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Abstract

We cast the problem of recognizing related categories as
a unified learning and structured prediction problem with
shared body plans. When provided with detailed annota-
tions of objects and their parts, these body plans model ob-
jects in terms of shared parts and layouts, simultaneously
capturing a variety of categories in varied poses. We can
use these body plans to jointly train many detectors in a
shared framework with structured learning, leading to sig-
nificant gains for each supervised task. Using our model,
we can provide detailed predictions of objects and their
parts for both familiar and unfamiliar categories.

1. Introduction
Many important applications require visual systems to

make sensible predictions about every object that they en-
counter. An automated vehicle must respond appropriately
whenever an object crosses its path, whether that object is
a cement block, a cow, or a child on a tricycle. The vehi-
cle needs to localize the object and predict its movement.
When confronted with a cement block, the vehicle should
not wait for the block to move, but when facing a child on
a tricycle, the vehicle should brake or give the tricycle wide
berth, moving behind it. When viewed from the lens of
basic categorization, the problem seems insurmountable —
there are thousands of potential categories, and it is diffi-
cult to identify the relevant ones in advance. Instead, we
believe it important to explicitly model objects in terms of
parts and multiple levels of categorization, so that novel
objects can sometimes be related to known ones. Some
knowledge of materials, shapes, animals, and wheeled ve-
hicles should lead to reasonable behavior for the scenarios
described above, even if the designers did not build in de-
tectors for “cement block”, “cow”, or “tricycle”. Our main
challenge is, how can we represent multiple related cate-
gories in a way that leads to more efficient learning, more
accurate recognition, and generalization to novel objects?

In this paper, we propose to model objects in terms of
shared parts and layouts, so that learning of several related
categories can be treated as a single, unified recognition
problem. Our representation is organized as a mixture of
body plans, shown in Figures 1 and 2, that predict the cate-

Figure 1. Our shared body plans enable joint training of detailed
structured representations of related categories. In the results
above, the body plan (left) is able to detect and localize the parts
of both the familiar elk and the unfamiliar cow (right).

gories and spatial arrangement of parts. Left-facing, stand-
ing dogs, cats, horses and cows, all have the same visi-
ble parts in roughly the same configuration, and they can
be modeled with the same body plan. One body plan can
be shared by many categories, and a single category may
be represented by several plans that correspond to different
viewpoints or poses. Likewise, we model each part’s ap-
pearance with a mixture of models that is shared across cat-
egories, encoding, for example, that frontal views of horse
heads and cow heads have similar appearance. Our ap-
proach is to learn these models from bounding boxes of ob-
jects and their parts. The part annotations provide explicit
correspondence within and across categories, allowing us
to construct a shared representation with more flexible lay-
out models and detailed prediction. Because parts may be
difficult to detect in isolation, we use structured learning
to jointly model the appearance of parts and categories and
body plans, and use structured prediction for inference.

1.1 Background and Contributions
In this paper, we propose: 1) a representation of related
object categories in terms of shared appearance and part
layout; 2) a structured learning method to jointly train the
parameters of these models; and 3) an efficient inference
procedure to jointly localize objects and their parts. When
provided with detailed annotation (bounding boxes of en-
tire objects and their parts), we show how to learn struc-
tured representations of objects that are shared across cat-
egories and discriminatively trained to localize objects and
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Figure 2. Body plans: Shown are three of the nine body plans used to represent four-legged animals. Each body plan represents a cluster
of coherent poses from one or many categories. (left) Each box represents an anchor point which encodes an expected position and scale
of a particular object or part detector. (right) Examples of a wide range of animals and poses that are captured by each body plan.

their parts. We also show how our structured representation
can learn from objects that have only bounding box anno-
tations, so that the computer can better recognize them and
find their parts.

