances into clusters based on similarity 
measures. The first method, called Unlabeled Data Prototypes (UDP) Selection, uses clusters containing only 
unlabeled instances and identifies one “prototype” instance from each cluster to use as additional training data. 
Intuitively, this method aims to identify the different types of instances that occur in the unlabeled data and selects a 
representative subset of them. The second method, called Labeled Data Counterparts (LDC) Selection, uses clusters 
containing both labeled and unlabeled data. For each labeled instance, this method identifies its closest counterpart 
in the cluster by selecting the unlabeled instance that is most similar to it. Intuitively, this method is designed to 
acquire a new set of training instances that mimic both the class distribution and semantic content (based on feature 
similarity) of the original training instances. Our experimental results show that these two instance selection 
methods produce classifiers that can identify minority relation classes more often and more accurately than 
traditional supervised learning or self-training. 

Background 

The relation classification task was defined as part of the Fourth i2b2/VA Shared Task Challenge4 in 2010. Our 
research involves relation classification for pairs of medical concepts, assuming that the terms corresponding to the 
two concepts have already been identified. The task is to identify how medical problems relate to treatments, tests, 
and other medical problems in clinical texts. Many sentences contain multiple pairs of concepts, so the challenge 
includes identifying which pairs are related, as well as identifying the specific type of relation. This task has been 
typically cast as a supervised learning problem, where a classifier is trained with manually annotated data. Rink et 
al.5 used supervised learning to produce the highest micro-averaged F1 score, 73.7%, for this relation extraction task. 
Their system utilized external resources including Wikipedia, WordNet, and the General Inquirer lexicon6 as part of 
their feature set. To improve recall, they set much lower weights to the pairs of non-related concepts (i.e., negative 
examples) when training an SVM (Support Vector Machine) classifier.  

Previous work has presented micro-averaged F1 scores, which assess performance over all of the positive instances 
regardless of which class they belong. However, micro-averaging obscures performance differences across the 
classes. For example, it is often possible for a system to achieve a high micro-averaged F1 score by performing well 
on the majority class but recognizing few, if any, instances of the minority classes. Our research aims to shed light 
on the performance differences across relation classes, with the goal of comparing the ability of different methods to 
recognize the minority classes. So we will present macro-averaged F1 scores in the rest of this manuscript.  

The Rink et al. system reached macro-averaged scores of 51.7% recall, 55.8% precision, and 53.7% F1 score (not 
officially reported in Rink et al.5 but calculated by taking the average of the reported recall and precision of the 
different sub-classes). de Bruijn et al.7 explored effective features also applicable to other clinical NLP tasks. In 
addition to supervised classification, they applied self-training on the provided unlabeled data. Their approach 
yielded a 73.1% micro-averaged F1 score. The macro-averaged scores for their submission reached 43.7% recall, 
66.8% precision, and 51.2% F1 score. These results were calculated by the authors of this manuscript based on the 
output of de Bruijn et al.’s system7. Their subsequent research8 using composite-kernel learning improved the 
accuracy of relation classification with a higher micro-averaged F1 score of 74.2%. As an effort to overcome the 
class imbalance problem, they used down-sampling of negative examples before training the models. D’Souza and 
Ng9 presented an ensemble approach exploiting human-supplied knowledge to set up individual classifiers. Their 
weighted-voting system outperformed a single classifier using the full set of features exploited by different 
members. Their best-scoring ensemble system produced 69.6% micro-averaged F1 score. Note that their result is not 
directly comparable with the works described above because of different training data sizes. 

In the biomedical and clinical domains, annotating data is especially expensive because of the need for domain 
experts. Consequently, most systems are trained with relatively small amounts of labeled text, even though much 
larger amounts of unlabeled text are readily available. Weakly supervised learning, also called semi-supervised 
learning, has been shown to benefit from training on both labeled and unlabeled data for other NLP tasks, including 
document classification10, named entity recognition11, and noun phrase chunking12. As a general framework, starting 
with a small set of initial labeled data, the learner outputs entities from unlabeled data with assigned entity types. 
Then, the detected entities are collected as new training instances for subsequent iterations. Iterative bootstrapping 
methods that use seeding heuristics to produce an initial set of training instances have also been a popular choice. 
Thelen and Riloff13 showed that semantic lexicons could be learned with extraction patterns from unlabeled texts by 



 

  

bootstrapping algorithms. Rosenberg et al.14 used self-training to build object detection models and they pointed out 
that the choice of the initial seeds has a large effect on performance.  

