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Abstract

There is a mismatch between the standard theoretical analyses of statistical machine learning and
how learning is used in practice. The foundational assumption supporting the theory is that we can
represent features and models using real-valued parameters. In practice, however, we do not use real
numbers at any point during training or deployment. Instead, we rely on discrete and finite quantizations
of the reals, typically floating points. In this paper, we propose a framework for reasoning about learning
under arbitrary quantizations. Using this formalization, we prove the convergence of quantization-aware
versions of the Perceptron and Frank-Wolfe algorithms. Finally, we report the results of an extensive
empirical study of the impact of quantization using a broad spectrum of datasets.

1 Introduction
Machine learning abounds with theoretical guarantees (e.g., convergence of algorithms) which assume we
work with real numbers. However, in practice, every instantiation of the algorithms necessarily uses discrete
and finite approximations of real numbers; our hardware is discrete and finite. Such representations are
sparse in the space of real numbers. As a consequence, most real numbers are not precisely represented. Does
this fact pose problems for learning?

On commodity hardware, learning algorithms typically use 64, 32, or more recently 16 bit floating point
numbers. These approximations are dense enough that, empirically, the guarantees appear to hold. For
example, with a b bit representation, d-dimensional linear models exist in spaces with 2bd distinct points.
Typical values of b give sufficiently close approximations to Rd, and learning is reliable, especially after data
pre-processing such as normalization. Floating points are convenient, ubiquitous and portable. Yet, we argue
that, machine learning applications present both the need and the opportunity to rethink how real numbers
are represented. With 64 bits and d dimensions, we can distinguish 264d

(
≈ 1019d

)
points; but learning may

not need such high fidelity. The possibility of guaranteed learning with much coarser numeric representations
such as the ones in figure 1, and perhaps even customized ones that are neither fixed nor floating points,
could allow for more power efficient customized hardware for learning.

Moving away from general purpose numeric representations can vastly impact various domains where
learning is making inroads. For example, embedded systems and personal devices are resource and power
limited. Datacenters are not resource limited, but the sheer scale of data they operate upon demands
sensitivity to the cost of powering them. Both applications can reap power saving benefits from custom
hardware with efficient custom numeric representations. However, using ad-hoc representations risks unsound
learning: specializing hardware for learning requires guarantees.

Are the standard fine-grained representations needed for guaranteed learning? Can we learn with
coarser quantization of the feature and parameter space? For example, figure 1 shows examples of different
quantizations of a two-dimensional space. While we seek to represent the (bounded) infinite set on the plane,
only the points shown in the figure actually exist in our representation. Each representation is effectively
blind to the spaces between the representable points — both features and parameters are constrained to the
quantized set. What does it mean to learn over this quantized set?

We present a framework for reasoning about learning under any arbitrary quantization that consists of
atoms – the finite subset of Rd which can be represented precisely. Our framework includes not only floating
and fixed point representations of numbers, but custom numeric representations as well. Both examples and
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Points in Range [-6, 6] 
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Points in Range [-24, 24] 

Figure 1: Precisely representable points in the ranges [−6, 6] (left) and [−24, 24] (right) under different
quantizations. In the top images, these points are spaced in a regular lattice, akin to fixed points. The
bottom images show a logarithmically spaced set of points, similar to floating points. Other than these two
well studied numeric representations, we could also choose a quantization that is customized to the task,
domain or hardware at hand.

learned parameters are rounded to the nearest atom. We formalize the operators needed over the atoms to
define several learning algorithms.

We study two broad families of learning algorithms under our framework. We present a quantization-aware
Perceptron mistake bound that shows that, the Perceptron algorithm, despite quantization, will converge to a
separating set of (quantized) parameters. We also show convergence guarantees for the Frank-Wolfe algorithm
defined over the quantized representations. Finally, we present a set of empirical results on several benchmark
datasets that investigate how the choice of numeric representation affects learning. Across all datasets, we
show it is possible to achieve maximum accuracy with much fewer number of atoms than mandated by
standard fixed or floating points. Furthermore, we show that merely adjusting the number of bits that we
allow for our representations is not enough. The actual points that are precisely representable—i.e., the
choice of the atoms—is equally important, and even with the same number of bits, a poor choice of the atoms
can render datasets unlearnable.

In summary, we present:

1. A general framework for reasoning about learning under quantization,

2. theoretical analysis of a family of algorithms that can be realized under our framework, and,

3. experiments with Perceptron on several datasets that highlights the various effects of quantization.

2 A Framework for Formalizing Quantization
In this section, we will define a formalization of quantized representations of real vectors which not only
includes floating and fixed points, but is also flexible enough to represent custom quantization. To do so, let
us examine the operations needed to train linear classifiers, where the goal is to learn a set of parameters
w ∈ Rd. As a prototypical member of this family of learning algorithms, consider the Perceptron algorithm,
the heart of which is the Perceptron update: For an example represented by its features x ∈ Rd with a label
y ∈ {−1,+1}, we check if the inner product 〈w,x〉 has the same sign as y. If not, we update the weights to
w + yx. The fundamental currency of such an algorithm is the set of d-dimensional vectors which represent
feature vectors x and the learned classifier w.