We show that by jointly learning appearance and layout
of both parts and categories from fully supervised exam-
ples we can better recognize objects than if training from
only whole-object bounding boxes. Intuitively, part annota-
tions should help because they provide a more detailed cor-
respondence that reveals the internal object structure. Yet,
as Felzenszwalb et al. [9] note, it has been difficult to show
that part-based models [2, 3, 6, 11, 12, 14, 16, 15] can out-
perform simpler rigid template [19, 20, 24, 4] or bag of
feature [27, 23] models. The deformable parts model of
Felzenszwalb et al. [9] succeeds by jointly learning appear-
ance parameters of latent parts. The parts are entirely in the
service of the category detection; they are trained to aid ob-
ject detection, not to be individually detectable. Latent parts
are attractive for their discriminative potential and minimal
annotation requirements, and many in the recognition com-
munity are wary of explicitly annotated parts.

However, several recent works show that additional su-
pervision can improve detection accuracy. For example,
Farhadi et al. [7] use part and attribute labels to improve su-
perordinate category detection and Bourdev and Malik [1]
use labeled joint positions to improve human detection.
However, both procedures add spatial models on top of pre-
trained appearance models, which we show in this work can
hinder the efficacy of the additional annotation. Instead,
we treat the spatial model as an integral component of our
learning procedure, allowing detectors to learn to rely on
each other, giving greater gains. Further, our model aims
to improve a number of related tasks simultaneously, rather
than pooling many supervised detectors for a single task.

Recently, Sun and Savarese [21] train a fully supervised
part based model to improve detection of individual cate-
gories while localizing their parts. In contrast, our model at-
tacks the more general problem of not only recognizing in-
dividual categories but also jointly representing several re-
lated categories, requiring that our model address the larger
variation in part size, appearance, and spatial configuration.
Further, our model can encode missing parts and multiple
occurrences of a single part type, such as legs, while parts
in their model are distinct and must always be detected.

In addition to Farhadi et al. [7], there have been several
other works that train shared representations across cate-
gories [22, 17, 18] for detecting objects. However, each of
these works relies on latent parts to build the shared repre-

sentation and are unable to localize named parts. One recent
work of this nature from Ott and Everingham [18] is com-
plementary to ours, as it extends the deformable part model
to share latent (rather than supervised) parts across multiple
categories. In fact, with the constraint construction and la-
tent structure parameterization of our model, latent parts of
their form can be directly incorporated into our model.

2. Multicategory Object Representations
We aim to improve prediction accuracy and learning effi-

ciency by sharing representations among related categories.
We can take advantage of explicitly labeled parts and broad
categories to better correspond objects within and across
categories. This additional supervision enables more flex-
ible layout models that handle deformation in scale, mul-
tiple parts, and occlusion, and it also facilitates sharing of
detector and spatial layout parameters. Our multi-category
representation is motivated by the following intuitions:

1. Objects from related categories, viewed in similar
poses, have similar overall shapes, appearance of parts,
and layout of parts. We model objects with broad cat-
egory detectors, part detectors, and body plans, whose
parameters are shared across basic categories.

2. Objects from the same category vary dramatically in
appearance and layout, due to change in pose and
viewpoint. We employ mixture models for part and
category appearance and train a mixture of body plans.

3. For different instances or categories, the same part may
vary in relative size and position. We learn anchor
points that set the expected positions and sizes of a part
and allow detections to vary in both position and size
with some deformation cost.

4. One object may have multiple copies of the same part,
though some may be occluded. We define multiple an-
chor points for each named part, so that one part can
be detected multiple times; in structured prediction, we
infer which were actually detected, potentially encod-
ing that several or no instances of a part were observed.

5. A particular detector should work well in the context
of other detectors, not necessarily in isolation. We em-
ploy structured learning and prediction to learn param-
eters that work well together.

2.1 Body Plans
The body plans are viewpoint-dependent models of the spa-
tial layout of parts, and they are shared across basic cate-
gories. One body plan may correspond to four-legged ani-
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Figure 3. Spatial Model: Each body plan uses a number of anchor
points to represent possible locations of each detector type, such
as legs. (Top) For each leg anchor point, we search for a detection
window that maximizes the tradeoff between appearance score and
deformation cost. (Bottom) We iteratively choose the anchor with
highest score (Leg 1), and apply the exclusion constraints to nar-
row the search for the next possible anchor. We repeat until we
reach the maximum number of allowed detections.

mals that are standing and facing right, while another might
correspond to flying birds, and another to non-objects.