There has also been previous work on the relation classification task exploiting unlabeled data. Zhang15 proposed a 
bootstrapping algorithm using random feature projection. Multiple classifiers were trained with randomly selected 
features from labeled data and they voted to assign labels to the unlabeled data. Mintz et al.16 used Freebase17, a 
large knowledge database, to train a learner with “distant” supervision. Sun et al.18 presented a weakly supervised 
learning method with large-scale word clustering. They augmented the features derived from the word clusters to 
compensate for the absence of lexical features in labeled data. Related to medical relations, Wang and Fan19 
collected training data using a clustering algorithm. To minimize the manual annotations, the most representative 
instances with the highest average similarity to other members of each cluster were chosen for annotation.  

Materials and Methods  

Labeled Data Description 

We used the i2b2/VA 2010 Shared Task corpus for our research, which consists of a training set of 349 annotated 
clinical notes and a test set of 477 annotated clinical notes. This test set contains 45,009 annotated medical concepts 
with 9,069 relations that occur in the same sentence. Relations were defined as follows20: 

  Medical problem—treatment (Pr-Tr) relations: 
• Treatment improves medical problem (TrIP). 

• Treatment worsens medical problem (TrWP). 
• Treatment causes medical problem (TrCP). 

• Treatment is administered for medical problem (TrAP). 

• Treatment is not administered because of medical problem (TrNAP).  
• Relation that does not fit into one of the above defined relationships (NoneTrP). 

  Medical problem—test (Pr-Te) relations: 
• Test reveals medical problem (TeRP). 

• Test conducted to investigate medical problem (TeCP).  
• Relation that does not fit into one of the above defined relationships (NoneTeP). 

  Medical problem—medical problem (Pr-Pr) relations: 

• Medical problem indicates medical problem (PIP).  
• Relation that does not fit into PIP relationship (NonePP). 

The test set contains 6,949 Pr-Tr pairs that occur in the same sentence, of which 3,463 are positive examples 
(participate in a relation) and 3,486 are negative examples (NoneTrP). Pr-Te relations include 3,620 positive and 
2,452 negative examples (NoneTeP). Pr-Pr relations include 1,986 positive and 11,190 negative examples 
(NonePP). As seen in Figure 1, the class distributions across Pr-Tr and Pr-Te relation types are extremely skewed. 

 
Figure 1. Distribution of treatment (Pr-Tr) and test (Pr-Te) relation types in the test set 
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Among Pr-Tr relations, four “minority” classes, TrCP, TrIP, TrWP, TrNAP, are distributed across 14% of the data. 
Each of these relations appears in just ~2-6% of the data. Among the Pr-Te relations, TeCP is the minority class, 
accounting for < 10% of the instances. Our goal is to improve relation classification with an emphasis on these 
minority classes by exploiting large amounts of unlabeled clinical texts. Since there is only one type of Pr-Pr 
relation (PIP), we focused exclusively on the Pr-Tr and Pr-Te relations in our efforts. 

Unlabeled Data Preparation for Weakly Supervised Learning 

For this research, we also used texts from the MIMIC II Clinical Database21, which contains various types of clinical 
notes: discharge summaries, nursing progress notes, cardiac catheterization notes, ECG reports, radiology reports, 
and echocardiography reports. From this data set, we used 26,485 discharge summaries after filtering out notes with 
insufficient text content (<500 Bytes).  

For weakly supervised learning preparation, we had to identify the medical concepts in our unlabeled data and 
classify the assertion of each medical problem concept. Assertion classification aims to determine the assertions of 
the problem concepts by assigning one of six categories: present, absent, hypothetical, possible, conditional, or not 
associated with the patient.4 For concept extraction, we used our previous system consisting of a stacked learning 
ensemble22, 23. We slightly modified the feature set of the individual classifiers by adding skip-grams and word 
embedding features. For assertion classification of medical problems, we also added new word embedding features 
to our assertion classifier24 and retrained the SVM model. As computed by the i2b2 Challenge evaluation script 
(class exact match), our stacked ensemble achieved 84.4% recall, 89.1% precision, and 86.7% F1 score for concept 
extraction on the i2b2 test set. The assertion classifier reached 94.5% micro-averaged F1 score. Using the predicted 
concepts assigned to the unlabeled data, we created a large set of relation pairs to generate feature vectors for 
weakly supervised learning and clustering. 