We define a quantization via a finite set A of m atoms {a1, a2, · · · , am}. Each atom precisely represents
a unique point in Rd — e.g., the points in the examples in figure 1. Conceptually, we can now think of
the learning algorithm as operating on the set A rather than Rd. Instead of reasoning about learning over
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vectors, we need to reason about learning over this finite set of representable values. Our abstraction frees
us from implicit geometric assumptions we may make when we think about vectors, such as requiring that
each dimension contain the same number of representable points. This allows us to model not only the
familiar fixed and floating point representations, but also task-dependent custom numeric representations
which contain irregularly spaced points.

Given a set of atoms, we now need to define the operators needed to define learning algorithms. To
support algorithms like the Perceptron algorithm, we need three operations over set of atoms — we need to
be able to (a) compute sign of the dot product of two atoms, (b) add two atoms to produce a new atom,
and (c) multiply an atom by a real number. Note that, despite atoms being associated with real vectors, we
cannot simply add or scale atoms because the result may not be representable as an atom.

To provide a formal basis for these operators, we will define two functions that connect the atoms to the
real vector space. For any atom a ∈ A, we will refer to the associated point in Rd as its restoration. The
restoration r : A→ Rd is maps atoms to their associated real valued points. For brevity, if it is clear from
the context, we will simplify notation by treating atoms a as vectors via an implicit use of the restoration
function. For any point that is not precisely representable by a set A, we need to be able to map it to one of
the atoms. We will refer to the function q : Rd → A that maps any point in the vector space to an atom as
the quantization of the point.

Thus, we can define a quantization of Rd via the triple (A, q, r) comprising of the set of atoms A, a
quantization function q and a restoration function r. The functions q and r give us natural definitions of the
intended semantics of the operations described above and will drive the analysis in §3. Note that while these
functions formally define a quantization, its implementation cannot explicitly use them because the space Rd
is not available. Our formalization includes regular lattices such as fixed point, logarithmic lattices such as
floating point, as well as more general lattices. For instance, the points in the regular or logarithmic lattices
of figure 1 can be taken as the set of atoms A.

Most of Rd — which is infinite — is simply too far from any atom to be useful, or even encountered
during training. So, we restrict our discussion to a continuous subset M ⊂ Rd that contains points of interest;
for instance, M could be a ball of sufficiently large radius centered at the origin. We will assume that all
atoms are in M .

Since atoms are precisely representable, restoring them via r induces no error. That is, for any a ∈ A,
we have q(r(a)) = a. The reverse is not true; restoring the quantization of a point x ∈M via r(q(x)) need
not preserve x. Intuitively, the gap between r(q(x)) and x should not be arbitrarily large for us to maintain
fidelity to the reals. To bound this error, we define the error parameter δ of a quantization as

δ = max
x∈M

‖x− r(q(x))‖. (1)

Defining the quantization error by a single parameter δ is admittedly crude; it does not exploit potential
variable density of atoms (e.g., with logarithmic lattices in figure 1). However, it allows for a separation from
the geometry of the quantization. For every atom a ∈ A, we could associate a quantization region Qa ⊂M
such that all points in Qa are quantized to a. That is, Qa = {x ∈M | q(x) = a}. The definition of δ bounds
the diameter of the quantization regions. In the simplest setting, we can assume Qa is defined as the Voronoi
cell of a, a convex subset of M that is closer to a than any other atom.

3 Quantization-Aware Learning
In this section, we will look at theoretical analyses of various aspects of quantization-aware learning. First, we
will show that under quantization, it may be possible for the error induced by a separating hyperplane to be
affected by nearly all the quantization regions. We will then show that class sample complexity bounds hold,
and then analyze the Perceptron algorithm. Finally, we will show an analysis of the Frank-Wolfe algorithm.
In both algorithms, our results show that, for learning to succeed, the margin γ of a dataset should be
sufficiently larger than the quantization error δ.
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3.1 Hyperplanes and Quantization
In general, collected data may be at a finer resolution than the set of atoms, but we argue that ultimately it is
natural to study the computation of classifiers (here, linear separators) on data X that is a subset of A. To do
so, we can analyze how unquantized separators interact with the atoms. Intuitively, only quantization regions
through which the separator passes can contribute to the error. How many such regions can exist? While
separators for Voronoi cells are studied, but finding separators among Voronoi cells that do not intersect too
many cells is known to be difficult [Bhattiprolu and Har-Peled, 2016]. For large d, almost every atom will be
affected by any separator. We formalize this for a specific, illustrative setting.

Lemma 1. Consider a domain M ⊂ Rd that is a cube centered at the origin for some constant d. Suppose
the set of atoms A correspond to an axis-aligned orthogonal grid of size m. For any atom a ∈ A, let the
quantization region Qa be its Voronoi region. Then, any linear separator that passes through the origin will be
incident to Ω(m1−1/d) quantization regions.