The body plan regularizes the set of part/category detec-
tions in three ways. First, the plan provides a set of anchor
positions where the detections are likely to occur (detec-
tions are penalized for drifting from these anchor positions),
see Figure 3. Second, the plan encodes pairwise constraints
between anchor points. For example, an object cannot be
both a “horse” and a “dog”, an animal cannot have two
“head” detections, and an “eye” cannot be detected on dis-
tant anchor points. Third, the plan provides a prior (through
a bias term) on the likelihood of observing particular cat-
egories and parts. When encoding the appearance of parts
with a mixture of viewpoint-dependent models (as in our
model), these bias terms also provide a prior on viewpoint.

2.2 Details of Parameterization
We represent a range of object categories (e.g., all four-
legged animals) with shared body plans and appearance-
based detectors. The object model consists of a set of detec-
tors of type t with appearance parameters wA

t and a set of
body plans. One body plan b is parameterized by: an object
root position and scale; a set of anchor points ({̂lbi}) defin-
ing the expected position and scale of a detector of type tbi
relative to the root; weights for deformation in position and
scale wD

b ; a bias wB
bt for each detector; constraints between

anchor points Hb; and a bias term wB
b0 for the body plan.

An instance of an object hypothesis of body plan b is
defined by the structure h, where each element hi = (δi, li)
defines the state of anchor point i. The indicator δi is 1 if
the detection for anchor point i is visible and 0 otherwise.
li gives the position of this detection in location and scale.

Objective Function. At each object root position and scale
l0 = (x, y, s), we search for the highest scoring body plan
b and structure h:

{b∗,h∗} = argmax
b,h∈Hb

fb(h; x, l0,w)

fb(h; x, l0,w) = wB
b0 +

Nb∑
i=1

δi · Sb(li; x, l0,w) (1)

Sb(li; x, l0,w) = wB
bti +SA(li; x,w

A
ti)− SD(li; l̂bi, l0,w

D
bti)

For each body plan b and ith anchor point l̂bi, we find the
detection position li that maximizes the overall body plan
score Sb. This score is composed of the appearance score
SA, a deformation penalty SD, and a per-type bias wB

bti
. If

the overall score is greater than zero, then δi = 1, subject
to the constraints given by set Hb; otherwise, δi = 0. The
most likely object structure h∗, therefore, is composed of a
set of detections that are consistent in appearance and joint
configuration with an object in the given domain at position
l0, and its score is the sum of the individual detection scores.
Our inference procedure is further explained in Section 5.
Appearance Models. The appearance score SA uses the
HOG-based, deformable latent part models of Felzenszwalb
et al. [9] for categories and parts. Each detector models an
object or part in terms of a whole-window appearance tem-
plate (grid of oriented gradient histograms) and a set of la-
tent part templates, anchor points, and deformation costs.
Modal variations within category are partially captured by
modeling the appearance as a mixture of components, lead-
ing to a set of detectors for a given object part or category
label. We treat each component as a different detector type,
allowing body plans to select which aspect of a detector to
use. Given the locations of the latent parts, the appearance
model for detector type t can be written as linear classi-
fier wA

t over the structured features φt. Note that, though
our appearance models are parameterized as in [9], ours are
shared across categories and jointly trained using structured
learning.
Deformation Costs. Like [9], deformation costs are a linear
combination of linear and quadratic penalties for deforming
from the expected position. However, we also allow defor-
mations in scale in addition to position.

SD(li; l̂bi, lo,w
D
bti) = wD

bti · ψt(li, l̂bi + l0)

ψt(l, l̂) =
(
dx, dx2, dy, dy2, ds, ds2

)T
(2)

dx =
(lx− l̂x)

2ls
, dy =

(ly− l̂y)

2ls
, ds = ls − l̂s

Deformations in position are normalized by the scale of the
detection to maintain consistent score across scales.