We used CLUTO25, a data clustering software that has been widely used in various tasks, to create clusters 
containing both labeled (i2b2 training) and unlabeled data: 517,689 pairs of Pr-Tr relations and 455,272 pairs of Pr-
Te relations. The same feature vectors generated for SVM classification were re-used with the clustering algorithm. 
To determine the number of clusters, we use the root-mean-square standard deviation (RMSSD). RMSSD is a 
measure of homogeneity within clusters and large RMSSD values indicate that clusters are not homogeneous.26 We 
ran a series of clustering processes with different numbers of clusters, K, and calculated the RMSSD for each K. We 
tried 20 different cluster sizes aimed at having the average number of members per cluster ranging from 40 to 800 
(i.e. K = the number of instances × n, n = 1/800, 2/800,…, 19/800, 20/800). When we set n to 1/800 and 20/800 (= 
1/40), we expected that on average 800 and 40 members would exist in each cluster, respectively. For each of the 
Pr-Tr and Pr-Te, we then detected the shift point (also known as the “Knee” point) of its RMSSD curve based on 
the Satopää et al.27 method. The cluster sizes of 4,529 and 3,414 were identified as the Knee points for the Pr-Tr and 
Pr-Te relation clusters respectively. In the following paragraphs, we will describe our supervised classification 
models and then present the instance selection methods based on clustering unlabeled data. 

Supervised Relation Classification 

We created three supervised learning classifiers (one for each category of concept pairs: Pr-Tr, Pr-Te, and Pr-Pr) 
using a rich set of features. We applied the Stanford CoreNLP tool28 for tokenization, lemmatization, part-of-speech 
(POS) tagging, and phrase chunking. We trained Support Vector Machine (SVM) classifiers with a linear kernel 
using the LIBLINEAR (Library for Large Linear Classification) software package29. The multi-class SVM 
classifiers use five types of features associated with a pair of concepts <C1, C2>: 

• Assertion: For each medical problem concept, we create a feature for the assigned assertion type. Assertion 
categories are considered in a pre-defined order of precedence (e.g., Possible takes precedence over 
Absent.) 30 

• Context: To compensate for the absence of assertions for treatment and test concepts, we incorporated the 
ConText algorithm31 at the sentence level to detect three types of contextual properties for each concept: 
negation, hypothetical, and historical. We also created a second set of ConText algorithm properties 
restricted to the six-word context window around C1 and C2 (three words on the left of C1 and three words 
on the right of C2). 

• Distance: We created several features to represent the distance between concepts C1 and C2 by counting the 
number of words, concepts, and phrases (e.g., noun phrases and adjective phrases) between them. The 
number of concepts appearing before or after the pair was also measured. These features were designed to 



 

  

help the classifiers distinguish between concept pairs that probably have a relation and distant pairs that 
probably have no relation between them.  

• Lexical: Lexical features have been very effective for many NLP tasks. We create lexical features for the 
words contained in C1 and C2, the head words of C1 and C2, the words in a context window of size four 
around the concept pair (two words on the left of C1 and two words on the right of C2), and the words in 
between the two concepts. Also, we defined features for verbs that precede, follow, or occur between the 
concepts. 

• Word Embedding: We used the Word2Vec software32 to perform K-means clustering on the word 
embeddings. We created 1,000 clusters of semantically related words within the unlabeled data (i.e., 
MIMIC II Clinical Database21) with default parameters. Then, we used the cluster identifier of each word 
between the two concepts as a feature. We also used the cosine similarity of the word embedding vectors 
for the heads of C1 and C2. 

We randomly selected 200 documents from the training set for development purposes. We tuned LIBLINEAR’s 
parameters to maximize the micro-averaged F1 score with the held-out development data. After experimenting with 
different values on the development data, we set the cost parameter c to 0.06 for Pr-Tr, and 0.02 for Pr-Te and Pr-
Pr. Also, the weights of negative examples were set to 0.2 for Pr-Tr and Pr-Te and 0.3 for Pr-Pr. The lower the 
weight for instances with no relation, the higher recall was obtained on held-out data. 