Proof. Without loss of generality, let the side length of the cubeM be 1, so the side length of each quantization
region Qa is 1/m1/d. Then, the diameter of each Qa is

√
d/m1/d.

Now, consider a linear separator F which is a (d− 1)-dimensional subspace. Use any orthogonal basis
spanning F to define a (d − 1)-dimensional grid within F . Place a set of Ω((m1/d)d−1) = Ω(m1−1/d) grid
points on F so that, along each axis of the basis, they are a distance of

√
d/m1/d apart. No two of these

grid points can be in the same Qa because their separation is at least the diameter of a cell. Thus, at least
Ω(m1−1/d) quantization cells of A must intersect the linear separator.

The bounded diameter of the quantization regions, which plays an important role in this proof, is related
to the worst-case error parameter δ. If these regions are not Voronoi cells, but still have a bounded diameter,
the same proof would work. Some quantizations may allow a specific linear separator F not to intersect so
many regions, but then other linear separators will intersect Ω(m1−1/d) regions.

3.2 Sample Complexity
Suppose we have a dataset consisting of training examples (the set X) and their associated binary labels
y. We will denote labeled datasets by pairs of the form (X, y). The set of training examples X is most
likely much smaller than A. Lemma 1 motivates that we assume that the training examples are precisely
representable under the quantization at hand, or have already been quantized; that is, X ⊂ A. This allows
us to focus the analysis on the impact of quantization during learning separately. From a practical point of
view, this assumption can be justified because we can only store quantized versions of input features. For
example, if features are obtained from sensor readings, notwithstanding sensor precision, only their quantized
versions can exist in memory.1

Consider a function class (or range space) (A,F) where F is a function class defining separators over the
set of atoms. For instance, F could define quantized versions of linear separators or polynomial separators of
a bounded degree. For any set of functions F defined over the set of atoms, we can define its real extension
F′ as the set of functions that agree with functions in F for all the atoms. That is, F′ = {r(F ) | F ∈ F}. Let
the VC-dimension of the real extension of the function space (Rd,F′) be ν.

Lemma 2. Consider a labeled set with examples X ⊂ A ⊂ Rd with corresponding labels y. Let F be a function
class such that its real extension (Rd,F′) has VC-dimension ν. Let (X1, y1) ⊂ (X, y) be a random sample
from the example set of size O(νε log 1

εδ ) and (X2, y2) ⊂ (X, y) a random sample of size O( 1
ε2 (ν + log 1

δ )).
Then, with probability at least 1− δ,

1. a perfect separator F1 ∈ F on (X1, y1) misclassifies at most ε fraction on (X, y), and,
2. a separator F2 ∈ F on (X2, y2) that misclassifies an η fraction of points in (X2, y2) misclassifies at

most an η + ε fraction of points in (X, y).

Proof. Any F ∈ F maps without error into F ′ ∈ F — i.e., q(r(F )) separates the same points as F . Then, if
x ∈ A is classified correctly by F , then r(x) is classified correctly by r(F ) ∈ F′. Then, since each x ∈ X maps

1In §4, we will show experiments that violate this assumption and achieve good accuracies. Analyzing such situations is an
open question.
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to a point r(x) ∈ Rd, the VC-dimension of (A,F) is also at most ν. Then, the standard sample complexity
bounds [Haussler and Welzl, 1987, Vapnik and Chervonenkis, 1971, Li et al., 2001] apply directly to the
quantized versions as claimed.

3.3 Quantized Perceptron Bound
We next consider the classic Perceptron algorithm on a labeled set X ⊂ A with each xi ∈ X labeled with
yi ∈ {−1,+1}. For a linear classifier defined by the normal direction wt ∈ A, a mistake is identified as
yi〈r(wt), r(xi)〉 < 0, which leads to the update

wt+1 = q (r(wt) + yir(xi)) .

Note that quantization error is only incurred on the last step wt+1 = q(r(wt) + yir(xi)) and that

‖r(wt+1)− (r(wt) + yir(xi))‖ ≤ δ.

That is, the new normal direction suffers at most δ error on a quantized update.
We can adapt the classic margin bound, where we assume that the data is linearly separable with a

margin γ.

Theorem 1 (Quantized Perceptron Mistake Bound). Consider a dataset with examples X ⊂ A ⊂M ⊂ Rd
where (X, y) has a margin γ. Suppose we have a representation scheme whose quantization error is δ < γ.
Assume every example x ∈ X satisfies ‖r(x)‖ ≤ 1 and M contains a ball of radius

√
T = 1/(γ − δ), then

after T steps the quantized Perceptron will return wT which perfectly separates the data (X, y).

Proof. First, we argue ‖r(wt)‖2 ≤ t since at each step ‖r(wt)‖2 increases by at most 1. That is, in step t
with misclassified (xi, yi) we have

‖r(wt+1)‖2 = 〈r(wt) + yir(xi), r(wt) + yir(xi)〉
= 〈r(wt), r(wt)〉+ (yi)

2〈r(xi), r(xi)〉
+ 2yi〈r(wt), r(xi)〉
≤ ‖r(wt)‖2 + 1 + 0.