.
Constraints. Our model prevents unlikely detections with
count constraints and exclusion constraints. Count con-
straints can be used to prevent an animal from having two



heads or more than four legs. Exclusion constraints avoid
unusual combinations of anchor points, such as all four legs
being detected on the same side of the animal. See Figure 3
for an example. In the form of a linear binary program, they
can be written as follows:

δi + δj ≤ 1, ∀(i, j) ∈ Se (Exclusion)∑
i∈Sc

δi ≤ τc, ∀c (Count).

The set Se over pairs of examples defines the exclusion con-
straints, where only one element in each pair can be active.
Each count constraint is defined by the set Sc, indicating
the elements constrained, and τc, the maximum number of
anchor points in Sc that can be active.

3. Initialization
Before training the model, we must first initialize the

spatial model by partitioning the data into separate body
plans and finding appropriate anchor points.
Body Plan Selection. Since we have detailed annotations
for each object and its parts, we can establish direct corre-
spondences between examples and cluster them into body-
plans with coherent layouts. These body plans help reduce
the variation in appearance and simplify their spatial mod-
els. To cluster the examples, we compute distance dij be-
tween each pair of objects and use kernel K-means [13] to
generate K body plan clusters.

The distance dij measures how many parts the objects
share and the agreement between their spatial configuration.
First, the objects are rectified so their bounding boxes have
unit diagonal and are centered at (0, 0). Then, for each part
type, we compute the distance between the centers of the
parts. If there are multiple parts of a type, such as legs, we
compute the matching with minimal average distance. Parts
that do not have a match or have a matched distance greater
than 25% the size of the object are given a penalty of 1.
Examples of the resulting clusters can be found in Figure 2.
Keypoint Selection. For each body plan, we now need to
select a small set of anchor points for each detector type.
These anchor points should be chosen to minimize the ex-
pected distance to each example, allowing tightly tuned spa-
tial models while remaining flexible enough to explain ev-
ery example.

We use a bounding box clustering procedure similar
to [7]. Each example is again scaled to a unit diagonal and
centered at (0, 0). For windows of each type, we incremen-
tally build a set of clusters S to ensure that each example is
sufficiently covered. At each iteration, we randomly select
a box and check its overlap with elements already in S. If
the overlap is below 40%, it is not well covered and is added
to S. Otherwise, we add it to the existing cluster s ∈ S that
has the best overlap. Finally, we remove any cluster in S
that has few examples assigned to it. After multiple inde-
pendent trials of this clustering procedure, we choose the set

Independent Search Joint Search

Figure 4. Joint search for violated constraints: The left column
shows difficult negative examples when independently training a
head detector. On the right are hard negative boxes for the jointly
trained model. By only considering regions in the image where
other detectors are also confident, indicated by the highlighted re-
gion, hard negatives from much (or all) of the image can be ig-
nored, allowing the classifier to focus on a more constrained train-
ing and inference problem. See Section 4 for details on learning.

S that minimizes the average deformation cost SD (eq. 2)
of the model. We add an exclusion constraint if a pair of
anchors of a type are never active within the same example.

Initial Model Parameters. As observed in [9], it is impor-
tant to provide good initializations when learning models
with latent structures. We initialize the appearance mod-
els using detectors trained independently for each type t.
Quadratic deformation costs are set to a small constant and
linear deformation costs and biases are set to zero.

4. Structured Learning
We take a max-margin structured learning approach to

train our model. This allows us to jointly train all of the
appearance models and the spatial deformation parameters
that tie them together. By jointly training all of the detec-
tors, an individual detector can learn that it only needs to
be correct when the other detectors provide sufficient evi-
dence that an object is visible. Figure 4 illustrates this joint
search. Further, by careful construction of a latent ground
truth representation and structured loss, we can incorporate
training examples with mixed levels of supervision, such
as fully annotated examples with object and part boxes and
partially annotated examples which are missing part anno-
tations.