Although the classifiers showed good performance under the micro-averaged scoring metrics, performance on the 
minority classes was weak. As shown earlier, the class distributions are extremely skewed and the minority classes 
are relatively rare. To reduce the performance gap between the dominant classes and the minority classes, we also 
experimented with retraining the model by assigning higher weights to the minority classes to increase the 
importance of minority classes being classified correctly. It did not yield an increase in macro-averaged F1 score and 
more detailed results will be reported in the results section. To improve performance across the different relation 
classes, we extend our methods to weakly supervised learning described in the following paragraphs. 

Exploiting Unlabeled Data for Relation Classification 

To take advantage of the large amounts of unlabeled clinical notes that are available, we explored an iterative 
weakly supervised learning framework. We developed two novel methods for instance selection that are specifically 
aimed at improving performance on minority classes. Our general framework involves the following steps: (1) a 
classifier is trained with supervised learning using the labeled training data, (2) the classifier is applied to the 
unlabeled data so that each unlabeled instance receives a predicted label, (3) a subset of the unlabeled instances is 
selected and then added to the set of labeled data (using the classifier’s predictions as the labels), and (4) the 
classifier is retrained using the (larger) set of labeled data. This process repeats until a stopping criterion is met (e.g., 
for a fixed number of iterations or until no new instances can be labeled). 

This paradigm is generally known as self-training, where the most common method for instance selection (step 3) 
sorts the instances based on the confidence scores produced by the classifier (i.e., confidence in the predicted labels) 
and then selects the most confidently labeled instances. This traditional self-training approach, however, tends to 
select instances of the dominant classes much more often than the minority classes because the classifier is more 
confident in its predictions for the dominant classes. 

This issue motivated us to explore new methods for instance selection that try to create a diverse and representative 
set of new instances from the unlabeled data. Consequently, we developed two new methods for instance selection 
that first cluster the unlabeled data to identify groups of similar instances. Both methods generate clusters and assign 
labels to the instances in the same way. First, the labeled and unlabeled instances are combined into a single dataset 
and the clustering algorithm (described previously) is applied. We consider the instances with a high confidence 
score as candidates for selection. In each iteration, an instance can be selected when it is ranked in the top 25% per 
class. Then we assign a label to each cluster based on the most common relation type among these highly ranked 
instances. Each unlabeled instance selected from a cluster is assigned the relation type of the cluster. 

The first instance selection method, called Unlabeled Data Prototypes (UDP) Selection, selects instances from 
clusters containing only unlabeled data. We compute the purity of each cluster and identify clusters where the highly 
confident cluster members have the same positive relation type (i.e., cluster purity = 1). We discard clusters with 
purity < 1 because the instances are similar but the classifier’s predictions are inconsistent, so the predictions are 
suspect. The most representative instance from each cluster is then selected as additional training data, based on 



 

  

average cosine similarity with other cluster members. We assumed that instances in these clusters are different from 
the training instances yet they are similar to each other in some way, so they represent some new type of information 
found in the unlabeled data. This method is illustrated in Figure 2(a). Green-colored instances represent unlabeled 
data. 

Assuming that unlabeled data will be similar to labeled data when they co-exist in the same cluster, our second 
method, called Labeled Data Counterparts (LDC) Selection, selects instances from the clusters containing both 
labeled and unlabeled instances. For each instance labeled with a positive relation type, the unlabeled instance most 
similar to it in the same cluster is selected. Our intuition is that this approach will acquire new training instances that 
share features with the original labeled data and maintain the same class distribution. This method is illustrated in 
Figure 2(b). Red-colored instances represent labeled data and green-colored instances represent unlabeled data. In 
the next sections, we compare the performance of self-training with confidence-based instance selection against our 
new UDP and LDC instance selection methods.  

 
            (a) UDP                (b) LDC 

Figure 2. Clustering-based instance selection 

Results 

We have conducted an extensive set of experiments to evaluate the performance of supervised classifiers and weakly 
supervised learning with different instance selection methods. We evaluated performance with relation data from the 
i2b2 Challenge test set. We used the official i2b2 Challenge evaluation script to calculate micro-averaged measures. 
For macro-averaged measures, we created a new script to obtain average values for each relation type. The macro-
averaged F1 score is the harmonic mean of the macro-averaged recall and precision. 