Second, we argue that with respect to the max-margin classifier w∗ ∈ Rd, with ‖w∗‖ = 1, we have
〈w∗, r(wt)〉 ≥ t(γ − δ). On step t with misclassified (xi, yi), it increases by at least γ − δ:

〈r(wt+1),w∗〉 = 〈r(q(r(wt) + yir(xi))),w
∗〉

≥ 〈r(wt) + yir(xi),w
∗〉 − δ‖w∗‖

= 〈r(wt),w
∗〉+ yi〈r(xi),w∗〉 − δ

≥ 〈r(wt),w
∗〉+ γ − δ.

Combining these together t(γ − δ) ≤ 〈w∗, r(wt)〉 ≤ ‖r(wt)‖ ≤
√
t, and hence t ≤ 1/(γ − δ)2, as desired. If t is

larger, then the second claim is violated, and hence there cannot be another mis-classified point.
Also, note that for this to work, wt must stay within M . Since after t steps ‖wt‖ ≤

√
t, then over the

course of the algorithm wt is never outside of the ball of radius
√
T = 1/(γ − δ), as provided.

The theorem points out that if the margin of the data is larger than the quantization error, then the
mistake bound is O( 1

(γ−δ)2 ). In other words, with a coarse quantization, we may have to pay the penalty
in the form of more mistakes. Note that the above theorem does not make any assumptions about the
quantization, such as the distribution of the atoms. If such assumptions are allowed, we may be able to make
stronger claims, as the following theorem shows.

Theorem 2. When A forms a lattice restricted to M (e.g., the integer grid), the origin is in A, the data set
X ⊂ A, and M contains a ball of radius

√
T , then after T steps, the infinite precision Perceptron’s output

w∞T and the quantized Perceptron’s output wT match in that r(wT ) = w∞T .
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Proof. Since X ⊂ A, the only quantization step in the algorithm is on

wt+1 = q(r(wt) + yir(xi)),

for mistake (xi, yi) with xi ∈ X ⊂ A. However, since A is a lattice in Rd, then r(wt) is on the lattice, and
r(xi) is on the lattice, and hence, by definition, their sum (or difference if yi = −1) is also on the lattice.
Hence letting wt+1 = r(wt) + yir(xi), we have that wt+1 = r(q(wt+1)).

By the condition in the theorem, the set M contains a ball of radius
√
T . Then, wt never leaves M and

never leaves the lattice defining A.

In this case, the mistake bound is O(1/γ2), as in standard the full-precision Perceptron.

3.4 Frank-Wolfe Algorithm with Quantization
Next, we will analyze the Frank-Wolfe algorithm on a dataset (X, y). Initially, when t = 0, we take
w0 = q(r(xi)) where xi has its label yi = +1 and ‖r(xi)‖ is minimal. In t-th step, identify an example i such
that

i = arg min
i′
yi′ 〈r(wt), r(xi′)〉

and update
wt+1 = q (r [q (αyir (xi))] + r [q ((1− α)r (wt))])

where
α = arg min

α′∈[0,1]
‖α′yir(xi) + (1− α′)r(wt)‖

We will refer to this algorithm as the quantized Frank-Wolfe algorithm. Note that the computation of the
α requires line search over real numbers. While this may not be feasible in practice, we can show formal
learnability guarantees that can act as a blueprint for further analysis, where the update of w would be
guided by combinatorial search over the atoms.

Theorem 3 (Quantized Frank-Wolfe Convergence). Consider a data set X ⊂ A ⊂M ⊂ Rd, with quantization
error of δ, and where (X, y) has a margin γ. Assume every example x ∈ X satisfies ‖r(x)‖ ≤ 1, then after
T = O( 1√

γδ
log 1

ε + 1
εγ ) steps, the quantized Frank-Wolfe algorithm will return weights w which guarantees

min
j
yj

〈
r(xj),

r(w)

‖r(w)‖

〉
> γ −

√
24δ

γ
− ε.

Proof. The update step in the algorithm allows us to expand r(wt+1) as

r(wt+1) = r (q (r (q (αyir (xi))) + r (q ((1− α) r (wt))))

= (1− α)r(wt) + αyir(xi) + u.

Here u is a vector with ‖u‖ ≤ 3δ. In other words,

r(wt+1)− u = (1− α)r(wt) + αyir(xi)

Following the analysis of Gärtner and Jaggi [2009], we have

‖r(wt)‖ − ‖r(wt+1)− u‖

≥γ
8

(
‖r(wt)‖ −min

j
yj〈r(xj),

r(wt)

‖r(wt)‖
〉
)2

≥γ
8

(‖r(wt)‖ − γ)
2
.
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We can rearrange the above inequality and simplify it by defining ft = ‖r(wt)‖ − γ −
√

24δ
γ . We get

.ft − ft+1 = ‖r(wt)‖ − ‖r(wt+1)‖
≥ ‖r(wt)‖ − ‖r(wt+1)− u‖ − 3δ

≥ γ

8
(‖r(wt)‖ − γ)2 − 3δ

=
γ

8
(ft +

√
24δ

γ
)2 − 3δ

=
γ

8
f2t +

√
3δγ

2
ft

≥
√

3δγ

2
ft

That is, ft+1 ≤ (1−
√

3δγ
2 )ft ≤ exp(−

√
3δγ
2 )ft.