4.1 Structured Learning Objective
We begin by showing how the model can be parametrized
as a linear weighting of features Φ(h; xi) induced by the
inferred structure h. Let φt and ψt be the detector and de-
formation features for each detector type. φt are the features



produced from the linear model of [9] for a detection of type
t at location (x, y) and scale s. As shown in equation 2, the
deformation costs are written as a weighted linear combi-
nation of the linear and quadratic deformations, giving the
features ψt(l; p). A single feature vector Φ is produced by
concatenating the features from each detector type, with ze-
ros for types not detected. To allow multiple detections of a
single type, such as legs, we sum over the features of each
detection.

Now, we can write the structured learning problem in
the margin rescaled formulation of [25], written below in
the unconstrained form:

min
w

1

2
||w||22 +

F (w)︷ ︸︸ ︷
C
∑
i

max
ĥ∈Hbi

wTΦ(ĥ; xi) + ∆(yi, ĥ)

−

G(w)︷ ︸︸ ︷
C
∑
i

max
h∈HGT (yi)

wTΦ(h; xi) . (3)

While searching for weights w, this objective imposes a
penalty for each example where some h ∈ Hb is within
a margin (defined by the loss ∆(yi,h)) from the highest
scoring positive structure h∗i chosen from the set of valid
ground truth structures HGT (yi).

Ground Truth Structure. The best ground truth structure
h∗i of each example yi is a latent structure chosen from the
set HGT (yi). Any latent structure that has a highly over-
lapping detection for every ground truth box in yi is con-
sidered correct and included in HGT (yi). This allows us to
incorporate structures with latent parts and mixed supervi-
sion. Missing annotations are simply treated as latent values
that can be chosen freely. For an object labeled with object
boxes, but not its parts, HGT constrains the object detec-
tors, while the parts can be detected or ignored based on
their contribution to the overall score.

Loss. We use a Hamming loss ∆(y,h) to measure the dis-
agreement between a hypothesis h and the given ground
truth y. Here, a penalty of 1 is added for each false positive
∆fp(y,h) and false negative ∆fn(y,h). Each duplicate de-
tection is counted as an additional false positive ∆dd(y,h):

∆(y,h) = ∆dd(y,h) + ∆fp(y,h) + ∆fn(y,h).

For examples which have not been fully labeled, there is no
penalty for false positives, so ∆fp = 0.

4.2 Optimization
To minimize the learning objective in equation 3, we use the
cutting-plane optimization procedure proposed in [25] for
max-margin structured learning with latent variables. By
writing the objective as the difference between two con-
vex terms, F (w) and G(w), we can use the CCCP pro-
cedure [26] to find a local minimum (or saddle point). The
CCCP algorithm iterates between computing a lower-bound

Algorithm 1 Optimization of Convex Subproblem

1: Ĥi = ∅
2: repeat
3: t = 0
4: for all xi do
5: ĥi = argmaxh∈Hbi

wTΦ(h; xi)+∆(y,h)

6: Ĥi = Ĥi ∪ {ĥi}
7: end for
8: repeat
9: Randomly select example i, Let λ = 1

c+t

10: ĥi = argmaxh∈Ĥi

(
wTΦ(h; xi) + ∆(yi,h)

)
11: wt+1 = wt − λ

(
wt + Φ(ĥi)−Φ(h∗i )

)
12: t = t+ 1
13: until Convergence
14: w = wt

15: until Convergence

Gt(w) of G(w) and optimizing the resulting convex sub-
problem. At iteration t, we use the current model wt to
compute Gt(w) by finding the highest scoring latent struc-
tures for each ground truth example:

h∗i = argmax
h∈HGT (yi)

wT
t Φ(h; xi)

Gt(w) =
∑
i

wTΦ(h∗i ; xi). (4)

The resulting convex subproblem reduces to a non-latent
structured learning problem, which we solve using cutting-
plane based stochastic gradient descent in Algorithm 1. To
avoid enumerating the exponential number of constraints,
this algorithm incrementally builds up a set of violated con-
straints. At iteration t, we first update the constraint set Ĥi

for each example with the new most violated constraint ĥi

using loss augmented inference (Line 5) and then minimize
the objective over these sets using stochastic gradient de-
scent, continuing iteration until convergence.