Supervised Learning Results 

Table 1 shows the results produced with the supervised classifiers, which were trained to optimize for micro-
averaged measures. This baseline supervised learning system was trained with the i2b2 training data and achieved 
micro-averaged scores of 74.9% recall, 73.7% precision, and 74.3% F1 score. 

Table 1. Results produced with the supervised classifier. 

Relation type Recall Precision F1 score 
ALL 74.9 73.7 74.3 
Treatment 67.4 68.9 68.2 
  TrIP 31.8 63.6 42.4 
  TrWP 4.2 42.9 7.6 
  TrCP 52.3 59.5 55.6 
  TrAP 79.9 71.2 75.3 
  TrNAP 25.1 49.5 33.3 
Test 82.9 81.5 82.2 
  TeRP 90.3 82.7 86.3 
  TeCP 45.1 71.4 55.3 
PIP 73.2 67.9 70.4 



 

  

Although our supervised classifiers achieve overall performance comparable to state-of-the-art relation classification 
systems, performance on the minority classes lags far behind the dominant classes. The F1 score of TrWP was only 
7.6% with a recall of 4.2%. Most of the TrWP instances were misclassified because of the very low prevalence of 
their cases. For example, a TrWP case from the test set, “She has a known diagnosis of myelodysplasia that has 
become recalcitrant to Procrit”, the medical problem ‘myelodysplasia’, the treatment ‘Procrit’, and possibly a 
keyword ‘recalcitrant’ never appeared in the training data. Based on macro-averaging, this system reached 50.2% 
recall, 63.6% precision, and 56.1% F1 score.  

We also experimented with decreasing the weights of negative examples to help increase recall on minority classes. 
This did not yield an increase in macro-averaged F1 score because of a substantial drop in precision. Adjusting the 
importance of different relation types by assigning different weights also did not affect performance very much.  

Comparing Supervised Learning and Weakly Supervised Learning Results 

We evaluated the performance of self-training with traditional confidence-based instance selection (called Self-
training below), and instance selection with our new UDP and LDC methods. We ran all of the weakly supervised 
learning methods for 20 iterations.  

For self-training, we only selected positive examples (pairs of concepts with relations) from the unlabeled data to 
augment the labeled data. For each iteration, we added K newly labeled examples, where K = the number of positive 
examples in the original training data. Our intention was to be conservative in adding new examples and maintain 
the importance of labeled data. To keep the class distribution of the labeled data, we imposed that the number of 
newly labeled examples for each positive class should not exceed the number of examples in the original training 
data. 

Table 2 shows results for each class and macro-averaged F1 scores for the Pr-Tr and Pr-Te relations. For each 
relation type, the best results appear in boldface. We used paired t-tests to measure statistical significance.33 Results 
that are significantly different from the supervised learning results at the 95% significance level are preceded by an 
asterisk (*). Self-training with confidence-based instance selection produced the best F1 score on TrCP and TrNAP 
classes. For TrWP and TeCP, self-training’s performance was significantly different than supervised learning. 

Table 2. F1 score of each method on the test set. 

Relation type Supervised Self-training UDP LDC 
Treatment 46.2 48.0 48.9 49.7 
  TrIP 42.4 46.0 *49.3 *47.4 
  TrWP 7.6 *16.3 12.3 *19.2 
  TrCP 55.6 56.8 55.5 53.1 
  TrAP 75.3 75.4 75.8 75.8 
  TrNAP 33.3 35.4 33.1 33.6 
Test 72.0 72.6 72.8 73.1 
  TeRP 86.3 86.3 86.3 *86.7 
  TeCP 55.3 *58.5 *59.2 *59.5 

 

Both the UDP and LDC instance selection methods produced higher macro-averaged F1 scores than Self-training. 
The UDP method (third column of Table 2) produced the best F1 score of 49.3% on the TrIP class. The F1 scores for 
TrIP and TeCP were significantly higher than for supervised learning. The LDC method (last column of Table 2) 
produced the highest F1 scores on most of the relation classes. It obtained the best macro-averaged F1 scores for 
Treatment and Test. For TrIP, TrWP, TeRP, and TeCP, the performance of LDC method was significantly better 
than supervised learning. 