Suppose that the algorithm runs for T1 steps, we have

‖r(wT1)‖ ≤ γ +

√
24δ

γ
+ exp(−T1

√
3δγ

2
).

Furthermore, if T1 = O( 1√
γδ

log 1
ε ), then we can bound the norm of the reconstructed weight vector as

‖r(wT1
)‖ ≤ γ +

√
24δ
γ + ε.

In order to show the required bound, we need to consider the case where the algorithm runs for O( 1
εγ )

more steps. We will set up a contradiction to show this. Recall that

ft − ft+1 ≥
γ

8

(
‖r(wt)‖ −min

j
yj

〈
r(xj),

r(wt)

‖r(wt)‖

〉)2

− 3δ.

Suppose ‖r(wt)‖ −minj yi

〈
r(xj),

r(wt)
‖r(wt)‖

〉
> ε+

√
24δ
γ for t > T1. This allows us to simplify the bound for

ft − ft+1 above to γ
8 (ε+

√
24δ
γ )2 − 3δ = ε(γε8 +

√
3δγ
2 ). If the algorithm runs T2 = 8

εγ+
√
96δγ

more steps,

fT1+T2
− fT1

≥ T2ε(
γε

8
+

√
3δγ

2
) = ε

However, it leads to a contradiction of

ε > fT1+T2
> fT1+T2

− fT1
> ε

That means that ‖r(wt)‖ −minj yj〈r(xj), r(wt)
‖r(wt)‖ 〉 < ε+

√
24δ
γ for some t ∈ [T1, T1 + T2].

Namely, if the algorithm runs O( 1√
γδ

log 1
ε + 1

εγ+
√
δγ

) = O( 1√
γδ

log 1
ε + 1

εγ ) steps, it returns a vector w
that guarantees

min
j
yj

〈
r(xj),

r(w)

‖r(w)‖

〉
> γ −

√
24δ

γ
− ε.

As in the quantized Perceptron mistake bound, the proof of the above theorem follows the standard
strategy for proving the convergence of the Frank-Wolfe algorithm. The theorem points out that after T
steps, the margin of the resulting classifier will not be much smaller than the true margin of the data γ,
and the gap is dependent on the quantization error δ. Two corollaries of this theorem shed further light by
providing additive and multiplicative bounds on the resulting margin if the quantization error satisfies certain
properties.
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Table 1: Characteristics of the datasets used in our experiments.
Feature Num Max Feature Min Feature Number of Majority Max

Dataset Type Features Magnitude Magnitude Training/Testing Baseline Accuracy

synth01 Real 2 6.9 0.9 160/40 50 100
synth02 Real 2 2.7 0.01 80/20 50 100
mushrooms Bool 112 Bool Bool 7,000/1,124 52 100
gisette Real 5,000 3.2 0.001 6,000/1,000 50 97
cod-rna Real 8 1868 0.08 59,535/271,617 66 88
farm-ad Bool 54,877 Bool Bool 3,100/1043 53 88

Corollary 1. Consider a data set X ⊂ A ⊂M ⊂ Rd, with quantization error of δ ≤ ε2γ, and where (X, y)
has a margin γ. Assume every example x ∈ X satisfies ‖r(x)‖ ≤ 1, then after T = O( 1

εγ log 1
ε ) steps, the

quantized Frank-Wolfe algorithm will return weights w which guarantees minj yj〈r(xj), r(w)
‖r(w)‖ 〉 > γ − ε.

Corollary 2. Consider a data set X ⊂ A ⊂M ⊂ Rd, with quantization error of δ ≤ ε2γ3, and where (X, y)
has a margin γ. Assume all x ∈ X satisfies ‖r(x)‖ ≤ 1, then after T = O( 1

εγ2 log 1
εγ ) steps, the quantized

Frank-Wolfe algorithm will return w which guarantees minj yj〈r(xj), r(w)
‖r(w)‖ 〉 > (1− ε)γ.

In essence, these results show that if the worst-case quantization error is small compared to the margin,
then quantized Frank-Wolfe will converge to a good set of parameters. As in the quantized Perceptron, we do
not make any assumptions about the nature of quantization and the distribution of atoms. In other words,
the theorem and its corollaries apply not only to fixed and floating point quantizations, but also to custom
quantizations of the reals.