4.3 Practical Considerations
Since this structured learning problem simultaneously trains
multiple detectors, it requires dealing with large amounts of
data, and there are several important practical tricks to speed
up the optimization. Constraint Generation: Loss aug-
mented inference requires running each detector at every it-
eration, making it important to minimize the number of iter-
ations required to collect the entire constraint set. Since we
compute the highest scoring structure for each root position
to find the most violated constraint, we have easy access to
a large number of additional violated examples. Therefore
we choose the most violated structure along with a number
of additional randomly sampled violated structures. This
random sampling gives a diverse set of structures, giving
a wider coverage of the constraint set. In practice, this
inclusion of additional violated constraints greatly speeds
convergence. Constraint Caching: One consequence of



including many extra structures is that irrelevant examples
quickly accumulate. Therefore, we also employ a caching
procedure similar to [9] which discards structures that have
either remained outside the margin for a number of iter-
ations or have consistently scored less than the most vio-
lated constraint. Waiting several iterations improves stabil-
ity and avoids frequently discarding and adding the same
constraints over time.

5. Inference
Generating a hypothesis for each root location o requires

computing argmax{h,b} fb(h; x,o,w). We greedily com-
pute an approximate solution which works well in practice.
We begin by computing the score of placing a detection at
each anchor point. This requires computing the appearance
scores for each type using individual detectors followed by
pre-computing the deformation costs using max convolu-
tions. To construct a hypothesis for each root location l0,
we incrementally choose the highest scoring anchor point
that satisfies all active constraints and then update the con-
straint set to include any additional constraints. For n an-
chor points, this results in a computational complexity of
O(n log n+ n2) per root position.

Future Extensions. Although the greedy solutions are
found to be good in practice, high scoring structures can be
refined using exact inference cast as a mixed integer linear
program. To further speed inference, the cascaded detection
approach from [8] could lead to significant speedups since
the cascade would tie together many categories and their
parts through the broad category detector.

5.1 Augmented Inference
For training, we need to modify the inference procedure
from the previous section to find the highest scoring ground
truth structure (Eq 4) and the most violated constraint (Al-
gorithm 1, line 5).

Ground Truth. To find the highest scoring ground truth
structure, we restrict our search to detections with sufficient
overlap with each ground truth part. To ensure that every
ground truth part is assigned to an anchor point, we greed-
ily add the highest scoring anchor point that agrees with the
ground truth and active constraints until all of the ground
truth windows are covered. If the training example is par-
tially labeled, we add any remaining anchor points that sat-
isfy the constraints and increase the hypothesis score. Fi-
nally, if the model does not allow a zero loss solution, we
instead choose the highest scoring solution with the small-
est possible loss.

Loss Augmented Inference. To find the most violated con-
straint, the score of a hypothesis is augmented by adding
its corresponding loss. Note that the false positive and
false negative losses decompose over detection windows.
Therefore, each window that has insufficient overlap with a
ground truth part has its score increased by one to account

for the false positive loss. Each correct window’s score is
decreased by one, since choosing it will remove the loss
contributed by a false negative. Notice that this establishes a
margin of two between each positive and negative detection,
similar to the binary SVM. Finally, we can (approximately)
account for duplicate detections by incrementing all correct
detection scores of a given part once it is correctly detected
with another window.

5.2 Detection Rescoring
Our inference procedure only provides a single score for
the highest scoring structure h∗, but we also need a score
for each constituent detection. The score Sb (eq. 1) for
each detection incorporates the appearance score and spa-
tial agreement with the hypothesis, but does not include the
evidence from the rest of the structure. Instead, we use a
convex combination of the overall hypothesis score fb and
the detection score Sb.

Sresc(li; h) = (1− αti)fb(h) + αtiSb(li). (5)

The weight αt is chosen for each detector type t with a grid
search on a held out set.

6. Experiments
In the following section we evaluate the benefits of our

shared body plan model. We test using four-legged cate-
gories, with the goal of detecting objects and their parts,
whether familiar or unfamiliar. Our results show that our
method surpasses strong baselines when generalizing across
many categories (Table 1), or specializing for specific cate-
gories (Table 2).