Finally, we tried to combine the UDP and LDC methods. New instances were selected separately by the UDP and 
LDC methods and then the combined set of instances was added to the labeled data. However, this system produced 
an F1 score of 58.3%, so did not outperform the LDC method on its own. 



 

  

In another set of experiments, we performed ablation testing of the supervised learning system to evaluate the 
impact of each feature set based on micro-averaged and macro-averaged scores, separately. If some features have 
more impact for macro-averaged scores than micro-averaged scores, then our hypothesis is that they are especially 
important features for minority classes. The row header in Table 3 specifies the feature set that has been ablated. The 
columns named “Impact” in Table 3 present the F1 score difference between the ablated classifier and the complete 
system. Every feature set contributed to the performance of the supervised classifiers. The macro-averaged F1 score 
dropped the most when the lexical features were removed. This suggests that exploiting unlabeled data could be 
especially beneficial for the minority classes by bringing in new lexical features. The F1 scores of TrIP, TrNAP, and 
TeCP decreased from 42.4%, 33.3%, and 55.3% to 28.9%, 22.2%, and 37.2% respectively without the lexical 
features. 

Table 3. Features Contribution 

 Macro-averaged Micro-averaged 

Feature F1 score Impact F1 score Impact 

All 56.1  74.3  
- Assertion 55.4 -0.7 73.8 -0.5 
- Contextual 55.4 -0.7 74.2 -0.1 
- Distance 55.2 -0.9 72.4 -1.9 
- Lexical 48.2 -8.0 69.4 -4.9 
- Word embedding 55.8 -0.3 73.8 -0.5 

 

Analysis 

We carried out an empirical analysis of self-training with confidence-based instance selection to better understand 
its limitations. After clustering the unlabeled data, we counted the number of instances selected from each cluster 
during the first iteration. We found that most instances were selected from a small subset of the clusters: about 10% 
of the clusters provided over 78% of the newly selected unlabeled instances. This shows that selecting instances 
based only on confidence scores tends to yield a relatively homogenous set of new instances that is low in diversity.  

Table 4 displays the Recall, Precision, and F1 results of LDC instance selection along with the total counts of true 
positives (TP) and the number and percentage of true positive gains (compared to supervised learning) in the 
rightmost column. The numbers in parentheses in the Recall, Precision, and F1 columns indicate the difference 
between the supervised classifier and the LDC method. Results significantly different from supervised learning at 
the 95% significance level are preceded by an asterisk (*). 

Table 4. Results of LDC with comparison to the supervised learning model 

Relation 
type Recall Precision F1 score True 

positive TP Gain (%) 

Minority classes 

  TrIP *38.9 (+7.1) 60.6 (-3.0) *47.4 (+5.0) 77 14 (+22.2) 
  TrWP *11.9 (+7.7) 50.0 (+7.1) *19.2 (+11.6) 17 11 (+183.3) 
  TrCP *65.1 (+12.8) *44.9 (-14.6) 53.1 (-2.5) 289 57 (+24.6) 
  TrNAP 23.6 (-1.6) *58.4 (+9.0) 33.6 (+0.3) 45 -3 (-6.3) 
  TeCP *57.7 (+12.6) *61.4 (-10.0) *59.5 (+4.2) 339 74 (+27.9) 

Majority classes 

  TrAP *80.8 (+0.9) 71.3 (+0.2) 75.8 (+0.5) 2,009 23 (+1.2) 
  TeRP *88.5 (-1.8) *85.0 (+2.4) *86.7 (+0.4) 2,682 -55 (-2.0) 

 



 

  

Table 4 shows that most of the minority classes benefitted substantially from the LDC method. The largest 
percentage gain came for TrWP where LDC correctly identified 17 instances but the supervised learner only 
produced six true positives, resulting in a gain of 11 (183.3%). The majority classes also achieved slightly higher F1 
scores. The LDC method appears to be an effective way to improve recall on minority relation classes while 
maintaining good performance on the majority classes.  

Conclusion 

We showed that clustering-based instance selection from unlabeled text data could improve performance on 
minority classes for relation type classification between medical concepts. Experimental results show that our 
clustering-based methods outperformed supervised classification and traditional self-training from unlabeled texts. 
We believe that this approach offers a more robust solution for classification problems when the data has a highly 
skewed class distribution, acquiring manual annotations is expensive, but large quantities of unannotated text data 
are available. 
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