4 Experiments and Results
In this section, we present our empirical findings on how the choice of numeric representation affects
performance of classifiers trained using Perceptron. Specifically, we emulate three types of lattices: logarithmic
lattices (like floating point), regular lattices (like fixed point), and custom quantizations which are defined
solely by the collection of points they represent precisely. Our results empirically support and offer additional
intuition for the theoretical conclusions from §3 and investigate sources of quantization error. Additionally,
we also investigate the research question: Given a dataset and a budget of b bits, which points of Rd should
we represent to get the best performance.

4.1 Quantization Implementation Design Decisions
Before describing the experiments, we will first detail the design decisions that were made in implementing
the quantizers used in experiments.

To closely emulate the formalization in § 2, we define a quantization via two functions: a quantizer
function q (which translates any real vector to a representable atom), and a restoration function r (which
translates every atom to the real vector which it represents precisely).

We use 64-bit floating points as a surrogate for the reals. In both the logarithmic and regular lattices, the
distribution of lattice points used is symmetric in all dimensions. This means that if we model a bit-width b
with 2b lattice points, then the d-dimensional feature vectors will exist in a lattice with 2bd distinct points.

Fixed point requires specifying a range of numbers that can be represented and the available bits define
an evenly spaced grid in that range. For floating points, we need to specify the number of bits used for the
exponent; apart from one bit reserved for the sign, all remaining bits are used for the mantissa.

We have also implemented a fully custom quantization with no geometric assumptions. Its purpose is to
address the question: if we have more information about a dataset, can we learn with substantially fewer bits?

A Logarithmic Lattice: Modeling Floating Point We have implemented a logarithmic lattice which is
modeled on a simplified floating point representation. The latest IEEE specification (2008) defines the floating
point format for only 16, 32, 64, 128 and 256 bit wide representations, therefore we have adapted the format
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Full Precision

Test Accuracy: 100% Test Accuracy: 100% Test Accuracy: 98% Test Accuracy: 87%

Fixed: 32 lattice points Fixed: 4 lattice pointsFloating: Expo=3, Mant=1

Figure 2: The synth01 dataset under various quantizations. Misclassified points are denoted by a black circle.
Left to Right: Full Precision; Fixed Point in [-6, 6] with 32 lattice points/dimension; Floating Point with 3
bits of exponent, 1 bit of mantissa; Fixed Point in [-6, 6] with 4 lattice points/dimension.

for arbitrary mantissa and exponent widths. The interpretation of the exponent and the mantissa in our
implementation is the same as defined in the standard; the following section further explores which points are
representable in this lattice. While the official floating point specification also includes denormalized values,
we have chosen to not represent them. In practice denormalized values complicate the implementation of the
floating point pipeline which is contrary with our goal of designing power-conscious numeric representations.
We have also chosen to not represent ±∞; instead our implementation overflows to the maximum or minimum
representable value. This behavior is reasonable for our domain because the operation which fundamentally
drives learning is considering the sign of the dot product, and bounding the maximum possible magnitude
does not influence the sign of the dot product.

A Regular Lattice: Modeling Fixed Point We have also implemented a regular lattice which is
modeled on a fixed point representation. This lattice is parameterized by the range in which values are
precisely represented, and by the density of represented points. The range parameter is analogous to the
exponent in floating point (both control the range of representable values), and the density parameter is
analogous to the mantissa. Similarly to our floating point implementation, our fixed point representation
symmetrically represents positive and negative values, and has the same overflow behavior.

A Custom Lattice: Quantizing With A Lookup Table In addition to the logarithmic and regular
lattices, we have also implemented a fully custom lattice. This lattice is represented as a lookup table that
maps precisely representable points to a boolean encoding. For instance, if we wish to use a bit-width of
2, meaning we can precisely represent 4 points, we can create a table with 4 rows, each of which map a
vector in Rd to one of the 4 available atoms. The quantization function for this table quantizer is defined by
returning the atom which is mapped to the vector found by performing nearest neighbors on the precisely
represented vectors. While a hardware implementation is beyond the scope of this paper, lookup tables can
be implemented efficiently in hardware.

4.2 Experimental Setup
To gain a broad understanding of how quantization affects learning, we have selected datasets with a variety
of characteristics, such as number of features, number of feature values, and linear separability that may
influence learnability. Table 1 summarizes them. The majority baseline in table 1 gives the accuracy of
always predicting the most frequent label, and max accuracy specifies the accuracy achieved by quantizing to
64-bit floats. 2

We have implemented a generic version of Perceptron that uses a given quantization. For each dataset,
we ran Perceptron for 3 epochs with a fixed learning rate of 1 to simplify reasoning about the updates; using
a decaying learning rate produces similar results.

2These datasets are available on the UCI machine learning repository or the libsvm data repository.
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Table 2: Test set accuracies on the mushrooms dataset for different fixed point quantizations. Green cells are
closer to the maximum possible accuracy; redder cells are closer to the majority baseline.