Baseline. For each part and object detection task, we train
an independent deformable part detector from [10]. Each
of these detectors has the same parameterization as the ap-
pearance models in our structured models. Throughout all
experiments, we use two components for each model, with
five latent parts for each object detector and three latent
parts for each part detector. To demonstrate the benefits of
our joint training, we also include a baseline which learns
the same spatial model, but with independently trained ap-
pearance models. To do this, we replace the HOG appear-
ance features with two features: the score of a pre-trained
detector and a bias.

Datasets. We use the CORE dataset [5] to train our fully
supervised models. We use 75 training examples from the
following four-legged animals in CORE: camel, dog, elk,
elephant. For testing, CORE includes 75 examples from
the previous classes, and adds 150 fully labeled cats and
cows to evaluate detection accuracy of unfamiliar objects
and parts. We use the Pascal 2008 validation set for further
evaluation, which contains the familiar dog category, along
with four unfamiliar categories: cat, cow, horse, and sheep.
To train a dog model with mixed supervision, we include
240 additional dog boxes from the Pascal 2008 train set.



Basic Level Superordinate Parts Pascal
Camel Dog Elephant Elk Fam/Unf Head Leg Torso Dog Unf

Independent 25.5 4.2 55.7 50.7 26.7/13.6 9.9/1.7 10.5/3.8 28.3/12.1 2.6 9.6
Indep+Spatial–Parts 29.4 3.3 52.3 52.7 30.0/14.0 — — — 3.5 9.9
Indep+Spatial+Parts 26.6 3.2 53.5 55.9 31.3/13.5 3.6/0.8 4.3/1.5 30.1/13.2 2.4 10.6
Joint Spatial+App–Parts 29.5 6.4 54.9 59.9 33.2/13.6 — — — 2.3 11.4
Joint Spatial+App+Parts 29.0 6.0 57.8 57.8 35.5/14.0 9.0/1.7 16.1/4.3 33.9/14.2 4.2 12.2

Table 1. Broad Category Model Results: We compare results for the task of detecting four-legged animals, their basic level categories,
and their parts on CORE and Pascal using the APN measure (see Section 6). Independent are independently trained deformable part
detectors for each task. Indep+Spatial combine the pre-trained independent models and with our spatial model. Joint Spatial+App is our
full model where all appearance and spatial parameters are jointly trained. -parts,+parts indicate whether the model uses only object level
detectors (e.g. four-legged, dog) or also includes part detectors. Pairs of numbers indicate Familiar/Unfamiliar results. Our full model with
parts is able to make a wide range of detailed predictions, outperforming many of the baselines.

Evaluation. We evaluate detection accuracy using a nor-
malized version of the average precision measure used in
the Pascal detection challenge, indicated by APN . To ac-
count for different numbers of test examples of parts and
categories, the true positive count is normalized by N

Nj
,

where N is a constant factor and Nj the number of ex-
amples in the category j. N is chosen to be 0.15Nimages,
approximately the average Nj on Pascal. Note that in our
results, the relative ordering of the methods do not change,
but the numbers are more directly comparable across tasks.
As with Pascal, object detections are considered correct if
the bounding box has at least 50% overlap with the ground
truth. Part detections are correct with 25% overlap, as in [7].

Results. To test the benefits of a shared representation
across four-legged animals, we first tie the four familiar ba-
sic level detectors together with a superordinate four-legged
detector (Joint Spatial+App-Parts). Next, we create a sec-
ond more detailed model by adding the shared supervised
parts to the previous model (Joint Spatial+App+Parts).
From Table 1 it is clear that jointly training all of the de-
tectors yields a great benefit over tying together indepen-
dently trained detectors. Second, although the joint mod-
els without parts are slightly better for basic level detection
on CORE, the parts are important for improving accuracy
for the broad category detection task, especially for familiar
four-legged animals on CORE and for all objects on Pascal.
By including part detectors we are also able to make more
detailed predictions about both familiar and unfamiliar ob-
jects on both datasets. See Figure 5 for qualitative results.

Next, we construct a separate structured model for each
individual category that jointly trains a basic level detec-
tor with the part detectors. Results are shown in Table 2.
Again, the full joint model greatly improves object detec-
tion, while still providing detailed part predictions. These
results further emphasize the importance of jointly training
the appearance models. For many of the tasks, such as de-
tecting elk parts, joint training is essential to get gains from
our spatial model, indicating that some pre-trained detectors
may not be well suited for use in the spatial model. Here we
see more significant gains for object detection than with the
broad model because the part models are allowed to special-
ize for each category. This suggests building a hierarchical
model where each part detector in the broad model is sup-

Independent Independent Joint
+Spatial Spatial+App

C
am

el

Object 25.5 27.9 30.1
Head 22.3 13.3 41.2
Leg 6.7 11.0 19.4
Torso 30.0 35.4 38.0

D
og

Object 4.2 20.8 18.3
Head 36.9 32.8 40.8
Leg 1.4 4.2 10.5
Torso 5.9 8.7 14.6

E
le

ph
an

t Object 55.7 53.4 62.3
Head 30.2 31.4 46.0
Leg 13.7 32.0 34.8
Torso 53.2 48.8 51.0

E
lk

Object 50.7 50.0 58.7
Head 37.2 4.6 47.9
Leg 21.4 9.3 31.7
Torso 48.2 56.1 58.3

Table 2. Per-Category Model Results: Part and Object Detection
on CORE. For each category, we train a body plan based model for
the object and its parts. We compare our Joint model to indepen-
dently trained detectors without (Independent) and with a spatial
model (Independent+Spatial). Jointly training appearance mod-
els with our spatial model again greatly improves performance for
all but two tasks.

plemented by category specific part detectors. The broad
model can retain its broad generalization across four-legged
animals, while specializing for familiar categories.

Finally, we consider the task of improving dog detection
by adding additional examples with object-level boxes from
Pascal. On CORE, dog detection APN increases to 21.4 and
on Pascal increases to 7.9 from 4.2 for an independent dog
detector trained on CORE and Pascal. A fully structured
model trained only on CORE falls in between with APN of
6.0. These promising results show that our latent definition
of the ground truth structure can be used for flexible learn-
ing and can lead to even greater gains.

7. Conclusions and Future Work
In this work, we treat recognition of many objects as a

unified problem. When presented with many supervised de-
tection tasks, our jointly trained detectors excel when com-
pared to detectors that are tied together after being trained
in isolation. By jointly training all of the appearance mod-
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Figure 5. High scoring structures after non-maximum suppression
(Yellow ellipse: head, blue ellipse: torso, red line: leg). (a) Famil-
iar categories seen during training: our model can handle a variety
of poses and missing parts (e.g., left camel). (b) Cats and cows
were never seen during training, but we can still provide detailed
predictions. Note the vast change in scale between the cat and cow
head detections. (c) Typical mistakes include collecting parts from
multiple nearby objects, predicting basic level labels for unfamil-
iar objects, and hallucinating parts in scenes with strong contours.

els with the spatial model, they can learn that they need only
be confident in the presence of other strong object evidence.
Our flexible definition of valid ground truth structures can
be used to incorporate examples with incomplete annota-
tions. For dogs, we show that adding training examples with
only object level boxes can further improve accuracy.

Our results motivate several important future directions
in representing and learning about objects. Models should
aim to capture similarities between related categories, al-
lowing better generalization for familiar and unfamiliar ob-
jects, while also specializing to capture the detailed differ-
ences between categories, giving better discrimination. Fur-
ther, by including detailed annotations such as parts, we
can inject high level knowledge that can improve recog-
nition and give detailed predictions about objects we can-
not name. By further exploring mixed supervision, we
can include this detailed knowledge without requiring that
we collect this more costly annotation every single object.
The broad models with mixed supervision can also allow
quick bootstrapping for learning about new related objects,
requiring fewer detailed annotations. Code for learning
and inference with our structured models can be found at
http://vision.cs.uiuc.edu/bodyplans.
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