Number of lattice points per dimension
Range 8 16 32 64 128 256

[−0.5, 0.5] 52 93 97 98 100 100
[−0.75, 0.75] 48 93 99 100 100 100

[−1, 1] 52 93 95 98 99 100
[−2, 2] 52 48 88 96 99 100
[−4, 4] 48 48 52 99 100 100
[−8, 8] 48 48 52 48 85 99

4.3 Sources of Quantization Error
Mapping Vectors to Lattice Points First, let us use a 2-dimensional synthetic linearly separable dataset
to illustrate the effects of quantization. Figure 2 shows the synth01 dataset presented under different
quantizations. The quantization second-to-the-left (Fixed: 32 lattice points) achieves 100% accuracy while
providing only 210 possible lattice points as opposed to the 2128 lattice points available under full precision.

What are the sources of error in these quantizations? In the plot second from the right (Floating: expo=3,
mant=1) there are two misclassified points that are close to the decision boundary in the full precision plot.
These points are misclassified because the quantization has insufficient resolution to represent the true weight
vector. In the right-most plot (Fixed: 4 lattice points) some of the misclassified points are plotted as both
being a correctly classified and a misclassified point. There are points in the test set with different labels
which get quantized to the same point, therefore that lattice point contains both correctly classified test points
and misclassified test points. In effect, this quantization is mapping a dataset which is linearly separable in
full precision to one which is linearly inseparable under low precision.

Learning, and Not Learning, on Mushrooms Table 2 reports set accuracies on the mushrooms dataset
when quantized under a variety of fixed point parameters. The mushrooms dataset is linearly separable, and
indeed, we observe that with 256 lattice points per dimension distributed evenly in the interval [−1, 1]112

(corresponding to 28 bits for each of the 112 dimensions) we can achieve 100% test accuracy. Having only
4 or 8 lattice points per dimension, however, is insufficient to find the classifying hyperplane in any of the
reported ranges.

Notice that for parameter values in a certain range, the classifier does not learn at all (reporting 50%
accuracy), but in the remaining range, the classifier does fine. This bifurcation is caused by edge-effects of the
quantizations; the atoms on the outside corners of the representable points act as sinks. Once the classifier
takes on the value of one of these sink atoms, the result of an update with any possible atom snaps back
to the same sink atom, so no more learning is possible. The algorithm does not learn under quantizations
which had many such sinks; the sinks are an artifact of the distribution of points, the rounding mode and the
overflow mode.

4.4 Which Atoms Are Necessary?
Given a dataset, a natural question is: how many bits are necessary to get sufficient classification accuracy?
This question is insufficient; in this section, we will discuss why it is not only the number of lattice points,
but also their positions, that affect learnability.

The Most Bang For Your Bits Table 3 reports testing accuracies for different choices of both fixed and
floating point parameters that result in the same bit-width for the gisette dataset; table 4 reports the same
for the farm-ad dataset. The table reports wild variation – from completely unconverged weights reporting
50% accuracy to well-converged weights reporting 94% accuracy. With sufficiently many bits (the right-most
column) any quantization with sufficiently large range (all rows but the top fixed point row); however it is
possible to get high accuracy even at lower bit-widths, if the placement of the atoms is judiciously chosen.
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Table 3: Test set accuracies on the gisette dataset for different quantizations. For the floating point
representations, each row represents a different value of the exponent part. One bit in the bit budget is
assigned for the sign and the rest of the bits are used for the mantissa. Green cells are closer to the maximum
possible accuracy, while redder cells are closer to the majority baseline.

Bit budget for fixed points
Range 6 bits 7 bits 8 bits 9 bits

[−8, 8] 90 89 62 50
[−16, 16] 92 93 88 88
[−32, 32] 50 90 94 93
[−64, 64] 50 50 91 94

[−128, 128] 50 50 50 89

# exponent Bit budget for floating points
bits 6 bits 7 bits 8 bits 9 bits

1 57 71 82 82
2 88 81 88 82
3 81 85 83 94
4 50 51 88 94
5 – 50 50 77
6 – – 50 50
7 – – – 50

Table 4: Test set accuracies on the farm-ads dataset for different quantizations. For the floating point
representations, each row represents a different value of the exponent part. One bit in the bit budget is
assigned for the sign and the rest of the bits are used for the mantissa. Green cells are closer to the maximum
possible accuracy, while redder cells are closer to the majority baseline.

Bit budget for fixed points
Range 9 bits 10 bits 11 bits 12 bits

[−8, 8] 83 82 79 86
[−16, 16] 77 77 76 87
[−32, 32] 51 59 66 88
[−64, 64] 51 51 56 87

[−128, 128] 51 51 52 88

# exponent Bit budget for floating points
bits 7 bits 8 bits 9 bits 10 bits

1 84 84 84 84
2 86 89 87 87
3 87 86 86 86
4 85 87 89 89
5 85 85 89 87
6 – 85 85 85
7 – – – 85

Normalization & Quantization The cod-rna dataset contains a small number features, but they span
in magnitude from 1868 to 0.08. This large range in scale makes cod-rna unlearnable at small bit-widths;
it requires both a high lattice density to represent the small magnitude features and sufficient range to
differentiate the large magnitude features. We found cod-rna required at least 12 bits under a floating
point quantization (1 bit sign, 5 bits exponent, 6 bit mantissa) and at least 11 bits under a fixed point
quantization (211 points in [−2048, 2048]11). Quantization and normalization are inseparable; the range of
feature magnitudes directly influences how large the lattice must be to correctly represent the data.

Low Bitwidth Custom Quantization Figure 3 presents the results of learning on the synth02 dataset
under a fully custom quantization. This quantization was produced by clustering the positive and negative
training examples separately using k-means clustering for k= 1, 3, and 9, and then taking the cluster centers
and using those as the atoms. The top row displays the cluster centers in relation to the data. The bottom
row shows the results of training Perceptron using only those lattice points, and then testing on the test
set: a red plus denotes a correctly classified positively labelled test point, a blue minus denotes a correctly
classified positively labeled test point, and the black dot denotes an incorrectly classified point. The coarsest
quantization (left) contains little information – the classification accuracy could either be 0 or 100; the two
finer quantizations result in 62 and 97 percent accuracy, showing that it is possible to learn under a coarse
custom quantization. Techniques for creating custom quantizations for a given dataset are left as future work.

5 Related Work and Discussion
Studying the impact of numerical representations on learning was a topic of active interest in the context of
neural networks in the nineties [Holt and Baker, 1991, Hoehfeld and Fahlman, 1992, Simard and Graf, 1994] —
with focus on fixed point, floating point or even integer representations. The general consensus of this largely
empirical line of research suggested the feasibility of backpropagation-based neural network learning. Also
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Test Accuracy: 0%

1 Cluster Per Label 3 Clusters Per Label 9 Clusters Per Label

Test Accuracy: 62% Test Accuracy: 97%

Figure 3: Learning on a custom lattice determined through clustering, shown on synth02. Top row: Each
label was clustered into (left-to-right) 1, 3, 9 clusters; cluster centers (black dots) were then used as atoms.
Bottom row: Test prediction accuracy. correctly labeled positive points are denoted by +, correctly labeled
negative points are denoted by −, mislabeled are denoted by black dots.

related is the work on linear threshold functions with noisy updates [Blum et al., 1998].
In recent years, with the stunning successes of neural networks [Goodfellow et al., 2016], interest in

studying numeric representations for learning has been re-invigorated [Courbariaux et al., 2015, Gupta et al.,
2015, for example]. In particular, there have been several lines of work focusing on convolutional neural
networks [Lin et al., 2016, Wu et al., 2016, Das et al., 2018, Micikevicius et al., 2017, inter alia] which show
that tuning or customizing numeric precision does not degrade performance.

Despite the many empirical results pointing towards learnability with quantized representations, there
has been very little in the form of theoretical guarantees. Only recently, we have started seeing some work
in this direction [Zhang et al., 2017, Alistarh et al., 2016, Chatterjee and Varshney, 2017]. The ZipML
framework [Zhang et al., 2017] is conceptually related to the work presented here in that it seeks to formally
study the impact of quantization on learning. But there are crucial differences in both formalization — while
this paper targets online updates (Perceptron and Frank-Wolfe), ZipML studies the convergence of stochastic
gradient descent. Moreover, in this paper, we formally and empirically analyze quantized versions of existing
algorithms, while ZipML proposes a new double-rounding scheme for learning.

Most work has focused on the standard fixed/floating point representations. However, some recent work
has suggested the possibility of low bitwidth custom numeric representations tailored to learning [Seide et al.,
2014, Hubara et al., 2016, Rastegari et al., 2016, Park et al., 2017, Zhang et al., 2017, Köster et al., 2017].
Some of these methods have shown strong predictive performance with surprisingly coarse quantization
(including using one or two bits per parameter!). The formalization for quantized learning presented in this
paper could serve as a basis for analyzing such models.

Due to the potential power gains, perhaps unsurprisingly, the computer architecture community has shown
keen interest in low bitwidth representations. For example, several machine learning specific architectures
assume low precision representations [Akopyan et al., 2015, Shafiee et al., 2016, Jouppi et al., 2017, Kara et al.,
2017] and this paper presents a formal grounding for that assumption. The focus of these lines of work have
largely been speed and power consumption. However, since learning algorithms implemented in hardware
only interact with quantized values to represent learned weights and features, guaranteed learning with coarse
quantization is crucial for their usefulness. Indeed, by designing dataset- or task-specific quantization, we
may be able to make further gains.
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6 Conclusion
Statistical machine learning theory assumes we learn using real-valued vectors, however this is inconsistent with
the discrete quantizations we are forced to learn with in practice. We propose a framework for reasoning about
learning under quantization by abandoning the real-valued vector view of learning, and instead considering
the subset of Rd which is represented precisely by a quantization. This framework gives us the flexibility
to reason about fixed point, floating point, and custom numeric representation. We use this framework to
prove convergence guarantees for quantization-aware versions of the Perceptron and Frank-Wolfe algorithms.
Finally, we present empirical results which show that we can learn with much fewer than 64-bits, and which
points we choose to represent is more important than how many points.
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